Definition. 2.1 .

A commutative group ( M , + ) 𝑀 (M,+) ( italic_M , + ) graded over β„€ / 2 ⁒ β„€ β„€ 2 β„€ \mathbb{Z}/2\mathbb{Z} blackboard_Z / 2 blackboard_Z is a 𝕂 𝕂 \mathbb{K} blackboard_K -module if it is equipped with a bilinear application M Γ— 𝕂 β†’ M normal-β†’ 𝑀 𝕂 𝑀 M\times\mathbb{K}\rightarrow M italic_M Γ— blackboard_K β†’ italic_M such that, for any Ξ± , Ξ² ∈ 𝕂 𝛼 𝛽 𝕂 \alpha,\beta\in\mathbb{K} italic_Ξ± , italic_Ξ² ∈ blackboard_K and m , n ∈ M π‘š 𝑛 𝑀 m,n\in M italic_m , italic_n ∈ italic_M we have

( m ⁒ Ξ± ) ⁒ Ξ² = m ⁒ ( Ξ± ⁒ Ξ² ) , p ⁒ ( m ⁒ Ξ± ) = p ⁒ ( m ) + p ⁒ ( Ξ± ) . formulae-sequence π‘š 𝛼 𝛽 π‘š 𝛼 𝛽 𝑝 π‘š 𝛼 𝑝 π‘š 𝑝 𝛼 \displaystyle(m\alpha)\beta=m(\alpha\beta),\ \ \ p(m\alpha)=p(m)+p(\alpha). ( italic_m italic_Ξ± ) italic_Ξ² = italic_m ( italic_Ξ± italic_Ξ² ) , italic_p ( italic_m italic_Ξ± ) = italic_p ( italic_m ) + italic_p ( italic_Ξ± ) .

We denote by M 0 subscript 𝑀 0 M_{0} italic_M start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT and M 1 subscript 𝑀 1 M_{1} italic_M start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT the 𝕂 0 subscript 𝕂 0 \mathbb{K}_{0} blackboard_K start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT -submodules composed of even and odd elements.

Definition. 2.2 .

We say that A 𝐴 A italic_A is a 𝕂 𝕂 \mathbb{K} blackboard_K -superalgebra if it a 𝕂 𝕂 \mathbb{K} blackboard_K -module equipped of a distributive application A Γ— A β†’ β‹… A superscript normal-β†’ normal-β‹… 𝐴 𝐴 𝐴 A\times A\stackrel{{\scriptstyle\cdot}}{{\rightarrow}}A italic_A Γ— italic_A start_RELOP SUPERSCRIPTOP start_ARG β†’ end_ARG start_ARG β‹… end_ARG end_RELOP italic_A such that

p ⁒ ( a β‹… b ) = p ⁒ ( a ) + p ⁒ ( b ) , ( a β‹… b ) ⁒ Ξ± = a β‹… ( b ⁒ Ξ± ) = ( - 1 ) p ⁒ ( b ) ⁒ p ⁒ ( Ξ± ) ⁒ ( a ⁒ Ξ± ) β‹… b formulae-sequence 𝑝 β‹… π‘Ž 𝑏 𝑝 π‘Ž 𝑝 𝑏 β‹… π‘Ž 𝑏 𝛼 β‹… π‘Ž 𝑏 𝛼 β‹… superscript 1 𝑝 𝑏 𝑝 𝛼 π‘Ž 𝛼 𝑏 \displaystyle p(a\cdot b)=p(a)+p(b),\ \ \ \ (a\cdot b)\alpha=a\cdot(b\alpha)=(% -1)^{p(b)p(\alpha)}(a\alpha)\cdot b italic_p ( italic_a β‹… italic_b ) = italic_p ( italic_a ) + italic_p ( italic_b ) , ( italic_a β‹… italic_b ) italic_Ξ± = italic_a β‹… ( italic_b italic_Ξ± ) = ( - 1 ) start_POSTSUPERSCRIPT italic_p ( italic_b ) italic_p ( italic_Ξ± ) end_POSTSUPERSCRIPT ( italic_a italic_Ξ± ) β‹… italic_b

