Definition 1.3

Let A 𝐴 A italic_A be a K 𝐾 K italic_K -superalgebra in a variety 𝔙 𝔙 \mathfrak{V} fraktur_V (later 𝔙 𝔙 \mathfrak{V} fraktur_V will be the variety of Jordan or Lie superalgebras). Let 𝒰 𝒰 {\cal{U}} caligraphic_U be a K 𝐾 K italic_K -supermodule equipped with a pair of K 𝐾 K italic_K -bilinear mappings ( a , u ) a u , ( a , u ) u a , a A , u 𝒰 formulae-sequence maps-to 𝑎 𝑢 𝑎 𝑢 formulae-sequence maps-to 𝑎 𝑢 𝑢 𝑎 formulae-sequence 𝑎 𝐴 𝑢 𝒰 (a,u)\mapsto au,\,(a,u)\mapsto ua,\,a\in A,\,u\in{\cal{U}} ( italic_a , italic_u ) ↦ italic_a italic_u , ( italic_a , italic_u ) ↦ italic_u italic_a , italic_a ∈ italic_A , italic_u ∈ caligraphic_U , of A × 𝒰 𝐴 𝒰 A\times{\cal{U}} italic_A × caligraphic_U into 𝒰 𝒰 {\cal{U}} caligraphic_U of degree 0. Then X = A 𝒰 𝑋 direct-sum 𝐴 𝒰 X=A\oplus{\cal{U}} italic_X = italic_A ⊕ caligraphic_U is a K 𝐾 K italic_K -supermodule on which we define a multiplication by

( a + u ) ( b + v ) = a b + a v + u b 𝑎 𝑢 𝑏 𝑣 𝑎 𝑏 𝑎 𝑣 𝑢 𝑏 \displaystyle(a+u)(b+v)=ab+av+ub ( italic_a + italic_u ) ( italic_b + italic_v ) = italic_a italic_b + italic_a italic_v + italic_u italic_b (1.5)

for all a , b A , u , v 𝒰 formulae-sequence 𝑎 𝑏 𝐴 𝑢 𝑣 𝒰 a,b\in A,\,u,v\in{\cal{U}} italic_a , italic_b ∈ italic_A , italic_u , italic_v ∈ caligraphic_U . Since this product is K 𝐾 K italic_K -bilinear, X 𝑋 X italic_X is a superalgebra over K 𝐾 K italic_K , called the split null extension of 𝒜 𝒜 {\cal{A}} caligraphic_A determined by the bilinear mappings of A 𝐴 A italic_A and 𝒰 𝒰 {\cal{U}} caligraphic_U (see [ J , Chap. II, Sect., 5] for the classical case). If X 𝑋 X italic_X is a superalgebra in the variety 𝔙 𝔙 \mathfrak{V} fraktur_V then we say that 𝒰 𝒰 {\cal{U}} caligraphic_U is a 𝔙 𝔙 \mathfrak{V} fraktur_V -module for A 𝐴 A italic_A . In this case, for each α 2 𝛼 subscript 2 \alpha\in\mathbb{Z}_{2} italic_α ∈ blackboard_Z start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT let ( Der K ( A , 𝒰 ) ) α subscript subscript Der 𝐾 𝐴 𝒰 𝛼 (\operatorname{Der}_{K}(A,{\cal{U}}))_{\alpha} ( roman_Der start_POSTSUBSCRIPT italic_K end_POSTSUBSCRIPT ( italic_A , caligraphic_U ) ) start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT be the space of all homogeneous K 𝐾 K italic_K -module homomorphisms d Hom K ( A , 𝒰 ) α fragments d subscript Hom 𝐾 subscript fragments ( A , U ) 𝛼 d\in\operatorname{Hom}_{K}(A,{\cal{U}})_{\alpha} italic_d ∈ roman_Hom start_POSTSUBSCRIPT italic_K end_POSTSUBSCRIPT ( italic_A , caligraphic_U ) start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT satisfying for all homogeneous x A 𝑥 𝐴 x\in A italic_x ∈ italic_A and all y A 𝑦 𝐴 y\in A italic_y ∈ italic_A

d ( x y ) = d ( x ) y + ( - 1 ) α | x | x d ( y ) . 𝑑 𝑥 𝑦 𝑑 𝑥 𝑦 superscript 1 𝛼 𝑥 𝑥 𝑑 𝑦 d(xy)=d(x)y+(-1)^{\alpha|x|}xd(y). italic_d ( italic_x italic_y ) = italic_d ( italic_x ) italic_y + ( - 1 ) start_POSTSUPERSCRIPT italic_α | italic_x | end_POSTSUPERSCRIPT italic_x italic_d ( italic_y ) .

