Definition 13.18

Let X 𝑋 X italic_X be any set. A function f : β„€ ⟢ X normal-: 𝑓 normal-⟢ β„€ 𝑋 f\colon\mathbb{Z}\longrightarrow X italic_f : blackboard_Z ⟢ italic_X is called weakly periodic with period s ∈ ℝ 𝑠 ℝ s\in\mathbb{R} italic_s ∈ blackboard_R if for all integers k π‘˜ k italic_k , 0 ≀ k < s 0 π‘˜ 𝑠 0\leq k<s 0 ≀ italic_k < italic_s , and for all non-negative integers j 𝑗 j italic_j , either

  1. 1.

    f ⁒ ( k ) = f ⁒ ( k + ⌊ j ⁒ s βŒ‹ ) 𝑓 π‘˜ 𝑓 π‘˜ 𝑗 𝑠 f(k)=f(k+\lfloor js\rfloor) italic_f ( italic_k ) = italic_f ( italic_k + ⌊ italic_j italic_s βŒ‹ ) , or

  2. 2.

    f ⁒ ( k ) = f ⁒ ( k + ⌈ j ⁒ s βŒ‰ ) 𝑓 π‘˜ 𝑓 π‘˜ 𝑗 𝑠 f(k)=f(k+\lceil js\rceil) italic_f ( italic_k ) = italic_f ( italic_k + ⌈ italic_j italic_s βŒ‰ ) .

For brevity we will write f ⁒ ( k ) = f ⁒ ( k + [ j ⁒ s ] ) 𝑓 π‘˜ 𝑓 π‘˜ delimited-[] 𝑗 𝑠 f(k)=f(k+\left[js\right]) italic_f ( italic_k ) = italic_f ( italic_k + [ italic_j italic_s ] ) to indicate that one of the above conditions is satisfied. The satisfied condition may vary with k π‘˜ k italic_k and j 𝑗 j italic_j . β–  normal-β–  {}_{\blacksquare} start_FLOATSUBSCRIPT β–  end_FLOATSUBSCRIPT


Definition 2.1 .

A 1-form ΞΈ ∈ Ξ› 1 ⁒ ( Z ) πœƒ superscript normal-Ξ› 1 𝑍 \theta\in\Lambda^{1}(Z) italic_ΞΈ ∈ roman_Ξ› start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT ( italic_Z ) is said to be a contact 1-form whenever

( j 1 ⁒ Ο• ) * ⁒ ΞΈ = 0 superscript superscript 𝑗 1 italic-Ο• πœƒ 0 (j^{1}\phi)^{*}\theta=0 ( italic_j start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT italic_Ο• ) start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT italic_ΞΈ = 0

for every section Ο• italic-Ο• \phi italic_Ο• of Ο€ πœ‹ \pi italic_Ο€ .

Definition 4.2 .

A space of Cauchy data is the manifold of embeddings Ξ³ : M β†’ Z normal-: 𝛾 normal-β†’ 𝑀 𝑍 \gamma:M\to Z italic_Ξ³ : italic_M β†’ italic_Z such that there exists a section Ο• italic-Ο• \phi italic_Ο• of Ο€ X ⁒ Y subscript πœ‹ 𝑋 π‘Œ \pi_{XY} italic_Ο€ start_POSTSUBSCRIPT italic_X italic_Y end_POSTSUBSCRIPT satisfying

