Definition 5.8 .

[ HPR01 ] Let σ : × normal-: 𝜎 normal-→ \sigma:{\mathbb{N}}\times{\mathbb{N}}\rightarrow{\mathbb{N}} italic_σ : blackboard_N × blackboard_N → blackboard_N be any two-ary function; σ 𝜎 \sigma italic_σ may be nontotal and it may be many-to-one. We say that σ 𝜎 \sigma italic_σ is overstrong if and only if no polynomial-time computable function f 𝑓 f italic_f with f : { 1 , 2 } × × × normal-: 𝑓 normal-→ 1 2 f:\{1,2\}\times{\mathbb{N}}\times{\mathbb{N}}\rightarrow{\mathbb{N}}\times{% \mathbb{N}} italic_f : { 1 , 2 } × blackboard_N × blackboard_N → blackboard_N × blackboard_N satisfies that for each i { 1 , 2 } 𝑖 1 2 i\in\{1,2\} italic_i ∈ { 1 , 2 } and for each z , a 𝑧 𝑎 z,a\in{\mathbb{N}} italic_z , italic_a ∈ blackboard_N :

( ( b ) [ ( σ ( a , b ) = z i = 1 ) ( σ ( b , a ) = z i = 2 ) ] ) σ ( f ( i , z , a ) ) = z . fragments fragments ( fragments ( b N ) fragments [ fragments ( σ fragments ( a , b ) z i 1 ) fragments ( σ fragments ( b , a ) z i 2 ) ] ) σ fragments ( f fragments ( i , z , a ) ) z . ((\exists b\in{\mathbb{N}})[(\sigma(a,b)=z{\;\wedge\;}i=1)\lor(\sigma(b,a)=z{% \;\wedge\;}i=2)])\,\Longrightarrow\ \sigma(f(i,z,a))=z. ( ( ∃ italic_b ∈ blackboard_N ) [ ( italic_σ ( italic_a , italic_b ) = italic_z ∧ italic_i = 1 ) ∨ ( italic_σ ( italic_b , italic_a ) = italic_z ∧ italic_i = 2 ) ] ) ⟹ italic_σ ( italic_f ( italic_i , italic_z , italic_a ) ) = italic_z .

Definition 2.1

A generalized tacnode is a two dimensional elliptic hypersurface singularity ( X , 0 ) 𝑋 0 (X,0) ( italic_X , 0 ) , such that the fundamental cycle has self intersection ( - 2 ) 2 (-2) ( - 2 ) .
In particular, ( X , 0 ) 𝑋 0 (X,0) ( italic_X , 0 ) is Gorenstein and by [ Lau ] , theorem ( 1.3 ) 1.3 (1.3) ( 1.3 ) , ( X , 0 ) 𝑋 0 (X,0) ( italic_X , 0 ) is a double point singularity, whose local analytic equation is given by

z 2 = g ( x , y ) , superscript 𝑧 2 𝑔 𝑥 𝑦 z^{2}=g(x,y), italic_z start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT = italic_g ( italic_x , italic_y ) ,

where g 𝑔 g italic_g vanishes of order four in 0 0 . The normal cone of the singularity is given by the plane { z = 0 } 𝑧 0 \{z=0\} { italic_z = 0 } , called the tacnodal plane.


Definition 1.1 .

A conic metric on X 𝑋 X italic_X is a Riemannian metric g 𝑔 g italic_g on X superscript 𝑋 X^{\circ} italic_X start_POSTSUPERSCRIPT ∘ end_POSTSUPERSCRIPT such that in a neighborhood of any boundary component Y 𝑌 Y italic_Y of X 𝑋 X italic_X , there exists a boundary defining function x 𝑥 x italic_x ( x 0 𝑥 0 x\geq 0 italic_x ≥ 0 , { x = 0 } = X fragments fragments { x 0 } X \{x=0\}=\partial X { italic_x = 0 } = ∂ italic_X , d x X 0 fragments d x subscript 𝑋 0 dx\!\!\upharpoonright_{\partial X}\neq 0 italic_d italic_x ↾ start_POSTSUBSCRIPT ∂ italic_X end_POSTSUBSCRIPT ≠ 0 ) in terms of which

(1.1) g = d x 2 + x 2 h 𝑔 𝑑 superscript 𝑥 2 superscript 𝑥 2 g=dx^{2}+x^{2}h italic_g = italic_d italic_x start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_x start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_h

where h 𝒞 ( Sym 2 T * X ) superscript 𝒞 superscript Sym 2 superscript 𝑇 𝑋 h\in{\mathcal{C}}^{\infty}(\operatorname{Sym}^{2}T^{*}X) italic_h ∈ caligraphic_C start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT ( roman_Sym start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_T start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT italic_X ) and h Y subscript 𝑌 absent h\!\!\upharpoonright_{Y} italic_h ↾ start_POSTSUBSCRIPT italic_Y end_POSTSUBSCRIPT is a metric. A conic manifold is a compact manifold with boundary endowed with a conic metric.


