Definition 7 .

An ECA f 𝑓 f italic_f is additive is there are binary operators βŠ• direct-sum \oplus βŠ• and βŠ— tensor-product \otimes βŠ— (not necessarily distinct), and a neutral element e 𝑒 e italic_e such that for all x π‘₯ x italic_x , x βŠ• e = e βŠ• x = x direct-sum π‘₯ 𝑒 direct-sum 𝑒 π‘₯ π‘₯ {x\oplus e=e\oplus x=x} italic_x βŠ• italic_e = italic_e βŠ• italic_x = italic_x and with

βˆ€ x , y , z , x β€² , y β€² , z β€² { f ⁒ ( x βŠ• x β€² , y βŠ• y β€² , z βŠ• z β€² ) = f ⁒ ( x , y , z ) βŠ— f ⁒ ( x β€² , y β€² , z β€² ) f ⁒ ( x βŠ— x β€² , y βŠ— y β€² , z βŠ— z β€² ) = f ⁒ ( x , y , z ) βŠ• f ⁒ ( x β€² , y β€² , z β€² ) fragments for-all x , y , z , superscript π‘₯ β€² , superscript 𝑦 β€² , superscript 𝑧 β€² italic- fragments { 𝑓 direct-sum π‘₯ superscript π‘₯ β€² direct-sum 𝑦 superscript 𝑦 β€² direct-sum 𝑧 superscript 𝑧 β€² absent tensor-product 𝑓 π‘₯ 𝑦 𝑧 𝑓 superscript π‘₯ β€² superscript 𝑦 β€² superscript 𝑧 β€² 𝑓 tensor-product π‘₯ superscript π‘₯ β€² tensor-product 𝑦 superscript 𝑦 β€² tensor-product 𝑧 superscript 𝑧 β€² absent direct-sum 𝑓 π‘₯ 𝑦 𝑧 𝑓 superscript π‘₯ β€² superscript 𝑦 β€² superscript 𝑧 β€² \forall x,y,z,x^{\prime},y^{\prime},z^{\prime}\quad\left\{\begin{aligned} % \displaystyle f(x\oplus x^{\prime},y\oplus y^{\prime},z\oplus z^{\prime})&% \displaystyle=f(x,y,z)\otimes f(x^{\prime},y^{\prime},z^{\prime})\\ \displaystyle f(x\otimes x^{\prime},y\otimes y^{\prime},z\otimes z^{\prime})&% \displaystyle=f(x,y,z)\oplus f(x^{\prime},y^{\prime},z^{\prime})\end{aligned}\right. βˆ€ italic_x , italic_y , italic_z , italic_x start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT , italic_y start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT , italic_z start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT { start_ROW start_CELL italic_f ( italic_x βŠ• italic_x start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT , italic_y βŠ• italic_y start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT , italic_z βŠ• italic_z start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ) end_CELL start_CELL = italic_f ( italic_x , italic_y , italic_z ) βŠ— italic_f ( italic_x start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT , italic_y start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT , italic_z start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ) end_CELL end_ROW start_ROW start_CELL italic_f ( italic_x βŠ— italic_x start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT , italic_y βŠ— italic_y start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT , italic_z βŠ— italic_z start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ) end_CELL start_CELL = italic_f ( italic_x , italic_y , italic_z ) βŠ• italic_f ( italic_x start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT , italic_y start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT , italic_z start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ) end_CELL end_ROW

Definition 2

Let ( N , h ) 𝑁 β„Ž (N,h) ( italic_N , italic_h ) be a two-dimensional Lorentzian manifold. A map y : S β†’ M normal-: 𝑦 normal-β†’ 𝑆 𝑀 y:S\rightarrow M italic_y : italic_S β†’ italic_M is called wave map iff it satisfies the following differential equation:

t ⁒ r ⁒ βˆ‡ ⁑ d ⁒ y = 0 𝑑 π‘Ÿ βˆ‡ 𝑑 𝑦 0 tr\nabla dy=0 italic_t italic_r βˆ‡ italic_d italic_y = 0

where the trace is understood with respect to the metric h β„Ž h italic_h on N 𝑁 N italic_N , that means in coordinates t , x 𝑑 π‘₯ t,x italic_t , italic_x which are orthogonal at a point p ∈ N 𝑝 𝑁 p\in N italic_p ∈ italic_N :