We define

Der K ( A , 𝒰 ) = ( Der K ( A , 𝒰 ) ) 0 ¯ ( Der K ( A , 𝒰 ) ) 1 ¯ . subscript Der 𝐾 𝐴 𝒰 direct-sum subscript subscript Der 𝐾 𝐴 𝒰 ¯ 0 subscript subscript Der 𝐾 𝐴 𝒰 ¯ 1 \operatorname{Der}_{K}(A,{\cal{U}})=(\operatorname{Der}_{K}(A,{\cal{U}}))_{% \operatorname{\bar{0}}}\oplus(\operatorname{Der}_{K}(A,{\cal{U}}))_{% \operatorname{\bar{1}}}. roman_Der start_POSTSUBSCRIPT italic_K end_POSTSUBSCRIPT ( italic_A , caligraphic_U ) = ( roman_Der start_POSTSUBSCRIPT italic_K end_POSTSUBSCRIPT ( italic_A , caligraphic_U ) ) start_POSTSUBSCRIPT start_OPFUNCTION ¯ start_ARG 0 end_ARG end_OPFUNCTION end_POSTSUBSCRIPT ⊕ ( roman_Der start_POSTSUBSCRIPT italic_K end_POSTSUBSCRIPT ( italic_A , caligraphic_U ) ) start_POSTSUBSCRIPT start_OPFUNCTION ¯ start_ARG 1 end_ARG end_OPFUNCTION end_POSTSUBSCRIPT .

Then it is easy to see that Der K ( A , 𝒰 ) subscript Der 𝐾 𝐴 𝒰 \operatorname{Der}_{K}(A,{\cal{U}}) roman_Der start_POSTSUBSCRIPT italic_K end_POSTSUBSCRIPT ( italic_A , caligraphic_U ) is a submodule of End K subscript End 𝐾 \operatorname{End}_{K}{\cal{M}} roman_End start_POSTSUBSCRIPT italic_K end_POSTSUBSCRIPT caligraphic_M and hence a K 𝐾 K italic_K -supermodule. The elements of Der K ( A , 𝒰 ) subscript Der 𝐾 𝐴 𝒰 \operatorname{Der}_{K}(A,{\cal{U}}) roman_Der start_POSTSUBSCRIPT italic_K end_POSTSUBSCRIPT ( italic_A , caligraphic_U ) are called the K 𝐾 K italic_K -derivations (from A 𝐴 A italic_A to 𝒰 𝒰 {\cal{U}} caligraphic_U ) . If A = 𝒰 𝐴 𝒰 A={\cal{U}} italic_A = caligraphic_U , we simply write Der K A subscript Der 𝐾 𝐴 \operatorname{Der}_{K}A roman_Der start_POSTSUBSCRIPT italic_K end_POSTSUBSCRIPT italic_A .


Definition 3

Let μ 𝜇 \mu italic_μ be the moment map for the spin representation S 𝑆 S italic_S of S p i n ( 12 , 𝐂 ) 𝑆 𝑝 𝑖 𝑛 12 𝐂 Spin(12,\mathbf{C}) italic_S italic_p italic_i italic_n ( 12 , bold_C ) . Then

q ( ρ ) = tr μ ( ρ ) 2 𝑞 𝜌 tr 𝜇 superscript 𝜌 2 q(\rho)=\mathop{\rm tr}\nolimits\mu(\rho)^{2} italic_q ( italic_ρ ) = roman_tr italic_μ ( italic_ρ ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT

is an invariant quartic function on S 𝑆 S italic_S .

Definition 4

On the open set U S 𝑈 𝑆 U\subset S italic_U ⊂ italic_S for which q ( ρ ) < 0 𝑞 𝜌 0 q(\rho)<0 italic_q ( italic_ρ ) < 0 , define the function ϕ italic-ϕ \phi italic_ϕ , homogeneous of degree 2 2 2 2 , by

ϕ ( ρ ) = - q ( ρ ) / 3 . italic-ϕ 𝜌 𝑞 𝜌 3 \phi(\rho)=\sqrt{-q(\rho)/3}. italic_ϕ ( italic_ρ ) = square-root start_ARG - italic_q ( italic_ρ ) / 3 end_ARG .
Definition 5

A generalized Calabi-Yau manifold  is said to satisfy the d d J 𝑑 superscript 𝑑 𝐽 dd^{J} italic_d italic_d start_POSTSUPERSCRIPT italic_J end_POSTSUPERSCRIPT -lemma if

d J d τ = 0 d τ = d ( 𝜄 ( X ) ρ + ξ ρ ) 𝑑 𝐽 𝑑 𝜏 0 𝑑 𝜏 𝑑 𝜄 𝑋 𝜌 𝜉 𝜌 dJd\tau=0\Rightarrow d\tau=d(\mathop{\iota}\nolimits(X)\rho+\xi\wedge\rho) italic_d italic_J italic_d italic_τ = 0 ⇒ italic_d italic_τ = italic_d ( italic_ι ( italic_X ) italic_ρ + italic_ξ ∧ italic_ρ )

for a vector field X 𝑋 X italic_X and 1 1 1 1 -form ξ 𝜉 \xi italic_ξ .