for any a , b ∈ A π‘Ž 𝑏 𝐴 a,b\in A italic_a , italic_b ∈ italic_A and Ξ± ∈ 𝕂 𝛼 𝕂 \alpha\in\mathbb{K} italic_Ξ± ∈ blackboard_K . We say that A 𝐴 A italic_A is commutative if a β‹… b = ( - 1 ) p ⁒ ( a ) ⁒ p ⁒ ( b ) ⁒ b β‹… a normal-β‹… π‘Ž 𝑏 normal-β‹… superscript 1 𝑝 π‘Ž 𝑝 𝑏 𝑏 π‘Ž a\cdot b=(-1)^{p(a)p(b)}b\cdot a italic_a β‹… italic_b = ( - 1 ) start_POSTSUPERSCRIPT italic_p ( italic_a ) italic_p ( italic_b ) end_POSTSUPERSCRIPT italic_b β‹… italic_a for a , b ∈ A π‘Ž 𝑏 𝐴 a,b\in A italic_a , italic_b ∈ italic_A , and c 2 = 0 superscript 𝑐 2 0 c^{2}=0 italic_c start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT = 0 for c ∈ A 1 𝑐 subscript 𝐴 1 c\in A_{1} italic_c ∈ italic_A start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT .


Definition 2

Suppose V 𝑉 V italic_V is a normed linear 𝔸 𝔸 \mathbb{A} blackboard_A -space of rank n 𝑛 n italic_n . A ℝ ℝ \mathbb{R} blackboard_R -linear isometry Ο• italic-Ο• \phi italic_Ο• of V 𝑉 V italic_V is called a twisted isomorphism if there exists ΞΈ ∈ S ⁒ O ⁒ ( 𝔸 ) πœƒ 𝑆 𝑂 𝔸 \theta\in SO\left(\mathbb{A}\right) italic_ΞΈ ∈ italic_S italic_O ( blackboard_A ) such that

Ο• ⁒ ( v ⁒ x ) = Ο• ⁒ ( v ) ⁒ ΞΈ ⁒ ( x ) italic-Ο• 𝑣 π‘₯ italic-Ο• 𝑣 πœƒ π‘₯ \phi\left(vx\right)=\phi\left(v\right)\theta\left(x\right) italic_Ο• ( italic_v italic_x ) = italic_Ο• ( italic_v ) italic_ΞΈ ( italic_x )

for any v ∈ V 𝑣 𝑉 v\in V italic_v ∈ italic_V and x ∈ 𝔸 π‘₯ 𝔸 x\in\mathbb{A} italic_x ∈ blackboard_A .

We denote the group of twisted isomorphisms of βŠ• n 𝔸 superscript direct-sum 𝑛 𝔸 {\textstyle\bigoplus^{n}}\mathbb{A} βŠ• start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT blackboard_A as G 𝔸 ⁒ ( n ) subscript 𝐺 𝔸 𝑛 G_{\mathbb{A}}\left(n\right) italic_G start_POSTSUBSCRIPT blackboard_A end_POSTSUBSCRIPT ( italic_n ) .


Definition .

