Definition 1

A trialgebra ( A , * , Δ , ) 𝐴 normal-Δ normal-⋅ (A,*,\Delta,\cdot) ( italic_A , * , roman_Δ , ⋅ ) with * * * and normal-⋅ \cdot associative products on a vector space A 𝐴 A italic_A (where * * * may be partially defined, only) and Δ normal-Δ \Delta roman_Δ a coassociative coproduct on A 𝐴 A italic_A is given if both ( A , * , Δ ) 𝐴 normal-Δ (A,*,\Delta) ( italic_A , * , roman_Δ ) and ( A , , Δ ) 𝐴 normal-⋅ normal-Δ (A,\cdot,\Delta) ( italic_A , ⋅ , roman_Δ ) are bialgebras and the following compatibility condition between the products is satisfied for arbitrary elements a , b , c , d A 𝑎 𝑏 𝑐 𝑑 𝐴 a,b,c,d\in A italic_a , italic_b , italic_c , italic_d ∈ italic_A :

( a * b ) ( c * d ) = ( a c ) * ( b d ) 𝑎 𝑏 𝑐 𝑑 𝑎 𝑐 𝑏 𝑑 (a*b)\cdot(c*d)=(a\cdot c)*(b\cdot d) ( italic_a * italic_b ) ⋅ ( italic_c * italic_d ) = ( italic_a ⋅ italic_c ) * ( italic_b ⋅ italic_d )

whenever both sides are defined.


Definition 3.3.1 .

Left unit operation : Compute the value x 𝑥 x italic_x , bind y 𝑦 y italic_y to the result and compute z 𝑧 z italic_z ; the result is the same as z 𝑧 z italic_z with value x 𝑥 x italic_x substituted for variable y 𝑦 y italic_y .

η x * λ y . z = z [ x / y ] formulae-sequence 𝜂 𝑥 𝜆 𝑦 𝑧 𝑧 delimited-[] 𝑥 𝑦 \eta x\;*\;\lambda y.z=z\left[x/y\right] italic_η italic_x * italic_λ italic_y . italic_z = italic_z [ italic_x / italic_y ]

Right unit operation : Compute x 𝑥 x italic_x , bind the result to y 𝑦 y italic_y and returns y 𝑦 y italic_y ; the result is the same as x 𝑥 x italic_x .

x * λ y . η y = x formulae-sequence 𝑥 𝜆 𝑦 𝜂 𝑦 𝑥 x\;*\;\lambda y.\eta y=x italic_x * italic_λ italic_y . italic_η italic_y = italic_x

Associativity : Compute x 𝑥 x italic_x , bind the result to y 𝑦 y italic_y , compute z 𝑧 z italic_z , bind the result to t 𝑡 t italic_t and compute o 𝑜 o italic_o ; the order of parentheses is irrelevant.

x * ( λ y . z * λ t . o ) = ( x * λ y . z ) * λ t . o fragments x fragments ( λ y . z λ t . o ) fragments ( x λ y . z ) λ t . o x\;*\;(\lambda y.z\;*\;\lambda t.o)=(x\;*\;\lambda y.z)\;*\;\lambda t.o italic_x * ( italic_λ italic_y . italic_z * italic_λ italic_t . italic_o ) = ( italic_x * italic_λ italic_y . italic_z ) * italic_λ italic_t . italic_o

Definition 1.1 .

Let k 𝑘 k italic_k be a commutative ring. A k 𝑘 k italic_k -module A 𝐴 A italic_A equipped with two associative unital k 𝑘 k italic_k -algebra structures V = A , , e 𝑉 𝐴 𝑒 V=\langle A,\circ,e\rangle italic_V = ⟨ italic_A , ∘ , italic_e ⟩ and H = A , , i 𝐻 𝐴 𝑖 H=\langle A,\star,i\rangle italic_H = ⟨ italic_A , ⋆ , italic_i ⟩ is called a double algebra over k 𝑘 k italic_k if the following properties hold:

  • A1.

    ( a e ) b = ( ( a e ) i ) b 𝑎 𝑒 𝑏 𝑎 𝑒 𝑖 𝑏 (a\star e)\circ b=((a\star e)\circ i)\star b ( italic_a ⋆ italic_e ) ∘ italic_b = ( ( italic_a ⋆ italic_e ) ∘ italic_i ) ⋆ italic_b

  • A2.

    a ( b e ) = ( i ( b e ) ) a 𝑎 𝑏 𝑒 𝑖 𝑏 𝑒 𝑎 a\circ(b\star e)=(i\circ(b\star e))\star a italic_a ∘ ( italic_b ⋆ italic_e ) = ( italic_i ∘ ( italic_b ⋆ italic_e ) ) ⋆ italic_a

  • A3.

