Definition 4.1

Let G M normal-⇉ 𝐺 𝑀 G\rightrightarrows M italic_G ⇉ italic_M be a Lie groupoid with structural functions α 𝛼 \alpha italic_α , β 𝛽 \beta italic_β , m 𝑚 m italic_m and ϵ italic-ϵ \epsilon italic_ϵ , ( Ω , ω ) normal-Ω 𝜔 (\Omega,\omega) ( roman_Ω , italic_ω ) be a l.c.s. structure on G 𝐺 G italic_G , σ : G normal-: 𝜎 normal-→ 𝐺 \sigma:G\to\hbox{\ddpp R} italic_σ : italic_G → ℝ be a multiplicative function and θ 𝜃 \theta italic_θ be the 1-form on G 𝐺 G italic_G defined by

θ = e σ ( δ σ - ω ) . 𝜃 superscript 𝑒 𝜎 𝛿 𝜎 𝜔 \theta=e^{\sigma}(\delta\sigma-\omega). italic_θ = italic_e start_POSTSUPERSCRIPT italic_σ end_POSTSUPERSCRIPT ( italic_δ italic_σ - italic_ω ) . (13)

Then, ( G M , Ω , ω , σ ) normal-⇉ 𝐺 𝑀 normal-Ω 𝜔 𝜎 (G\rightrightarrows M,\Omega,\omega,\sigma) ( italic_G ⇉ italic_M , roman_Ω , italic_ω , italic_σ ) is a l.c.s. groupoid if the following properties hold:

m Ω = π 1 Ω + e ( σ π 1 ) π 2 Ω ; superscript 𝑚 Ω superscript subscript 𝜋 1 Ω superscript 𝑒 𝜎 subscript 𝜋 1 superscript subscript 𝜋 2 Ω m^{\ast}\Omega=\pi_{1}^{\ast}\Omega+e^{(\sigma\circ\pi_{1})}\pi_{2}^{\ast}\Omega; italic_m start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT roman_Ω = italic_π start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT roman_Ω + italic_e start_POSTSUPERSCRIPT ( italic_σ ∘ italic_π start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) end_POSTSUPERSCRIPT italic_π start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT roman_Ω ; (14)
α ~ ω = 0 , β ~ θ = 0 ; formulae-sequence ~ 𝛼 𝜔 0 ~ 𝛽 𝜃 0 \tilde{\alpha}\circ\omega=0,\quad\tilde{\beta}\circ\theta=0; ~ start_ARG italic_α end_ARG ∘ italic_ω = 0 , ~ start_ARG italic_β end_ARG ∘ italic_θ = 0 ; (15)
m ω = π 1 ω , m θ = e ( σ π 1 ) π 2 θ ; formulae-sequence superscript 𝑚 𝜔 superscript subscript 𝜋 1 𝜔 superscript 𝑚 𝜃 superscript 𝑒 𝜎 subscript 𝜋 1 superscript subscript 𝜋 2 𝜃 m^{\ast}\omega=\pi_{1}^{\ast}\omega,\quad m^{\ast}\theta=e^{(\sigma\circ\pi_{1% })}\pi_{2}^{\ast}\theta; italic_m start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT italic_ω = italic_π start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT italic_ω , italic_m start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT italic_θ = italic_e start_POSTSUPERSCRIPT ( italic_σ ∘ italic_π start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) end_POSTSUPERSCRIPT italic_π start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT italic_θ ; (16)
Λ ( ω , θ ) = 0 , ( θ + ω - ϵ ~ β ~ ω ) ϵ = 0 ; formulae-sequence Λ 𝜔 𝜃 0 𝜃 𝜔 ~ italic-ϵ ~ 𝛽 𝜔 italic-ϵ 0 \Lambda(\omega,\theta)=0,\quad(\theta+\omega-\tilde{\epsilon}\circ\tilde{\beta% }\circ\omega)\circ\epsilon=0; roman_Λ ( italic_ω , italic_θ ) = 0 , ( italic_θ + italic_ω - ~ start_ARG italic_ϵ end_ARG ∘ ~ start_ARG italic_β end_ARG ∘ italic_ω ) ∘ italic_ϵ = 0 ; (17)

where π i : G ( 2 ) G normal-: subscript 𝜋 𝑖 normal-→ superscript 𝐺 2 𝐺 \pi_{i}:G^{(2)}\to G italic_π start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT : italic_G start_POSTSUPERSCRIPT ( 2 ) end_POSTSUPERSCRIPT → italic_G , i = 1 , 2 𝑖 1 2 i=1,2 italic_i = 1 , 2 , are the canonical projections, ( Λ , E ) normal-Λ 𝐸 (\Lambda,E) ( roman_Λ , italic_E ) is the Jacobi structure associated with the l.c.s. structure ( Ω , ω ) normal-Ω 𝜔 (\Omega,\omega) ( roman_Ω , italic_ω ) and α ~ normal-~ 𝛼 \tilde{\alpha} ~ start_ARG italic_α end_ARG , β ~ normal-~ 𝛽 \tilde{\beta} ~ start_ARG italic_β end_ARG , T G subscript direct-sum superscript 𝑇 normal-∗ 𝐺 \oplus_{T^{\ast}G} ⊕ start_POSTSUBSCRIPT italic_T start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT italic_G end_POSTSUBSCRIPT and ϵ ~ normal-~ italic-ϵ \tilde{\epsilon} ~ start_ARG italic_ϵ end_ARG are the structural functions of the cotangent groupoid T G A G normal-⇉ superscript 𝑇 normal-∗ 𝐺 superscript 𝐴 normal-∗ 𝐺 T^{\ast}G\rightrightarrows A^{\ast}G italic_T start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT italic_G ⇉ italic_A start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT italic_G .


