Definition .

Let A 𝐴 A italic_A be any complex associative algebra. A \star structure on A 𝐴 A italic_A is an antilinear, involutive, algebra antiautomorphism and coalgebra automorphism:

( c x ) = c ¯ ( x ) , ( x ) = x , ( x y ) = y x formulae-sequence superscript 𝑐 𝑥 ¯ 𝑐 superscript 𝑥 formulae-sequence superscript superscript 𝑥 𝑥 superscript 𝑥 𝑦 superscript 𝑦 superscript 𝑥 (cx)^{\star}=\bar{c}(x^{\star}),\hskip 8.535827pt(x^{\star})^{\star}=x,\hskip 8% .535827pt(xy)^{\star}=y^{\star}x^{\star} ( italic_c italic_x ) start_POSTSUPERSCRIPT ⋆ end_POSTSUPERSCRIPT = ¯ start_ARG italic_c end_ARG ( italic_x start_POSTSUPERSCRIPT ⋆ end_POSTSUPERSCRIPT ) , ( italic_x start_POSTSUPERSCRIPT ⋆ end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT ⋆ end_POSTSUPERSCRIPT = italic_x , ( italic_x italic_y ) start_POSTSUPERSCRIPT ⋆ end_POSTSUPERSCRIPT = italic_y start_POSTSUPERSCRIPT ⋆ end_POSTSUPERSCRIPT italic_x start_POSTSUPERSCRIPT ⋆ end_POSTSUPERSCRIPT

for any c 𝑐 c\in{\mathbb{C}} italic_c ∈ blackboard_C , x , y A 𝑥 𝑦 𝐴 x,y\in A italic_x , italic_y ∈ italic_A , where x ¯ ¯ 𝑥 \bar{x} ¯ start_ARG italic_x end_ARG is the complex conjugate of x 𝑥 x italic_x .


Definition 6 .

The mean value of potential 𝐮 𝐮 \mathbf{u} bold_u weighted by its own distribution is called entropy of the potential,

e n t ( 𝐮 ) = 𝐮 d i s t ( 𝐮 ) 𝑒 𝑛 𝑡 𝐮 𝐮 𝑑 𝑖 𝑠 𝑡 𝐮 ent(\mathbf{u})=\mathbf{u}\,dist(\mathbf{u}) italic_e italic_n italic_t ( bold_u ) = bold_u italic_d italic_i italic_s italic_t ( bold_u )

Definition 6.3 .

Two partial representations π : G normal-: 𝜋 normal-→ 𝐺 \pi:G\to{\mathcal{B}} italic_π : italic_G → caligraphic_B and π : G normal-: superscript 𝜋 normal-′ normal-→ 𝐺 superscript normal-′ \pi^{\prime}:G\to{\mathcal{B}}^{\prime} italic_π start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT : italic_G → caligraphic_B start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT are equivalent if there is an isomorphism φ : normal-: 𝜑 normal-→ superscript normal-′ \varphi:{\mathcal{B}}^{\prime}\to{\mathcal{B}} italic_φ : caligraphic_B start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT → caligraphic_B such that

π ( g ) = φ ( π ( g ) ) 𝜋 𝑔 𝜑 superscript 𝜋 𝑔 \pi(g)=\varphi(\pi^{\prime}(g)) italic_π ( italic_g ) = italic_φ ( italic_π start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( italic_g ) )

for all g G . 𝑔 𝐺 g\in G. italic_g ∈ italic_G .


Definition 1.3 .

( [ 11 ] , [ 10 ] , see e.g. [ 13 ] )

A Lie group G 𝐺 G italic_G of Lie algebra 𝔤 𝔤 \mathfrak{g} fraktur_g is Omori-Milnor regular (or regular for short) if and only if

1) for any v C ( [ 0 , 1 ] , 𝔤 ) 𝑣 superscript 𝐶 0 1 𝔤 v\in C^{\infty}([0,1],\mathfrak{g}) italic_v ∈ italic_C start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT ( [ 0 , 1 ] , fraktur_g ) , the differential equation

g - 1 d g ( t ) d t = v ( t ) superscript 𝑔 1 𝑑 𝑔 𝑡 𝑑 𝑡 𝑣 𝑡 g^{-1}{dg(t)\over dt}=v(t) italic_g start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT divide start_ARG italic_d italic_g ( italic_t ) end_ARG start_ARG italic_d italic_t end_ARG = italic_v ( italic_t )

has an unique smooth solution γ v subscript 𝛾 𝑣 \gamma_{v} italic_γ start_POSTSUBSCRIPT italic_v end_POSTSUBSCRIPT .