    ( a i ) b = ( ( a i ) e ) b 𝑎 𝑖 𝑏 𝑎 𝑖 𝑒 𝑏 (a\circ i)\star b=((a\circ i)\star e)\circ b ( italic_a ∘ italic_i ) ⋆ italic_b = ( ( italic_a ∘ italic_i ) ⋆ italic_e ) ∘ italic_b

  • A4.

    a ( b i ) = ( e ( b i ) ) a 𝑎 𝑏 𝑖 𝑒 𝑏 𝑖 𝑎 a\star(b\circ i)=(e\star(b\circ i))\circ a italic_a ⋆ ( italic_b ∘ italic_i ) = ( italic_e ⋆ ( italic_b ∘ italic_i ) ) ∘ italic_a

  • A5.

    a ( e b ) = a ( i ( e b ) ) 𝑎 𝑒 𝑏 𝑎 𝑖 𝑒 𝑏 a\circ(e\star b)=a\star(i\circ(e\star b)) italic_a ∘ ( italic_e ⋆ italic_b ) = italic_a ⋆ ( italic_i ∘ ( italic_e ⋆ italic_b ) )

  • A6.

    ( e a ) b = b ( ( e a ) i ) 𝑒 𝑎 𝑏 𝑏 𝑒 𝑎 𝑖 (e\star a)\circ b=b\star((e\star a)\circ i) ( italic_e ⋆ italic_a ) ∘ italic_b = italic_b ⋆ ( ( italic_e ⋆ italic_a ) ∘ italic_i )

  • A7.

    a ( i b ) = a ( e ( i b ) ) 𝑎 𝑖 𝑏 𝑎 𝑒 𝑖 𝑏 a\star(i\circ b)=a\circ(e\star(i\circ b)) italic_a ⋆ ( italic_i ∘ italic_b ) = italic_a ∘ ( italic_e ⋆ ( italic_i ∘ italic_b ) )

  • A8.

    ( i a ) b = b ( ( i a ) e ) 𝑖 𝑎 𝑏 𝑏 𝑖 𝑎 𝑒 (i\circ a)\star b=b\circ((i\circ a)\star e) ( italic_i ∘ italic_a ) ⋆ italic_b = italic_b ∘ ( ( italic_i ∘ italic_a ) ⋆ italic_e )

for all a , b A 𝑎 𝑏 𝐴 a,b\in A italic_a , italic_b ∈ italic_A .


Definition 19 .

A degenerate elliptic bigrid of type I I I I \mathord{I\!I} italic_I italic_I is a bigrid given by the formula

γ ( 0 , i , j ) = ϕ ( a + j q + ( n - i ) t ) γ ( 1 , i , j ) = ϕ ( b - j q + ( i - 1 ) t ) , formulae-sequence 𝛾 0 𝑖 𝑗 italic-ϕ 𝑎 𝑗 𝑞 𝑛 𝑖 𝑡 𝛾 1 𝑖 𝑗 italic-ϕ 𝑏 𝑗 𝑞 𝑖 1 𝑡 \gamma(0,i,j)=\phi(a+jq+(n-i)t)\quad\gamma(1,i,j)=\phi(b-jq+(i-1)t), italic_γ ( 0 , italic_i , italic_j ) = italic_ϕ ( italic_a + italic_j italic_q + ( italic_n - italic_i ) italic_t ) italic_γ ( 1 , italic_i , italic_j ) = italic_ϕ ( italic_b - italic_j italic_q + ( italic_i - 1 ) italic_t ) , (7.17)

where a 𝑎 a italic_a , b 𝑏 b italic_b , q 𝑞 q italic_q , t k 𝑡 𝑘 t\in k italic_t ∈ italic_k , and ϕ italic-ϕ \phi italic_ϕ is a degree two function on k 𝑘 k italic_k of the form

ϕ ( x ) = α x ( τ - x ) + β γ x ( τ - x ) + δ , italic-ϕ 𝑥 𝛼 𝑥 𝜏 𝑥 𝛽 𝛾 𝑥 𝜏 𝑥 𝛿 \phi(x)=\frac{\alpha x(\tau-x)+\beta}{\gamma x(\tau-x)+\delta}, italic_ϕ ( italic_x ) = divide start_ARG italic_α italic_x ( italic_τ - italic_x ) + italic_β end_ARG start_ARG italic_γ italic_x ( italic_τ - italic_x ) + italic_δ end_ARG , (7.18)

with α 𝛼 \alpha italic_α , β 𝛽 \beta italic_β , γ 𝛾 \gamma italic_γ , δ 𝛿 \delta italic_δ , τ k 𝜏 𝑘 \tau\in k italic_τ ∈ italic_k .

Definition 21 .