The series βˆ‘ n ∈ β„• c n subscript 𝑛 β„• subscript 𝑐 𝑛 \sum_{n\in\mathbb{N}}c_{n} βˆ‘ start_POSTSUBSCRIPT italic_n ∈ blackboard_N end_POSTSUBSCRIPT italic_c start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT and βˆ‘ n ∈ β„€ c n subscript 𝑛 β„€ subscript 𝑐 𝑛 \sum_{n\in\mathbb{Z}}c_{n} βˆ‘ start_POSTSUBSCRIPT italic_n ∈ blackboard_Z end_POSTSUBSCRIPT italic_c start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT are called theta hypergeometric series of elliptic type if the function h ⁒ ( n ) = c n + 1 / c n β„Ž 𝑛 subscript 𝑐 𝑛 1 subscript 𝑐 𝑛 h(n)=c_{n+1}/{c_{n}} italic_h ( italic_n ) = italic_c start_POSTSUBSCRIPT italic_n + 1 end_POSTSUBSCRIPT / italic_c start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT is a meromorphic doubly quasiperiodic function of n 𝑛 n italic_n considered as a complex variable. More precisely, for x ∈ β„‚ π‘₯ β„‚ x\in\mathbb{C} italic_x ∈ blackboard_C the function h ⁒ ( x ) β„Ž π‘₯ h(x) italic_h ( italic_x ) should obey the following properties:

h ⁒ ( x + Οƒ - 1 ) = a ⁒ h ⁒ ( x ) , h ⁒ ( x + Ο„ ⁒ Οƒ - 1 ) = b ⁒ e 2 ⁒ Ο€ ⁒ i ⁒ Οƒ ⁒ Ξ³ ⁒ x ⁒ h ⁒ ( x ) , formulae-sequence β„Ž π‘₯ superscript 𝜎 1 π‘Ž β„Ž π‘₯ β„Ž π‘₯ 𝜏 superscript 𝜎 1 𝑏 superscript 𝑒 2 πœ‹ 𝑖 𝜎 𝛾 π‘₯ β„Ž π‘₯ h(x+\sigma^{-1})=ah(x),\qquad h(x+\tau\sigma^{-1})=be^{2\pi i\sigma\gamma x}h(% x), italic_h ( italic_x + italic_Οƒ start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ) = italic_a italic_h ( italic_x ) , italic_h ( italic_x + italic_Ο„ italic_Οƒ start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ) = italic_b italic_e start_POSTSUPERSCRIPT 2 italic_Ο€ italic_i italic_Οƒ italic_Ξ³ italic_x end_POSTSUPERSCRIPT italic_h ( italic_x ) , (9)

where Οƒ - 1 , Ο„ ⁒ Οƒ - 1 superscript 𝜎 1 𝜏 superscript 𝜎 1 \sigma^{-1},\tau\sigma^{-1} italic_Οƒ start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT , italic_Ο„ italic_Οƒ start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT are quasiperiods of the theta function [ u ] delimited-[] 𝑒 [u] [ italic_u ] ( 5 ) and a , b , Ξ³ π‘Ž 𝑏 𝛾 a,b,\gamma italic_a , italic_b , italic_Ξ³ are some complex numbers.


Definition 2.11 .

The Riemannian gradient grad ⁒ Ο‰ grad πœ” \text{\rm grad}\omega grad italic_Ο‰ with respect toΒ  a given Riemannian metricΒ  on M 𝑀 M italic_M is defined by

(11) Ο‰ ⁒ ( x ) ⁒ ( h ) = ⟨ grad ⁒ Ο‰ ⁒ ( x ) , h ⟩ πœ” π‘₯ β„Ž grad πœ” π‘₯ β„Ž \omega(x)(h)=\langle\text{\rm grad}\omega(x),h\rangle italic_Ο‰ ( italic_x ) ( italic_h ) = ⟨ grad italic_Ο‰ ( italic_x ) , italic_h ⟩

where x ∈ M , h ∈ T x ⁒ M formulae-sequence π‘₯ 𝑀 β„Ž subscript 𝑇 π‘₯ 𝑀 x\in M,~{}h\in T_{x}M italic_x ∈ italic_M , italic_h ∈ italic_T start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT italic_M . The space of all Riemannian gradients for Ο‰ πœ” \omega italic_Ο‰ will be denoted G ⁒ R ⁒ ( Ο‰ ) 𝐺 𝑅 πœ” GR(\omega) italic_G italic_R ( italic_Ο‰ ) .