2) the map v γ v ( 1 ) maps-to 𝑣 subscript 𝛾 𝑣 1 v\mapsto\gamma_{v}(1) italic_v ↦ italic_γ start_POSTSUBSCRIPT italic_v end_POSTSUBSCRIPT ( 1 ) is smooth for the topology of uniform comvergence in C ( [ 0 , 1 ] , 𝔤 ) superscript 𝐶 0 1 𝔤 C^{\infty}([0,1],\mathfrak{g}) italic_C start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT ( [ 0 , 1 ] , fraktur_g ) .

3) γ v subscript 𝛾 𝑣 \gamma_{v} italic_γ start_POSTSUBSCRIPT italic_v end_POSTSUBSCRIPT is obtained by product integral in G 𝐺 G italic_G (see [ 11 ] for the definition of the product integral).


Definition 1.1.1

[ 2 ] The system

ξ ˙ = f ( ξ , u ) y = h ( ξ , u ) ˙ 𝜉 𝑓 𝜉 𝑢 missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression 𝑦 𝜉 𝑢 missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression \begin{array}[]{lllllllllllllllllllllllllllllllll}\dot{\xi}&=&f(\xi,u)\\ y&=&h(\xi,u)\end{array} start_ARRAY start_ROW start_CELL ˙ start_ARG italic_ξ end_ARG end_CELL start_CELL = end_CELL start_CELL italic_f ( italic_ξ , italic_u ) end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL end_ROW start_ROW start_CELL italic_y end_CELL start_CELL = end_CELL start_CELL italic_h ( italic_ξ , italic_u ) end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL end_ROW end_ARRAY (1.1.6)

is uniformly observable for any input if there exist coordinates

{ x i j : i = 1 , , p , j = 1 , , l i } conditional-set subscript 𝑥 𝑖 𝑗 formulae-sequence 𝑖 1 𝑝 𝑗 1 subscript 𝑙 𝑖 \left\{x_{ij}:i=1,\ldots,p,\,j=1,\ldots,l_{i}\right\} { italic_x start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT : italic_i = 1 , … , italic_p , italic_j = 1 , … , italic_l start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT }

where 1 l 1 l p 1 subscript 𝑙 1 normal-… subscript 𝑙 𝑝 1\leq l_{1}\leq\ldots\leq l_{p} 1 ≤ italic_l start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ≤ … ≤ italic_l start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT and l i = n subscript 𝑙 𝑖 𝑛 \sum l_{i}=n ∑ italic_l start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT = italic_n such that in these coordinates the system takes the form