A degenerate elliptic bigrid of type I I I I I I \mathord{I\!I\!I} italic_I italic_I italic_I is a bigrid given by the formula

γ ( 0 , i , j ) = ϕ ( a + j q + ( n - i ) t ) γ ( 1 , i , j ) = ϕ ( b - j q + ( i - 1 ) t ) , formulae-sequence 𝛾 0 𝑖 𝑗 italic-ϕ 𝑎 𝑗 𝑞 𝑛 𝑖 𝑡 𝛾 1 𝑖 𝑗 italic-ϕ 𝑏 𝑗 𝑞 𝑖 1 𝑡 \gamma(0,i,j)=\phi(a+jq+(n-i)t)\quad\gamma(1,i,j)=\phi(b-jq+(i-1)t), italic_γ ( 0 , italic_i , italic_j ) = italic_ϕ ( italic_a + italic_j italic_q + ( italic_n - italic_i ) italic_t ) italic_γ ( 1 , italic_i , italic_j ) = italic_ϕ ( italic_b - italic_j italic_q + ( italic_i - 1 ) italic_t ) , (7.23)

where a 𝑎 a italic_a , b 𝑏 b italic_b , q 𝑞 q italic_q , t k .2 ( κ ) 𝑡 𝑘 .2 𝜅 t\in k.2(\kappa) italic_t ∈ italic_k .2 ( italic_κ ) , and ϕ italic-ϕ \phi italic_ϕ is given by

ϕ ( x , 0 ) = ϕ ( τ - x , 1 ) = α x + β γ x + δ italic-ϕ 𝑥 0 italic-ϕ 𝜏 𝑥 1 𝛼 𝑥 𝛽 𝛾 𝑥 𝛿 \phi(x,0)=\phi(\tau-x,1)=\frac{\alpha x+\beta}{\gamma x+\delta} italic_ϕ ( italic_x , 0 ) = italic_ϕ ( italic_τ - italic_x , 1 ) = divide start_ARG italic_α italic_x + italic_β end_ARG start_ARG italic_γ italic_x + italic_δ end_ARG (7.24)

for some nonconstant linear fractional transformation.


Definition 3.5

Let the function ϕ : ( 0 , ) 2 normal-: italic-ϕ normal-→ superscript 0 2 \phi:(0,\infty)^{2}\to\mathbb{R} italic_ϕ : ( 0 , ∞ ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT → blackboard_R be given by

ϕ ( α , β ) = ( β + 1 ) log ( β + 1 ) - β log β + β log α - ( β + 1 ) log ( α + 1 ) . italic-ϕ 𝛼 𝛽 𝛽 1 𝛽 1 𝛽 𝛽 𝛽 𝛼 𝛽 1 𝛼 1 \phi(\alpha,\beta)=(\beta+1)\log(\beta+1)-\beta\log\beta+\beta\log\alpha-(% \beta+1)\log(\alpha+1). italic_ϕ ( italic_α , italic_β ) = ( italic_β + 1 ) roman_log ( italic_β + 1 ) - italic_β roman_log italic_β + italic_β roman_log italic_α - ( italic_β + 1 ) roman_log ( italic_α + 1 ) .

Definition 2.1

Let u , x S 𝑢 𝑥 𝑆 u,x\in S italic_u , italic_x ∈ italic_S and d 0 𝑑 0 d\geq 0 italic_d ≥ 0 . The equation (see 1.4 ( 3 ))

x ( t ) = u ( t - d ) 𝑥 𝑡 𝑢 𝑡 𝑑 x\left(t\right)=u(t-d) italic_x ( italic_t ) = italic_u ( italic_t - italic_d )

is called the fixed delay condition (FDC). The delay defined by this equation is also called pure, ideal or non-inertial. A delay different from FDC is called inertial.


Definition 1.5 .

[ M , Definition 2.14] . A matched pair of groupoids is a pair of groupoids ( 𝒱 , ) 𝒱 ({\mathcal{V}},{\mathcal{H}}) ( caligraphic_V , caligraphic_H ) over 𝒫 𝒫 {\mathcal{P}} caligraphic_P with 𝒱 𝒱 {\mathcal{V}} caligraphic_V denoted vertically and {\mathcal{H}} caligraphic_H horizontally, endowed with a left action : × t r 𝒱 𝒱 fragments : H subscript subscript 𝑡 𝑟 V V \,{\rightharpoonup}\,:{\mathcal{H}}{}_{r}\hskip-2.845276pt\times_{t}{\mathcal{% V}}\to{\mathcal{V}} ⇀ : caligraphic_H start_FLOATSUBSCRIPT italic_r end_FLOATSUBSCRIPT × start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT caligraphic_V → caligraphic_V of {\mathcal{H}} caligraphic_H on t : 𝒱 𝒫 : 𝑡 𝒱 𝒫 t:{\mathcal{V}}\to{\mathcal{P}} italic_t : caligraphic_V → caligraphic_P , and a right action : × t r 𝒱 fragments : H subscript subscript 𝑡 𝑟 V H \,{\leftharpoonup}\,:{\mathcal{H}}{}_{r}\hskip-2.845276pt\times_{t}{\mathcal{V% }}\to{\mathcal{H}} ↼ : caligraphic_H start_FLOATSUBSCRIPT italic_r end_FLOATSUBSCRIPT × start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT caligraphic_V → caligraphic_H of 𝒱 𝒱 {\mathcal{V}} caligraphic_V on r : 𝒫 : 𝑟 𝒫 r:{\mathcal{H}}\to{\mathcal{P}} italic_r : caligraphic_H → caligraphic_P , satisfying