Definition 2

Let ( 𝔤 , [ , ] ) fragments normal-( g normal-, fragments normal-[ normal-, normal-] normal-) (\mathfrak{g},[,]) ( fraktur_g , [ , ] ) be a \mathbb{Q} blackboard_Q -Lie algebra and let c 𝑐 c italic_c be a 2 2 2 2 -cocycle of 𝔤 𝔤 \mathfrak{g} fraktur_g with values in \mathbb{Q} blackboard_Q i.e., c 𝑐 c italic_c satisfies the following equation:

c ( [ x , y ] , z ) + c ( [ y , z ] , x ) + c ( [ z , x ] , y ) = 0 𝑐 𝑥 𝑦 𝑧 𝑐 𝑦 𝑧 𝑥 𝑐 𝑧 𝑥 𝑦 0 c([x,y],z)+c([y,z],x)+c([z,x],y)=0 italic_c ( [ italic_x , italic_y ] , italic_z ) + italic_c ( [ italic_y , italic_z ] , italic_x ) + italic_c ( [ italic_z , italic_x ] , italic_y ) = 0

for all x , y , z 𝔤 𝑥 𝑦 𝑧 𝔤 x,y,z\in\mathfrak{g} italic_x , italic_y , italic_z ∈ fraktur_g . The Sridharan algebra U c ( 𝔤 ) subscript 𝑈 𝑐 𝔤 U_{c}(\mathfrak{g}) italic_U start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT ( fraktur_g ) associated to c 𝑐 c italic_c is T ( 𝔤 ) / I c ( 𝔤 ) 𝑇 𝔤 subscript 𝐼 𝑐 𝔤 T(\mathfrak{g})/I_{c}(\mathfrak{g}) italic_T ( fraktur_g ) / italic_I start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT ( fraktur_g ) where T ( 𝔤 ) 𝑇 𝔤 T(\mathfrak{g}) italic_T ( fraktur_g ) is the tensorial algebra of 𝔤 𝔤 \mathfrak{g} fraktur_g and I c ( 𝔤 ) subscript 𝐼 𝑐 𝔤 I_{c}(\mathfrak{g}) italic_I start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT ( fraktur_g ) is the ideal generated by elements x y - y x - [ x , y ] - c ( x , y ) 1 normal-⋅ 𝑥 𝑦 normal-⋅ 𝑦 𝑥 𝑥 𝑦 normal-⋅ 𝑐 𝑥 𝑦 1 x\cdot y-y\cdot x-[x,y]-c(x,y)\cdot 1 italic_x ⋅ italic_y - italic_y ⋅ italic_x - [ italic_x , italic_y ] - italic_c ( italic_x , italic_y ) ⋅ 1 with x , y 𝔤 𝑥 𝑦 𝔤 x,y\in\mathfrak{g} italic_x , italic_y ∈ fraktur_g .


Definition  1.6

[Dendriform coalgebra] A dendriform coalgebra Z 𝑍 Z italic_Z is a k 𝑘 k italic_k -vector space equipped with two coproducts δ , δ ^ : Z Z 2 : 𝛿 ^ 𝛿 absent 𝑍 superscript 𝑍 tensor-product absent 2 \delta,\hat{\delta}:\ Z\xrightarrow{}Z^{\otimes 2} italic_δ , ^ start_ARG italic_δ end_ARG : italic_Z start_ARROW start_OVERACCENT end_OVERACCENT → end_ARROW italic_Z start_POSTSUPERSCRIPT ⊗ 2 end_POSTSUPERSCRIPT , verifying:

  1. 1.

    ( i d ( δ + δ ^ ) ) δ ^ = ( δ ^ i d ) δ ^ tensor-product 𝑖 𝑑 𝛿 ^ 𝛿 ^ 𝛿 tensor-product ^ 𝛿 𝑖 𝑑 ^ 𝛿 (id\otimes(\delta+\hat{\delta}))\hat{\delta}=(\hat{\delta}\otimes id)\hat{\delta} ( italic_i italic_d ⊗ ( italic_δ + ^ start_ARG italic_δ end_ARG ) ) ^ start_ARG italic_δ end_ARG = ( ^ start_ARG italic_δ end_ARG ⊗ italic_i italic_d ) ^ start_ARG italic_δ end_ARG ,

  2. 2.