y i = x i 1 + h i ( u ) x ˙ i 1 = x i 2 + f i 1 ( x ¯ 1 , u ) x ˙ i j = x i j + 1 + f i j ( x ¯ j , u ) x ˙ i l i - 1 = x i l i + f i l i - 1 ( x ¯ l i - 1 , u ) x ˙ i l i = f i l i ( x ¯ l i , u ) subscript 𝑦 𝑖 subscript 𝑥 𝑖 1 subscript 𝑖 𝑢 missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression subscript ˙ 𝑥 𝑖 1 subscript 𝑥 𝑖 2 subscript 𝑓 𝑖 1 subscript ¯ 𝑥 1 𝑢 missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression subscript ˙ 𝑥 𝑖 𝑗 subscript 𝑥 𝑖 𝑗 1 subscript 𝑓 𝑖 𝑗 subscript ¯ 𝑥 𝑗 𝑢 missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression subscript ˙ 𝑥 𝑖 subscript 𝑙 𝑖 1 subscript 𝑥 𝑖 subscript 𝑙 𝑖 subscript 𝑓 𝑖 subscript 𝑙 𝑖 1 subscript ¯ 𝑥 subscript 𝑙 𝑖 1 𝑢 missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression subscript ˙ 𝑥 𝑖 subscript 𝑙 𝑖 subscript 𝑓 𝑖 subscript 𝑙 𝑖 subscript ¯ 𝑥 subscript 𝑙 𝑖 𝑢 missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression \begin{array}[]{lllllllllllllllllllllllllllllllll}y_{i}&=&x_{i1}+h_{i}(u)\\ \dot{x}_{i1}&=&{x}_{i2}+f_{i1}(\underline{x}_{1},u)\\ &\vdots&\\ \dot{x}_{ij}&=&{x}_{ij+1}+f_{ij}(\underline{x}_{j},u)\\ &\vdots&\\ \dot{x}_{il_{i}-1}&=&{x}_{il_{i}}+f_{il_{i}-1}(\underline{x}_{l_{i}-1},u)\\ \dot{x}_{il_{i}}&=&f_{il_{i}}(\underline{x}_{l_{i}},u)\end{array} start_ARRAY start_ROW start_CELL italic_y start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT end_CELL start_CELL = end_CELL start_CELL italic_x start_POSTSUBSCRIPT italic_i 1 end_POSTSUBSCRIPT + italic_h start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ( italic_u ) end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL end_ROW start_ROW start_CELL ˙ start_ARG italic_x end_ARG start_POSTSUBSCRIPT italic_i 1 end_POSTSUBSCRIPT end_CELL start_CELL = end_CELL start_CELL italic_x start_POSTSUBSCRIPT italic_i 2 end_POSTSUBSCRIPT + italic_f start_POSTSUBSCRIPT italic_i 1 end_POSTSUBSCRIPT ( ¯ start_ARG italic_x end_ARG start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_u ) end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL end_ROW start_ROW start_CELL end_CELL start_CELL ⋮ end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL end_ROW start_ROW start_CELL ˙ start_ARG italic_x end_ARG start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT end_CELL start_CELL = end_CELL start_CELL italic_x start_POSTSUBSCRIPT italic_i italic_j + 1 end_POSTSUBSCRIPT + italic_f start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT ( ¯ start_ARG italic_x end_ARG start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT , italic_u ) end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL end_ROW start_ROW start_CELL end_CELL start_CELL ⋮ end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL end_ROW start_ROW start_CELL ˙ start_ARG italic_x end_ARG start_POSTSUBSCRIPT italic_i italic_l start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT - 1 end_POSTSUBSCRIPT end_CELL start_CELL = end_CELL start_CELL italic_x start_POSTSUBSCRIPT italic_i italic_l start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT end_POSTSUBSCRIPT + italic_f start_POSTSUBSCRIPT italic_i italic_l start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT - 1 end_POSTSUBSCRIPT ( ¯ start_ARG italic_x end_ARG start_POSTSUBSCRIPT italic_l start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT - 1 end_POSTSUBSCRIPT , italic_u ) end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL end_ROW start_ROW start_CELL ˙ start_ARG italic_x end_ARG start_POSTSUBSCRIPT italic_i italic_l start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT end_POSTSUBSCRIPT end_CELL start_CELL = end_CELL start_CELL italic_f start_POSTSUBSCRIPT italic_i italic_l start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT end_POSTSUBSCRIPT ( ¯ start_ARG italic_x end_ARG start_POSTSUBSCRIPT italic_l start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT end_POSTSUBSCRIPT , italic_u ) end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL end_ROW end_ARRAY (1.1.7)

for i = 1 , , p 𝑖 1 normal-… 𝑝 i=1,\ldots,p italic_i = 1 , … , italic_p where x ¯ j subscript normal-¯ 𝑥 𝑗 \underline{x}_{j} ¯ start_ARG italic_x end_ARG start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT is defined by

x ¯ j subscript ¯ 𝑥 𝑗 \displaystyle\underline{x}_{j} ¯ start_ARG italic_x end_ARG start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT = \displaystyle= = ( x 11 , , x 1 , j l 1 , x 21 , , x p j ) . subscript 𝑥 11 subscript 𝑥 1 𝑗 subscript 𝑙 1 subscript 𝑥 21 subscript 𝑥 𝑝 𝑗 \displaystyle(x_{11},\ldots,x_{1,j\wedge l_{1}},x_{21},\ldots,x_{pj}). ( italic_x start_POSTSUBSCRIPT 11 end_POSTSUBSCRIPT , … , italic_x start_POSTSUBSCRIPT 1 , italic_j ∧ italic_l start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT , italic_x start_POSTSUBSCRIPT 21 end_POSTSUBSCRIPT , … , italic_x start_POSTSUBSCRIPT italic_p italic_j end_POSTSUBSCRIPT ) . (1.1.8)