(1.7) b ( x g ) = l ( x g ) , fragments b fragments ( x g ) l fragments ( x g ) , \displaystyle b(x\,{\rightharpoonup}\,g)=l(x\,{\leftharpoonup}\,g), italic_b ( italic_x ⇀ italic_g ) = italic_l ( italic_x ↼ italic_g ) ,
(1.8) x f g = ( x f ) ( ( x f ) g ) , fragments x f g fragments ( x f ) fragments ( fragments ( x f ) g ) , \displaystyle x\,{\rightharpoonup}\,fg=(x\,{\rightharpoonup}\,f)((x\,{% \leftharpoonup}\,f)\,{\rightharpoonup}\,g), italic_x ⇀ italic_f italic_g = ( italic_x ⇀ italic_f ) ( ( italic_x ↼ italic_f ) ⇀ italic_g ) ,
(1.9) x y g = ( x ( y g ) ) ( y g ) , fragments x y g fragments ( x fragments ( y g ) ) fragments ( y g ) , \displaystyle xy\,{\leftharpoonup}\,g=(x\,{\leftharpoonup}\,(y\,{% \rightharpoonup}\,g))(y\,{\leftharpoonup}\,g), italic_x italic_y ↼ italic_g = ( italic_x ↼ ( italic_y ⇀ italic_g ) ) ( italic_y ↼ italic_g ) ,

for all f , g 𝒱 𝑓 𝑔 𝒱 f,g\in{\mathcal{V}} italic_f , italic_g ∈ caligraphic_V , x , y 𝑥 𝑦 x,y\in{\mathcal{H}} italic_x , italic_y ∈ caligraphic_H such that the compositions are possible.

Definition 4.6 .

Let us first say that a quiver in a category 𝒞 𝒞 {\mathcal{C}} caligraphic_C is a pair of arrows 𝔰 , 𝔢 : 𝔄 𝔓 : 𝔰 𝔢 𝔄 𝔓 \mathfrak{s},\mathfrak{e}:{\mathfrak{A}}\to{\mathfrak{P}} fraktur_s , fraktur_e : fraktur_A → fraktur_P in 𝒞 𝒞 {\mathcal{C}} caligraphic_C .

A double quiver is a quiver in the category Quiv Quiv \operatorname{Quiv} roman_Quiv of all quivers. That is, in the “vertical and horizontal” notation, a double quiver is a pair of morphisms of quivers t , b : 𝔅 : 𝑡 𝑏 𝔅 t,b:{\mathfrak{B}}\to{\mathfrak{H}} italic_t , italic_b : fraktur_B → fraktur_H , where 𝔅 𝔅 {\mathfrak{B}} fraktur_B and {\mathfrak{H}} fraktur_H are quivers in the usual sense: l , r : 𝔅 𝔙 : 𝑙 𝑟 𝔅 𝔙 l,r:{\mathfrak{B}}\to{\mathfrak{V}} italic_l , italic_r : fraktur_B → fraktur_V , l , r : 𝒫 : 𝑙 𝑟 𝒫 l,r:{\mathfrak{H}}\to{\mathcal{P}} italic_l , italic_r : fraktur_H → caligraphic_P , and t , b 𝑡 𝑏 t,b italic_t , italic_b should preserve l , r 𝑙 𝑟 l,r italic_l , italic_r :

(4.5) t r = r t , t l = l t , b r = r b , b l = l b . formulae-sequence 𝑡 𝑟 𝑟 𝑡 formulae-sequence 𝑡 𝑙 𝑙 𝑡 formulae-sequence 𝑏 𝑟 𝑟 𝑏 𝑏 𝑙 𝑙 𝑏 tr=rt,\qquad tl=lt,\qquad br=rb,\qquad bl=lb. italic_t italic_r = italic_r italic_t , italic_t italic_l = italic_l italic_t , italic_b italic_r = italic_r italic_b , italic_b italic_l = italic_l italic_b .

In short, a double quiver is a collection of sets and maps

𝔅 t , b l , r l , r 𝔙 t , b 𝒫 matrix 𝔅 𝑡 𝑏 𝑙 𝑟 absent absent absent 𝑙 𝑟 𝔙 𝑡 𝑏 𝒫 \begin{matrix}\qquad{\mathfrak{B}}&\overset{t,b}{\rightrightarrows}&{\mathfrak% {H}}\\ l,r\downdownarrows&&\downdownarrows l,r\\ \qquad{\mathfrak{V}}&\underset{t,b}{\rightrightarrows}&{\mathcal{P}}\end{matrix} start_ARG start_ROW start_CELL fraktur_B end_CELL start_CELL start_OVERACCENT italic_t , italic_b end_OVERACCENT start_ARG ⇉ end_ARG end_CELL start_CELL fraktur_H end_CELL end_ROW start_ROW start_CELL italic_l , italic_r ⇊ end_CELL start_CELL end_CELL start_CELL ⇊ italic_l , italic_r end_CELL end_ROW start_ROW start_CELL fraktur_V end_CELL start_CELL start_UNDERACCENT italic_t , italic_b end_UNDERACCENT start_ARG ⇉ end_ARG end_CELL start_CELL caligraphic_P end_CELL end_ROW end_ARG