    ( i d δ ^ ) δ = ( δ i d ) δ ^ tensor-product 𝑖 𝑑 ^ 𝛿 𝛿 tensor-product 𝛿 𝑖 𝑑 ^ 𝛿 (id\otimes\hat{\delta})\delta=(\delta\otimes id)\hat{\delta} ( italic_i italic_d ⊗ ^ start_ARG italic_δ end_ARG ) italic_δ = ( italic_δ ⊗ italic_i italic_d ) ^ start_ARG italic_δ end_ARG ,

  3. 3.

    ( ( δ ^ + δ ) i d ) δ = ( i d δ ) δ tensor-product ^ 𝛿 𝛿 𝑖 𝑑 𝛿 tensor-product 𝑖 𝑑 𝛿 𝛿 ((\hat{\delta}+\delta)\otimes id)\delta=(id\otimes\delta)\delta ( ( ^ start_ARG italic_δ end_ARG + italic_δ ) ⊗ italic_i italic_d ) italic_δ = ( italic_i italic_d ⊗ italic_δ ) italic_δ .

This notion dichotomizes the notion of coassociativity since ( δ + δ ^ ) 𝛿 ^ 𝛿 (\delta+\hat{\delta}) ( italic_δ + ^ start_ARG italic_δ end_ARG ) is a coassociative coproduct.


Definition 2.4.1 .

Let u 𝑢 u italic_u and v 𝑣 v italic_v be vector fields on M 𝑀 M italic_M . The cross product , denoted u × v 𝑢 𝑣 u\times v italic_u × italic_v , is a vector field on M 𝑀 M italic_M whose associated 1 1 1 1 -form under the metric isomorphism satisfies:

(2.28) ( u × v ) = v u φ superscript 𝑢 𝑣 𝑣 𝑢 𝜑 {(u\times v)}^{\flat}=v\lrcorner u\lrcorner\varphi ( italic_u × italic_v ) start_POSTSUPERSCRIPT ♭ end_POSTSUPERSCRIPT = italic_v ⌟ italic_u ⌟ italic_φ

Notice that this immediately yields the relation between × \times × , φ 𝜑 \varphi italic_φ , and the metric g 𝑔 g italic_g :

(2.29) g ( u × v , w ) = ( u × v ) ( w ) = w v u φ = φ ( u , v , w ) . 𝑔 𝑢 𝑣 𝑤 superscript 𝑢 𝑣 𝑤 𝑤 𝑣 𝑢 𝜑 𝜑 𝑢 𝑣 𝑤 g(u\times v,w)={(u\times v)}^{\flat}(w)=w\lrcorner v\lrcorner u\lrcorner% \varphi=\varphi(u,v,w). italic_g ( italic_u × italic_v , italic_w ) = ( italic_u × italic_v ) start_POSTSUPERSCRIPT ♭ end_POSTSUPERSCRIPT ( italic_w ) = italic_w ⌟ italic_v ⌟ italic_u ⌟ italic_φ = italic_φ ( italic_u , italic_v , italic_w ) .

Definition 5.2 (Poisson Module) .

Let A 𝐴 A italic_A be an associative Poisson algebra. A space V 𝑉 V italic_V is said to be a Poisson module over A 𝐴 A italic_A if V 𝑉 V italic_V is an ( A , A ) 𝐴 𝐴 (A,A) ( italic_A , italic_A ) -bimodule, when A 𝐴 A italic_A is considered as an associative algebra; V 𝑉 V italic_V is a Lie module over A 𝐴 A italic_A , when A 𝐴 A italic_A is considered as a Lie algebra (and we denote the action of a A 𝑎 𝐴 a\in A italic_a ∈ italic_A on v V 𝑣 𝑉 v\in V italic_v ∈ italic_V by { a , v } 𝑎 𝑣 \{a,v\} { italic_a , italic_v } ); for any a , b A 𝑎 𝑏 𝐴 a,b\in A italic_a , italic_b ∈ italic_A and v V 𝑣 𝑉 v\in V italic_v ∈ italic_V , the following equalities are true

{ a b , v } = a { b , v } + { a , v } b { a , b v } = b { a , v } + { a , b } v and { a , v b } = { a , v } b + v { a , b } 𝑎 𝑏 𝑣 𝑎 𝑏 𝑣 𝑎 𝑣 𝑏 𝑎 𝑏 𝑣 𝑏 𝑎 𝑣 𝑎 𝑏 𝑣 and 𝑎 𝑣 𝑏 𝑎 𝑣 𝑏 𝑣 𝑎 𝑏 \begin{array}[]{l}\{ab,v\}=a\{b,v\}+\{a,v\}b\\ \{a,bv\}=b\{a,v\}+\{a,b\}v\textrm{ and }\{a,vb\}=\{a,v\}b+v\{a,b\}\end{array} start_ARRAY start_ROW start_CELL { italic_a italic_b , italic_v } = italic_a { italic_b , italic_v } + { italic_a , italic_v } italic_b end_CELL end_ROW start_ROW start_CELL { italic_a , italic_b italic_v } = italic_b { italic_a , italic_v } + { italic_a , italic_b } italic_v and { italic_a , italic_v italic_b } = { italic_a , italic_v } italic_b + italic_v { italic_a , italic_b } end_CELL end_ROW end_ARRAY