Notice that in x ¯ j subscript normal-¯ 𝑥 𝑗 \underline{x}_{j} ¯ start_ARG italic_x end_ARG start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT the indices range over i = 1 , , p ; k = 1 , , min { j , l i } formulae-sequence 𝑖 1 normal-… 𝑝 𝑘 1 normal-… 𝑗 subscript 𝑙 𝑖 i=1,\ldots,p;\ k=1,\ldots,\min\{j,l_{i}\} italic_i = 1 , … , italic_p ; italic_k = 1 , … , roman_min { italic_j , italic_l start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT } and the coordinates are ordered so that second index moves faster than the first.

We also require that each f i j subscript 𝑓 𝑖 𝑗 f_{ij} italic_f start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT be Lipschitz continuous, there exists an L 𝐿 L italic_L such that for all x , ξ I R n , u U formulae-sequence 𝑥 𝜉 𝐼 superscript 𝑅 𝑛 𝑢 𝑈 x,\xi\in{I\!\!R}^{n},u\in U italic_x , italic_ξ ∈ italic_I italic_R start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT , italic_u ∈ italic_U ,

| f i ( x ¯ j , u ) - f i ( ξ ¯ j , u ) | L | x ¯ j - ξ ¯ j | . subscript 𝑓 𝑖 subscript ¯ 𝑥 𝑗 𝑢 subscript 𝑓 𝑖 subscript ¯ 𝜉 𝑗 𝑢 𝐿 subscript ¯ 𝑥 𝑗 subscript ¯ 𝜉 𝑗 missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression \begin{array}[]{lllllllllllllllllllllllllllllllll}|f_{i}(\underline{x}_{j},u)-% f_{i}(\underline{\xi}_{j},u)|&\leq&L|\underline{x}_{j}-\underline{\xi}_{j}|.% \end{array} start_ARRAY start_ROW start_CELL | italic_f start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ( ¯ start_ARG italic_x end_ARG start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT , italic_u ) - italic_f start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ( ¯ start_ARG italic_ξ end_ARG start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT , italic_u ) | end_CELL start_CELL ≤ end_CELL start_CELL italic_L | ¯ start_ARG italic_x end_ARG start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT - ¯ start_ARG italic_ξ end_ARG start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT | . end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL end_ROW end_ARRAY (1.1.9)

The symbol | | fragments normal-| normal-⋅ normal-| |\cdot| | ⋅ | denotes the Euclidean norm.


Definition 1.4 .

Let G 𝐺 G italic_G be a group. Two representations ρ , ρ : B n Aut ( G ) : 𝜌 superscript 𝜌 subscript 𝐵 𝑛 Aut 𝐺 \rho,\rho^{\prime}:B_{n}\to{\rm Aut}(G) italic_ρ , italic_ρ start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT : italic_B start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT → roman_Aut ( italic_G ) are called equivalent if there exist automorphisms ϕ : G G : italic-ϕ 𝐺 𝐺 \phi:G\to G italic_ϕ : italic_G → italic_G and μ : B n B n : 𝜇 subscript 𝐵 𝑛 subscript 𝐵 𝑛 \mu:B_{n}\to B_{n} italic_μ : italic_B start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT → italic_B start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT such that

ρ ( μ ( β ) ) = ϕ - 1 ρ ( β ) ϕ superscript 𝜌 𝜇 𝛽 superscript italic-ϕ 1 𝜌 𝛽 italic-ϕ \rho^{\prime}(\mu(\beta))=\phi^{-1}\circ\rho(\beta)\circ\phi italic_ρ start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( italic_μ ( italic_β ) ) = italic_ϕ start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ∘ italic_ρ ( italic_β ) ∘ italic_ϕ

for all β B n 𝛽 subscript 𝐵 𝑛 \beta\in B_{n} italic_β ∈ italic_B start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT .


Definition 8.1 .

We say that a co-invariant subspace \mathcal{L} caligraphic_L is pure if the following implication holds:

x , S x x = 0 . formulae-sequence 𝑥 superscript 𝑆 𝑥 𝑥 0 x\in\mathcal{L},\;S^{\infty}x\subset\mathcal{L}\Longrightarrow x=0. italic_x ∈ caligraphic_L , italic_S start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT italic_x ⊂ caligraphic_L ⟹ italic_x = 0 . (8.1)

Definition 2.1 .