satisfying ( 4.5 ). By abuse of notation we shall say that ( 𝔅 , 𝔙 , ) 𝔅 𝔙 ({\mathfrak{B}},{\mathfrak{V}},{\mathfrak{H}}) ( fraktur_B , fraktur_V , fraktur_H ) is a double quiver over 𝒫 𝒫 {\mathcal{P}} caligraphic_P ; or alternatively that 𝔅 𝔅 {\mathfrak{B}} fraktur_B is a double quiver with sides in 𝔙 𝔙 {\mathfrak{V}} fraktur_V and {\mathfrak{H}} fraktur_H ; or that 𝔅 𝔅 {\mathfrak{B}} fraktur_B is a double quiver with sides in 𝒜 𝒜 {\mathcal{A}} caligraphic_A in case 𝔙 = = 𝒜 𝔙 𝒜 {\mathfrak{V}}={\mathfrak{H}}={\mathcal{A}} fraktur_V = fraktur_H = caligraphic_A . An element B 𝐵 B italic_B of 𝔅 𝔅 {\mathfrak{B}} fraktur_B is called an oriented box and depicted as a box

B = t l r b 𝐵 matrix 𝑡 𝑙 𝑟 𝑏 B=\begin{matrix}\quad t\\ l\,\,\begin{tabular}[]{|p{0,1cm}|}\hline\hbox{}\\ \hline\hbox{}\end{tabular}\,\,r\\ \quad b\end{matrix} italic_B = start_ARG start_ROW start_CELL italic_t end_CELL end_ROW start_ROW start_CELL italic_l italic_r end_CELL end_ROW start_ROW start_CELL italic_b end_CELL end_ROW end_ARG

where t = t ( B ) 𝑡 𝑡 𝐵 t=t(B) italic_t = italic_t ( italic_B ) , b = b ( B ) 𝑏 𝑏 𝐵 b=b(B) italic_b = italic_b ( italic_B ) , r = r ( B ) 𝑟 𝑟 𝐵 r=r(B) italic_r = italic_r ( italic_B ) , l = l ( B ) 𝑙 𝑙 𝐵 l=l(B) italic_l = italic_l ( italic_B ) , and the four corners are t l ( B ) 𝑡 𝑙 𝐵 tl(B) italic_t italic_l ( italic_B ) , t r ( B ) 𝑡 𝑟 𝐵 tr(B) italic_t italic_r ( italic_B ) , b l ( B ) 𝑏 𝑙 𝐵 bl(B) italic_b italic_l ( italic_B ) , b r ( B ) 𝑏 𝑟 𝐵 br(B) italic_b italic_r ( italic_B ) . In this picture, we keep in mind the orientations top-to-bottom and left-to-right. Morphisms of double quivers, or of double quivers over 𝒫 𝒫 {\mathcal{P}} caligraphic_P , are defined in the standard way.

Let 𝒫 𝒫 {\mathcal{P}} caligraphic_P be a set and 𝒜 𝒜 {\mathcal{A}} caligraphic_A , {\mathcal{B}} caligraphic_B be quivers over 𝒫 𝒫 {\mathcal{P}} caligraphic_P denoted vertically and horizontally, respectively. The coarse double quiver with sides in 𝒜 𝒜 {\mathcal{A}} caligraphic_A and {\mathcal{B}} caligraphic_B is the collection ( 𝔙 , 𝔙 , ) 𝔙 𝔙 ({\mathfrak{V}}\boxplus{\mathfrak{H}},{\mathfrak{V}},{\mathfrak{H}}) ( fraktur_V ⊞ fraktur_H , fraktur_V , fraktur_H ) where 𝔙 𝔙 {\mathfrak{V}}\boxplus{\mathfrak{H}} fraktur_V ⊞ fraktur_H is the set of all quadruples ( x f g y ) matrix 𝑥 𝑓 𝑔 𝑦 \begin{pmatrix}\quad x\\ f\quad g\\ \quad y\end{pmatrix} ( start_ARG start_ROW start_CELL italic_x end_CELL end_ROW start_ROW start_CELL italic_f italic_g end_CELL end_ROW start_ROW start_CELL italic_y end_CELL end_ROW end_ARG ) with x , y 𝑥 𝑦 x,y\in{\mathfrak{H}} italic_x , italic_y ∈ fraktur_H , f , g 𝔙 𝑓 𝑔 𝔙 f,g\in{\mathfrak{V}} italic_f , italic_g ∈ fraktur_V such that

(4.6) l ( x ) = t ( f ) , r ( x ) = t ( g ) , l ( y ) = b ( f ) , r ( y ) = b ( g ) . formulae-sequence 𝑙 𝑥 𝑡 𝑓 formulae-sequence 𝑟 𝑥 𝑡 𝑔 formulae-sequence 𝑙 𝑦 𝑏 𝑓 𝑟 𝑦 𝑏 𝑔 l(x)=t(f),\quad r(x)=t(g),\quad l(y)=b(f),\quad r(y)=b(g). italic_l ( italic_x ) = italic_t ( italic_f ) , italic_r ( italic_x ) = italic_t ( italic_g ) , italic_l ( italic_y ) = italic_b ( italic_f ) , italic_r ( italic_y ) = italic_b ( italic_g ) .