Ξ³ = ( j 1 ⁒ Ο• ) ∘ Ο„ 𝛾 superscript 𝑗 1 italic-Ο• 𝜏 \gamma=(j^{1}\phi)\circ\tau italic_Ξ³ = ( italic_j start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT italic_Ο• ) ∘ italic_Ο„

where Ο„ := Ο€ X ⁒ Z ∘ Ξ³ ∈ X ~ assign 𝜏 subscript πœ‹ 𝑋 𝑍 𝛾 normal-~ 𝑋 \tau:=\pi_{XZ}\circ\gamma\in\tilde{X} italic_Ο„ := italic_Ο€ start_POSTSUBSCRIPT italic_X italic_Z end_POSTSUBSCRIPT ∘ italic_Ξ³ ∈ ~ start_ARG italic_X end_ARG , and Ξ³ ⁒ ( βˆ‚ ⁑ M ) βŠ† B 𝛾 𝑀 𝐡 \gamma(\partial M)\subseteq B italic_Ξ³ ( βˆ‚ italic_M ) βŠ† italic_B .
The space of such embeddings shall be denoted by Z ~ normal-~ 𝑍 \tilde{Z} ~ start_ARG italic_Z end_ARG , and we shall denote by Ο€ X ~ ⁒ Z ~ subscript πœ‹ normal-~ 𝑋 normal-~ 𝑍 \pi_{\tilde{X}\tilde{Z}} italic_Ο€ start_POSTSUBSCRIPT ~ start_ARG italic_X end_ARG ~ start_ARG italic_Z end_ARG end_POSTSUBSCRIPT the projection Ο€ X ~ ⁒ Z ~ ⁒ ( Ξ³ ) = Ο€ X ⁒ Z ∘ Ξ³ subscript πœ‹ normal-~ 𝑋 normal-~ 𝑍 𝛾 subscript πœ‹ 𝑋 𝑍 𝛾 \pi_{\tilde{X}\tilde{Z}}(\gamma)=\pi_{XZ}\circ\gamma italic_Ο€ start_POSTSUBSCRIPT ~ start_ARG italic_X end_ARG ~ start_ARG italic_Z end_ARG end_POSTSUBSCRIPT ( italic_Ξ³ ) = italic_Ο€ start_POSTSUBSCRIPT italic_X italic_Z end_POSTSUBSCRIPT ∘ italic_Ξ³ . We shall also require this projection to be a locally trivial fibration.


Definition 2.1 .

Let π’œ π’œ \mathcal{A} caligraphic_A , π’œ β€² superscript π’œ normal-β€² \mathcal{A}^{\prime} caligraphic_A start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT be a C*-algebras, β„³ β„³ \mathcal{M} caligraphic_M a Hilbert π’œ π’œ \mathcal{A} caligraphic_A -bimodule, 𝒩 𝒩 \mathcal{N} caligraphic_N a Hilbert π’œ β€² superscript π’œ normal-β€² \mathcal{A}^{\prime} caligraphic_A start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT -bimodule. A covariant morphism from β„³ β„³ \mathcal{M} caligraphic_M into 𝒩 𝒩 \mathcal{N} caligraphic_N is a pair ( Ξ² , Ξ· ) 𝛽 πœ‚ (\beta,\eta) ( italic_Ξ² , italic_Ξ· ) , where Ξ² : β„³ β†’ 𝒩 normal-: 𝛽 normal-β†’ β„³ 𝒩 \beta:\mathcal{M}\rightarrow\mathcal{N} italic_Ξ² : caligraphic_M β†’ caligraphic_N is a Banach space map, Ξ· : π’œ β†’ π’œ β€² normal-: πœ‚ normal-β†’ π’œ superscript π’œ normal-β€² \eta:\mathcal{A}\rightarrow\mathcal{A}^{\prime} italic_Ξ· : caligraphic_A β†’ caligraphic_A start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT is a C*-algebra morphism, and the following properties are satisfied for a ∈ π’œ π‘Ž π’œ a\in\mathcal{A} italic_a ∈ caligraphic_A , ψ , ψ β€² ∈ β„³ πœ“ superscript πœ“ normal-β€² β„³ \psi,\psi^{\prime}\in\mathcal{M} italic_ψ , italic_ψ start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ∈ caligraphic_M :