Definition 3.11 ( # normal-# \# # involution)

For any index i = 1 , , M + N 𝑖 1 normal-… 𝑀 𝑁 i=1,...,M+N italic_i = 1 , … , italic_M + italic_N , we define i superscript 𝑖 normal-′ i^{\prime} italic_i start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT by

i = { m = m ~ + 1 , ( m ~ + 1 ) = m i 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 superscript 𝑖 cases formulae-sequence superscript 𝑚 ~ 𝑚 1 superscript ~ 𝑚 1 𝑚 𝑖 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 i^{\prime}=\left\{\begin{array}[]{l}m^{\prime}={\widetilde{m}}+1,\ \ ({% \widetilde{m}}+1)^{\prime}=m\\ i\hskip 11.381102pt\mbox{otherwise}\end{array}\right. italic_i start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT = { start_ARRAY start_ROW start_CELL italic_m start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT = ~ start_ARG italic_m end_ARG + 1 , ( ~ start_ARG italic_m end_ARG + 1 ) start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT = italic_m end_CELL end_ROW start_ROW start_CELL italic_i otherwise end_CELL end_ROW end_ARRAY (3.45)

# # \# # defined by

S # i j ( u ) = S i j ( u ) superscript subscript 𝑆 # 𝑖 𝑗 𝑢 superscript 𝑆 superscript 𝑖 superscript 𝑗 𝑢 S_{\#}^{ij}(u)=S^{i^{\prime}j^{\prime}}(u) italic_S start_POSTSUBSCRIPT # end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_i italic_j end_POSTSUPERSCRIPT ( italic_u ) = italic_S start_POSTSUPERSCRIPT italic_i start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT italic_j start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT end_POSTSUPERSCRIPT ( italic_u ) (3.46)

is an order 2 automorphism of Y ( M | 2 n ) + 𝑌 superscript conditional 𝑀 2 𝑛 Y(M|2n)^{+} italic_Y ( italic_M | 2 italic_n ) start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT .


Definition 2 .

The Homflypt skein module of M 𝑀 M italic_M , denoted by S ( M ) 𝑆 𝑀 S(M) italic_S ( italic_M ) , is the k 𝑘 k italic_k -module freely generated by isotopy classes of framed oriented links in M 𝑀 M italic_M including the empty link, quotient by the Homflypt skein relations given in the following figure.

x - 1 - x = ( s - s - 1 ) , superscript 𝑥 1 𝑥 𝑠 superscript 𝑠 1 x^{-1}\quad\raisebox{-8.535827pt}{\epsfbox{left.ai}}\quad-\quad x\quad% \raisebox{-8.535827pt}{\epsfbox{right.ai}}\quad=\quad(\ s-\ s^{-1})\quad% \raisebox{-8.535827pt}{\epsfbox{parra.ai}}\quad, italic_x start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT - italic_x = ( italic_s - italic_s start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ) ,
= ( x v - 1 ) , 𝑥 superscript 𝑣 1 \raisebox{-8.535827pt}{\epsfbox{framel.ai}}\quad=\quad(xv^{-1})\quad\raisebox{% -8.535827pt}{\epsfbox{orline.ai}}\quad, = ( italic_x italic_v start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ) ,
L = v - 1 - v s - s - 1 L . square-union 𝐿 superscript 𝑣 1 𝑣 𝑠 superscript 𝑠 1 𝐿 L\ \sqcup\raisebox{-5.690551pt}{\epsfbox{unknot.ai}}\quad=\quad{\dfrac{v^{-1}-% v}{\ s-\ s^{-1}}}\quad L\quad. italic_L ⊔ = divide start_ARG italic_v start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT - italic_v end_ARG start_ARG italic_s - italic_s start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT end_ARG italic_L .

Definition 10 .

If α 𝛼 \alpha italic_α is an action of ( M , Δ ) 𝑀 Δ (M,\Delta) ( italic_M , roman_Δ ) on a von Neumann algebra N 𝑁 N italic_N , we define an α 𝛼 \alpha italic_α -invariant mean to be a state m N * 𝑚 superscript 𝑁 m\in N^{*} italic_m ∈ italic_N start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT such that

m ( ( ω ι ) α ( x ) ) = m ( x ) ω ( 1 ) 𝑚 tensor-product 𝜔 𝜄 𝛼 𝑥 𝑚 𝑥 𝜔 1 m((\omega\otimes\iota)\alpha(x))=m(x)\omega(1) italic_m ( ( italic_ω ⊗ italic_ι ) italic_α ( italic_x ) ) = italic_m ( italic_x ) italic_ω ( 1 )

for all ω M * 𝜔 subscript 𝑀 \omega\in M_{*} italic_ω ∈ italic_M start_POSTSUBSCRIPT * end_POSTSUBSCRIPT and x N 𝑥 𝑁 x\in N italic_x ∈ italic_N .