Such a quadruple is called a face . We omit the obvious description of the arrows.

If ( 𝔅 , 𝔙 , ) 𝔅 𝔙 ({\mathfrak{B}},{\mathfrak{V}},{\mathfrak{H}}) ( fraktur_B , fraktur_V , fraktur_H ) is a double quiver over 𝒫 𝒫 {\mathcal{P}} caligraphic_P then there are maps Θ : 𝔅 𝔙 : Θ 𝔅 𝔙 \Theta:{\mathfrak{B}}\to{\mathfrak{V}}\boxplus{\mathfrak{H}} roman_Θ : fraktur_B → fraktur_V ⊞ fraktur_H , Ξ : 𝔅 × l r 𝔙 fragments Ξ : B H subscript subscript 𝑙 𝑟 V \Xi:{\mathfrak{B}}\to{\mathfrak{H}}{}_{r}\hskip-2.845276pt\times_{l}{\mathfrak% {V}} roman_Ξ : fraktur_B → fraktur_H start_FLOATSUBSCRIPT italic_r end_FLOATSUBSCRIPT × start_POSTSUBSCRIPT italic_l end_POSTSUBSCRIPT fraktur_V given by

Θ ( x f g y ) = ( x f g y ) , Ξ ( x f g y ) = ( x , g ) , x f g y 𝔅 . formulae-sequence Θ matrix 𝑥 𝑓 𝑔 𝑦 matrix 𝑥 𝑓 𝑔 𝑦 formulae-sequence Ξ matrix 𝑥 𝑓 𝑔 𝑦 𝑥 𝑔 matrix 𝑥 𝑓 𝑔 𝑦 𝔅 \Theta\left(\begin{matrix}\quad x\\ f\,\,\begin{tabular}[]{|p{0,1cm}|}\hline\hbox{}\\ \hline\hbox{}\end{tabular}\,\,g\\ \quad y\end{matrix}\right)=\begin{pmatrix}\quad x\\ f\quad g\\ \quad y\end{pmatrix},\qquad\Xi\left(\begin{matrix}\quad x\\ f\,\,\begin{tabular}[]{|p{0,1cm}|}\hline\hbox{}\\ \hline\hbox{}\end{tabular}\,\,g\\ \quad y\end{matrix}\right)=(x,g),\qquad\begin{matrix}\quad x\\ f\,\,\begin{tabular}[]{|p{0,1cm}|}\hline\hbox{}\\ \hline\hbox{}\end{tabular}\,\,g\\ \quad y\end{matrix}\in{\mathfrak{B}}. roman_Θ ( start_ARG start_ROW start_CELL italic_x end_CELL end_ROW start_ROW start_CELL italic_f italic_g end_CELL end_ROW start_ROW start_CELL italic_y end_CELL end_ROW end_ARG ) = ( start_ARG start_ROW start_CELL italic_x end_CELL end_ROW start_ROW start_CELL italic_f italic_g end_CELL end_ROW start_ROW start_CELL italic_y end_CELL end_ROW end_ARG ) , roman_Ξ ( start_ARG start_ROW start_CELL italic_x end_CELL end_ROW start_ROW start_CELL italic_f italic_g end_CELL end_ROW start_ROW start_CELL italic_y end_CELL end_ROW end_ARG ) = ( italic_x , italic_g ) , start_ARG start_ROW start_CELL italic_x end_CELL end_ROW start_ROW start_CELL italic_f italic_g end_CELL end_ROW start_ROW start_CELL italic_y end_CELL end_ROW end_ARG ∈ fraktur_B .

Clearly Θ Θ \Theta roman_Θ is a morphism of double quivers.

We shall say that ( 𝔅 , 𝔙 , ) 𝔅 𝔙 ({\mathfrak{B}},{\mathfrak{V}},{\mathfrak{H}}) ( fraktur_B , fraktur_V , fraktur_H ) is thin if Θ Θ \Theta roman_Θ is injective (any box is determined by its sides) and Ξ Ξ \Xi roman_Ξ is surjective.

We shall say that ( 𝔅 , 𝔙 , ) 𝔅 𝔙 ({\mathfrak{B}},{\mathfrak{V}},{\mathfrak{H}}) ( fraktur_B , fraktur_V , fraktur_H ) is vacant if Ξ Ξ \Xi roman_Ξ is bijective.


Definition 5.4 .