1.11. Definition

A map μ : ( M , η ) ( M , , η ) fragments μ normal-: fragments normal-( M normal-, η normal-) normal-→ fragments normal-( M superscript normal-, normal-′ normal-, superscript 𝜂 normal-′ normal-) \mu:(M,\eta)\rightarrow(M,^{\prime},\eta^{\prime}) italic_μ : ( italic_M , italic_η ) → ( italic_M , start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT , italic_η start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) between two Poisson manifolds is called Poisson if for any f , g ( M ) 𝑓 𝑔 superscript 𝑀 normal-′ f,g\in\mathcal{E}(M^{\prime}) italic_f , italic_g ∈ caligraphic_E ( italic_M start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT )

μ * { f , g } η = { μ * f , μ * g } η superscript 𝜇 superscript 𝑓 𝑔 superscript 𝜂 superscript superscript 𝜇 𝑓 superscript 𝜇 𝑔 𝜂 \mu^{*}\{f,g\}^{\eta^{\prime}}=\{\mu^{*}f,\mu^{*}g\}^{\eta} italic_μ start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT { italic_f , italic_g } start_POSTSUPERSCRIPT italic_η start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT end_POSTSUPERSCRIPT = { italic_μ start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT italic_f , italic_μ start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT italic_g } start_POSTSUPERSCRIPT italic_η end_POSTSUPERSCRIPT

or, equivalently, μ * η x = η μ ( x ) subscript 𝜇 subscript 𝜂 𝑥 subscript superscript 𝜂 normal-′ 𝜇 𝑥 \mu_{*}\eta_{x}=\eta^{\prime}_{\mu(x)} italic_μ start_POSTSUBSCRIPT * end_POSTSUBSCRIPT italic_η start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT = italic_η start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_μ ( italic_x ) end_POSTSUBSCRIPT for any x M 𝑥 𝑀 x\in M italic_x ∈ italic_M .


Definition Definition 2.1.1

Let k 𝑘 k italic_k be a nonnegative integer. The standard k 𝑘 k italic_k -box , k subscript 𝑘 {\Cal{B}}_{k} caligraphic_B start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT , is the set { ( x , y ) 2 : 0 x k + 1 , 0 y 1 } conditional-set 𝑥 𝑦 superscript 2 formulae-sequence 0 𝑥 𝑘 1 0 𝑦 1 \{(x,y)\in{\mathbb{R}}^{2}:0\leq x\leq k+1,\ 0\leq y\leq 1\} { ( italic_x , italic_y ) ∈ blackboard_R start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT : 0 ≤ italic_x ≤ italic_k + 1 , 0 ≤ italic_y ≤ 1 } , together with the 2 k 2 𝑘 2k 2 italic_k marked points

1 = ( 1 , 1 ) , 2 = ( 2 , 1 ) , 3 = ( 3 , 1 ) , , k = ( k , 1 ) , k + 1 = ( k , 0 ) , k + 2 = ( k - 1 , 0 ) , , 2 k = ( 1 , 0 ) . missing-subexpression formulae-sequence 1 1 1 formulae-sequence 2 2 1 formulae-sequence 3 3 1 𝑘 𝑘 1 missing-subexpression formulae-sequence 𝑘 1 𝑘 0 formulae-sequence 𝑘 2 𝑘 1 0 2 𝑘 1 0 \eqalign{&1=(1,1),\ 2=(2,1),\ 3=(3,1),\ \ldots,\ k=(k,1),\cr&k+1=(k,0),\ k+2=(% k-1,0),\ \ldots,\ 2k=(1,0).\cr} start_ROW start_CELL end_CELL start_CELL 1 = ( 1 , 1 ) , 2 = ( 2 , 1 ) , 3 = ( 3 , 1 ) , … , italic_k = ( italic_k , 1 ) , end_CELL end_ROW start_ROW start_CELL end_CELL start_CELL italic_k + 1 = ( italic_k , 0 ) , italic_k + 2 = ( italic_k - 1 , 0 ) , … , 2 italic_k = ( 1 , 0 ) . end_CELL end_ROW

Definition 1.4 .

A threefold singularity defined by the equation

x 2 + y 2 + z 2 + v 2 = 0 superscript 𝑥 2 superscript 𝑦 2 superscript 𝑧 2 superscript 𝑣 2 0 x^{2}+y^{2}+z^{2}+v^{2}=0 italic_x start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_y start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_z start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_v start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT = 0

is called a node (nodal singularity). (See Appendix 5 .)