( βˆ‚ t ) 2 ⁒ y Ξ± - ( βˆ‚ x ) 2 ⁒ y Ξ± + Ξ“ Ξ² ⁒ Ξ³ Ξ± ⁒ ( y ) ⁒ ( βˆ‚ t ⁑ y Ξ² ⁒ βˆ‚ t ⁑ y Ξ³ - βˆ‚ x ⁑ y Ξ² ⁒ βˆ‚ x ⁑ y Ξ³ ) = 0 superscript subscript 𝑑 2 superscript 𝑦 𝛼 superscript subscript π‘₯ 2 superscript 𝑦 𝛼 subscript superscript Ξ“ 𝛼 𝛽 𝛾 𝑦 subscript 𝑑 superscript 𝑦 𝛽 subscript 𝑑 superscript 𝑦 𝛾 subscript π‘₯ superscript 𝑦 𝛽 subscript π‘₯ superscript 𝑦 𝛾 0 (\partial_{t})^{2}y^{\alpha}-(\partial_{x})^{2}y^{\alpha}+\Gamma^{\alpha}_{% \beta\gamma}(y)(\partial_{t}y^{\beta}\partial_{t}y^{\gamma}-\partial_{x}y^{% \beta}\partial_{x}y^{\gamma})=0 ( βˆ‚ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_y start_POSTSUPERSCRIPT italic_Ξ± end_POSTSUPERSCRIPT - ( βˆ‚ start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_y start_POSTSUPERSCRIPT italic_Ξ± end_POSTSUPERSCRIPT + roman_Ξ“ start_POSTSUPERSCRIPT italic_Ξ± end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_Ξ² italic_Ξ³ end_POSTSUBSCRIPT ( italic_y ) ( βˆ‚ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT italic_y start_POSTSUPERSCRIPT italic_Ξ² end_POSTSUPERSCRIPT βˆ‚ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT italic_y start_POSTSUPERSCRIPT italic_Ξ³ end_POSTSUPERSCRIPT - βˆ‚ start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT italic_y start_POSTSUPERSCRIPT italic_Ξ² end_POSTSUPERSCRIPT βˆ‚ start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT italic_y start_POSTSUPERSCRIPT italic_Ξ³ end_POSTSUPERSCRIPT ) = 0

at p 𝑝 p italic_p .


Definition 2.1 .

Let π”Ž π”Ž {\mathfrak{K}} fraktur_K be a real Hilbert space. The algebra 𝔄 ⁒ ( π”Ž ) 𝔄 π”Ž {\mathfrak{A}}({\mathfrak{K}}) fraktur_A ( fraktur_K ) is the unital * * * -algebra with generators { Ο‰ ⁒ ( ΞΎ ) : ΞΎ ∈ π”Ž } conditional-set πœ” πœ‰ πœ‰ π”Ž \{\omega(\xi):\xi\in{\mathfrak{K}}\} { italic_Ο‰ ( italic_ΞΎ ) : italic_ΞΎ ∈ fraktur_K } and relations

Ο‰ ⁒ ( Ξ» ⁒ ΞΎ + ΞΌ ⁒ Ξ· ) = Ξ» ⁒ Ο‰ ⁒ ( ΞΎ ) + ΞΌ ⁒ Ο‰ ⁒ ( Ξ· ) Ο‰ ⁒ ( ΞΎ ) * = Ο‰ ⁒ ( ΞΎ ) formulae-sequence πœ” πœ† πœ‰ πœ‡ πœ‚ πœ† πœ” πœ‰ πœ‡ πœ” πœ‚ πœ” superscript πœ‰ πœ” πœ‰ \omega(\lambda\xi+\mu\eta)=\lambda\,\omega(\xi)+\mu\,\omega(\eta)\qquad\omega(% \xi)^{*}=\omega(\xi) italic_Ο‰ ( italic_Ξ» italic_ΞΎ + italic_ΞΌ italic_Ξ· ) = italic_Ξ» italic_Ο‰ ( italic_ΞΎ ) + italic_ΞΌ italic_Ο‰ ( italic_Ξ· ) italic_Ο‰ ( italic_ΞΎ ) start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT = italic_Ο‰ ( italic_ΞΎ )

for all ΞΎ πœ‰ \xi italic_ΞΎ , Ξ· ∈ π”Ž πœ‚ π”Ž \eta\in{\mathfrak{K}} italic_Ξ· ∈ fraktur_K and Ξ» πœ† \lambda italic_Ξ» , ΞΌ ∈ 𝐑 πœ‡ 𝐑 \mu\in\mathbf{R} italic_ΞΌ ∈ bold_R .