The extended Mukai lattice is defined to be H ~ ( Y , ) := H 0 ( Y , ) H 2 ( Y , ) H 4 ( Y , ) assign normal-~ H 𝑌 direct-sum superscript H 0 𝑌 superscript H 2 𝑌 superscript H 4 𝑌 \widetilde{{\textnormal{H}}}(Y,\mathbb{Z}):={\textnormal{H}}^{0}(Y,\mathbb{Z})% \oplus{\textnormal{H}}^{2}(Y,\mathbb{Z})\oplus{\textnormal{H}}^{4}(Y,\mathbb{Z}) ~ start_ARG H end_ARG ( italic_Y , blackboard_Z ) := H start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT ( italic_Y , blackboard_Z ) ⊕ H start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_Y , blackboard_Z ) ⊕ H start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT ( italic_Y , blackboard_Z ) with the pairing

( a 0 , a 2 , a 4 ) , ( b 0 , b 2 , b 4 ) = a 2 , b 2 - a 0 , b 4 - a 4 , b 0 superscript 𝑎 0 superscript 𝑎 2 superscript 𝑎 4 superscript 𝑏 0 superscript 𝑏 2 superscript 𝑏 4 superscript 𝑎 2 superscript 𝑏 2 superscript 𝑎 0 superscript 𝑏 4 superscript 𝑎 4 superscript 𝑏 0 {\langle(a^{0},a^{2},a^{4}),(b^{0},b^{2},b^{4})\rangle}={\langle a^{2},b^{2}% \rangle}-{\langle a^{0},b^{4}\rangle}-{\langle a^{4},b^{0}\rangle} ⟨ ( italic_a start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT , italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT , italic_a start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT ) , ( italic_b start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT , italic_b start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT , italic_b start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT ) ⟩ = ⟨ italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT , italic_b start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ⟩ - ⟨ italic_a start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT , italic_b start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT ⟩ - ⟨ italic_a start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT , italic_b start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT ⟩

where , fragments normal-⟨ normal-, normal-⟩ {\langle,\rangle} ⟨ , ⟩ stands for the cup product. The extended Mukai lattice has a natural weight 2 Hodge structure

H ~ 2 , 0 ( Y , ) := H 2 , 0 ( Y , ) H ~ 1 , 1 ( Y , ) := H 0 ( Y , ) H 1 , 1 ( Y , ) H 4 ( Y , ) H ~ 0 , 2 ( Y , ) := H 0 , 2 ( Y , ) superscript ~ H 2 0 𝑌 assign superscript H 2 0 𝑌 superscript ~ H 1 1 𝑌 assign direct-sum superscript H 0 𝑌 superscript H 1 1 𝑌 superscript H 4 𝑌 superscript ~ H 0 2 𝑌 assign superscript H 0 2 𝑌 \begin{array}[]{lcl}\widetilde{\textnormal{H}}^{2,0}(Y,\mathbb{C})&:=&{% \textnormal{H}}^{2,0}(Y,\mathbb{C})\\ \widetilde{\textnormal{H}}^{1,1}(Y,\mathbb{C})&:=&{\textnormal{H}}^{0}(Y,% \mathbb{C})\oplus{\textnormal{H}}^{1,1}(Y,\mathbb{C})\oplus{\textnormal{H}}^{4% }(Y,\mathbb{C})\\ \widetilde{\textnormal{H}}^{0,2}(Y,\mathbb{C})&:=&{\textnormal{H}}^{0,2}(Y,% \mathbb{C})\end{array} start_ARRAY start_ROW start_CELL ~ start_ARG H end_ARG start_POSTSUPERSCRIPT 2 , 0 end_POSTSUPERSCRIPT ( italic_Y , blackboard_C ) end_CELL start_CELL := end_CELL start_CELL H start_POSTSUPERSCRIPT 2 , 0 end_POSTSUPERSCRIPT ( italic_Y , blackboard_C ) end_CELL end_ROW start_ROW start_CELL ~ start_ARG H end_ARG start_POSTSUPERSCRIPT 1 , 1 end_POSTSUPERSCRIPT ( italic_Y , blackboard_C ) end_CELL start_CELL := end_CELL start_CELL H start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT ( italic_Y , blackboard_C ) ⊕ H start_POSTSUPERSCRIPT 1 , 1 end_POSTSUPERSCRIPT ( italic_Y , blackboard_C ) ⊕ H start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT ( italic_Y , blackboard_C ) end_CELL end_ROW start_ROW start_CELL ~ start_ARG H end_ARG start_POSTSUPERSCRIPT 0 , 2 end_POSTSUPERSCRIPT ( italic_Y , blackboard_C ) end_CELL start_CELL := end_CELL start_CELL H start_POSTSUPERSCRIPT 0 , 2 end_POSTSUPERSCRIPT ( italic_Y , blackboard_C ) end_CELL end_ROW end_ARRAY

Definition 5.1

Let ξ : ( 0 , 1 ) × ( 0 , ) normal-: 𝜉 normal-→ 0 1 0 \xi:(0,1)\times(0,\infty)\to\mathbb{R} italic_ξ : ( 0 , 1 ) × ( 0 , ∞ ) → blackboard_R be given by

ξ ( p , β ) = β log β - ( β + 1 ) log ( β + 1 ) - log p - β log ( 1 - p ) . 𝜉 𝑝 𝛽 𝛽 𝛽 𝛽 1 𝛽 1 𝑝 𝛽 1 𝑝 \xi(p,\beta)=\beta\log\beta-(\beta+1)\log(\beta+1)-\log{p}-\beta\log(1-p). italic_ξ ( italic_p , italic_β ) = italic_β roman_log italic_β - ( italic_β + 1 ) roman_log ( italic_β + 1 ) - roman_log italic_p - italic_β roman_log ( 1 - italic_p ) .