Given a functor ( Φ , Φ 1 ) Φ subscript Φ 1 (\Phi,\Phi_{1}) ( roman_Φ , roman_Φ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) from a category 𝒳 𝒳 {\mathcal{X}} caligraphic_X to the category of {\mathbb{Z}} blackboard_Z -graded projective R 𝑅 R italic_R -modules and degree 0 0 maps, a twisting cochain ψ 𝜓 \psi italic_ψ on 𝒳 𝒳 {\mathcal{X}} caligraphic_X with coefficients in ( Φ , Φ 1 ) Φ subscript Φ 1 (\Phi,\Phi_{1}) ( roman_Φ , roman_Φ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) is a sum of cochains ψ = p 0 ψ p 𝜓 subscript 𝑝 0 subscript 𝜓 𝑝 \psi=\sum_{p\geq 0}\psi_{p} italic_ψ = ∑ start_POSTSUBSCRIPT italic_p ≥ 0 end_POSTSUBSCRIPT italic_ψ start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT where ψ p subscript 𝜓 𝑝 \psi_{p} italic_ψ start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT is a p 𝑝 p italic_p -cochain on 𝒳 𝒳 {\mathcal{X}} caligraphic_X with coefficients in the degree p - 1 𝑝 1 p-1 italic_p - 1 part F p - 1 subscript 𝐹 𝑝 1 F_{p-1} italic_F start_POSTSUBSCRIPT italic_p - 1 end_POSTSUBSCRIPT of the Hom ( Φ , Φ ) Hom Φ Φ \operatorname{Hom}(\Phi,\Phi) roman_Hom ( roman_Φ , roman_Φ ) bifunctor F 𝐹 F italic_F of ( 4 ) so that the following condition is satisfied.

δ ψ = ψ ψ . 𝛿 𝜓 superscript 𝜓 𝜓 \delta\psi=\psi\cup^{\prime}\psi. italic_δ italic_ψ = italic_ψ ∪ start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT italic_ψ .

Here superscript \cup^{\prime} ∪ start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT is the cup product using the Koszul sign rule:

ψ p ψ q ( X 0 , , X p + q ) = ( - 1 ) p ψ p ( X 0 , , X p ) ψ q ( X p , , X p + q ) . superscript subscript 𝜓 𝑝 subscript 𝜓 𝑞 subscript 𝑋 0 subscript 𝑋 𝑝 𝑞 superscript 1 𝑝 subscript 𝜓 𝑝 subscript 𝑋 0 subscript 𝑋 𝑝 subscript 𝜓 𝑞 subscript 𝑋 𝑝 subscript 𝑋 𝑝 𝑞 \psi_{p}\cup^{\prime}\psi_{q}(X_{0},\cdots,X_{p+q})=(-1)^{p}\psi_{p}(X_{0},% \cdots,X_{p})\psi_{q}(X_{p},\cdots,X_{p+q}). italic_ψ start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ∪ start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT italic_ψ start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ( italic_X start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , ⋯ , italic_X start_POSTSUBSCRIPT italic_p + italic_q end_POSTSUBSCRIPT ) = ( - 1 ) start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT italic_ψ start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( italic_X start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , ⋯ , italic_X start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ) italic_ψ start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ( italic_X start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT , ⋯ , italic_X start_POSTSUBSCRIPT italic_p + italic_q end_POSTSUBSCRIPT ) .

since ψ q subscript 𝜓 𝑞 \psi_{q} italic_ψ start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT has total odd degree.


Definition 7.3 .

Given ( s , t ) U 𝑠 𝑡 𝑈 (s,t)\in U ( italic_s , italic_t ) ∈ italic_U , ( p , q ) 2 𝑝 𝑞 superscript 2 (p,q)\in\mathbb{R}^{2} ( italic_p , italic_q ) ∈ blackboard_R start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT are defined by the rule

p u + q v = 2 π i . 𝑝 𝑢 𝑞 𝑣 2 𝜋 𝑖 pu+qv=2\pi i. italic_p italic_u + italic_q italic_v = 2 italic_π italic_i .