Definition 1 1

Let w B n + 1 + 𝑤 superscript subscript 𝐵 𝑛 1 w\in B_{n+1}^{+} italic_w ∈ italic_B start_POSTSUBSCRIPT italic_n + 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT , w = u σ v 𝑤 𝑢 𝜎 𝑣 w=u\sigma v italic_w = italic_u italic_σ italic_v . We note

w = u σ v 1 u v 𝑤 𝑢 𝜎 𝑣 superscript 1 𝑢 𝑣 w=u\sigma v\stackrel{{\scriptstyle 1}}{{\rightarrow}}uv italic_w = italic_u italic_σ italic_v start_RELOP SUPERSCRIPTOP start_ARG → end_ARG start_ARG 1 end_ARG end_RELOP italic_u italic_v

to say that we pass from w 𝑤 w italic_w to u v 𝑢 𝑣 uv italic_u italic_v by eliminating one generator.This last is said to be a 1-sequence. So for any X 𝑋 X italic_X in B n + 1 + superscript subscript 𝐵 𝑛 1 B_{n+1}^{+} italic_B start_POSTSUBSCRIPT italic_n + 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT ,the k-sequence

X k Y superscript 𝑘 𝑋 𝑌 X\stackrel{{\scriptstyle k}}{{\rightarrow}}Y italic_X start_RELOP SUPERSCRIPTOP start_ARG → end_ARG start_ARG italic_k end_ARG end_RELOP italic_Y

means that we pass from X 𝑋 X italic_X to Y 𝑌 Y italic_Y by eliminating k 𝑘 k italic_k generators,i.e there exists k + 1 𝑘 1 k+1 italic_k + 1 positive words L j subscript 𝐿 𝑗 L_{j} italic_L start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT with 0 j k 0 𝑗 𝑘 0\leq{j\leq{k}} 0 ≤ italic_j ≤ italic_k such as

L k = X subscript 𝐿 𝑘 𝑋 L_{k}=X italic_L start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT = italic_X
L j + 1 1 L j superscript 1 subscript 𝐿 𝑗 1 subscript 𝐿 𝑗 L_{j+1}\stackrel{{\scriptstyle 1}}{{\rightarrow}}L_{j} italic_L start_POSTSUBSCRIPT italic_j + 1 end_POSTSUBSCRIPT start_RELOP SUPERSCRIPTOP start_ARG → end_ARG start_ARG 1 end_ARG end_RELOP italic_L start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT
L 0 = Y subscript 𝐿 0 𝑌 L_{0}=Y italic_L start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT = italic_Y

Definition 2.1 .

Let α , β : R S : 𝛼 𝛽 𝑅 𝑆 \alpha,\beta:R\to S italic_α , italic_β : italic_R → italic_S be homomorphisms of commutative k 𝑘 k italic_k -algebras. We say that α 𝛼 \alpha italic_α and β 𝛽 \beta italic_β are homotopic ( α β similar-to 𝛼 𝛽 \alpha\sim\beta italic_α ∼ italic_β ) if there exists a k 𝑘 k italic_k -algebra homomorphism θ : R S [ t ] : 𝜃 𝑅 𝑆 delimited-[] 𝑡 \theta:R\to S[t] italic_θ : italic_R → italic_S [ italic_t ] such that

[ 0 ] θ = α and [ 1 ] θ = β . delimited-[] 0 𝜃 𝛼 and delimited-[] 1 𝜃 𝛽 [0]\theta=\alpha\text{ and }[1]\theta=\beta. [ 0 ] italic_θ = italic_α and [ 1 ] italic_θ = italic_β .

The map θ 𝜃 \theta italic_θ is called a homotopy between α 𝛼 \alpha italic_α and β 𝛽 \beta italic_β . Let \approx be the equivalence relation generated by similar-to \sim .

The homomorphism α : R S : 𝛼 𝑅 𝑆 \alpha:R\to S italic_α : italic_R → italic_S is a homotopy equivalence if there exists a ring homomorphism α : S R : superscript 𝛼 𝑆 𝑅 \alpha^{\prime}:S\to R italic_α start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT : italic_S → italic_R with α α id S 𝛼 superscript 𝛼 subscript id 𝑆 \alpha\alpha^{\prime}\approx{\operatorname{id}}_{S} italic_α italic_α start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ≈ roman_id start_POSTSUBSCRIPT italic_S end_POSTSUBSCRIPT and α α id R superscript 𝛼 𝛼 subscript id 𝑅 \alpha^{\prime}\alpha\approx{\operatorname{id}}_{R} italic_α start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT italic_α ≈ roman_id start_POSTSUBSCRIPT italic_R end_POSTSUBSCRIPT .