Ξ² ( a ψ ) = Ξ· ( a ) Ξ² ( ψ ) , Ξ² ( ψ a ) = Ξ² ( ψ ) Ξ· ( a ) , ⟨ Ξ² ( ψ ) , Ξ² ( ψ β€² ) ⟩ = Ξ· ⟨ ψ , ψ β€² ⟩ . fragments Ξ² fragments ( a ψ ) Ξ· fragments ( a ) Ξ² fragments ( ψ ) italic- , Ξ² fragments ( ψ a ) Ξ² fragments ( ψ ) Ξ· fragments ( a ) italic- , fragments ⟨ Ξ² fragments ( ψ ) , Ξ² fragments ( superscript πœ“ β€² ) ⟩ Ξ· fragments ⟨ ψ , superscript πœ“ β€² ⟩ . \beta(a\psi)=\eta(a)\beta(\psi)\ \ ,\ \ \beta(\psi a)=\beta(\psi)\eta(a)\ \ ,% \ \ \left\langle\beta(\psi),\beta(\psi^{\prime})\right\rangle=\eta\left\langle% \psi,\psi^{\prime}\right\rangle\ . italic_Ξ² ( italic_a italic_ψ ) = italic_Ξ· ( italic_a ) italic_Ξ² ( italic_ψ ) , italic_Ξ² ( italic_ψ italic_a ) = italic_Ξ² ( italic_ψ ) italic_Ξ· ( italic_a ) , ⟨ italic_Ξ² ( italic_ψ ) , italic_Ξ² ( italic_ψ start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ) ⟩ = italic_Ξ· ⟨ italic_ψ , italic_ψ start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ⟩ .

Definition 2.2 .

Let G 𝐺 G italic_G be a (countable discrete) group. If there exists a mean f 𝑓 f italic_f on the algebra l ∞ ⁒ ( G - { e } ) superscript 𝑙 𝐺 𝑒 l^{\infty}(G-\{e\}) italic_l start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT ( italic_G - { italic_e } ) , invariant under the action

( g ⁒ f ) ⁒ ( h ) = f ⁒ ( g - 1 ⁒ h ) 𝑔 𝑓 β„Ž 𝑓 superscript 𝑔 1 β„Ž (gf)(h)=f(g^{-1}h) ( italic_g italic_f ) ( italic_h ) = italic_f ( italic_g start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT italic_h )

then G 𝐺 G italic_G is amenable. If the action is taken with respect to conjugation then G 𝐺 G italic_G is inner amenable.


Definition 1.1 .

A vector space J 𝐽 J italic_J over a field F 𝐹 F italic_F , endowed with a trilinear operation J Γ— J Γ— J β†’ J β†’ 𝐽 𝐽 𝐽 𝐽 J\times J\times J\rightarrow J italic_J Γ— italic_J Γ— italic_J β†’ italic_J , ( x , y , z ) ↦ x ⁒ y ⁒ z maps-to π‘₯ 𝑦 𝑧 π‘₯ 𝑦 𝑧 (x,y,z)\mapsto xyz ( italic_x , italic_y , italic_z ) ↦ italic_x italic_y italic_z , is said to be a generalized Jordan triple system (GJTS for short) if it satisfies the identity:

u ⁒ v ⁒ ( x ⁒ y ⁒ z ) = ( u ⁒ v ⁒ x ) ⁒ y ⁒ z - x ⁒ ( v ⁒ u ⁒ y ) ⁒ z + x ⁒ y ⁒ ( u ⁒ v ⁒ z ) 𝑒 𝑣 π‘₯ 𝑦 𝑧 𝑒 𝑣 π‘₯ 𝑦 𝑧 π‘₯ 𝑣 𝑒 𝑦 𝑧 π‘₯ 𝑦 𝑒 𝑣 𝑧 uv(xyz)=(uvx)yz-x(vuy)z+xy(uvz) italic_u italic_v ( italic_x italic_y italic_z ) = ( italic_u italic_v italic_x ) italic_y italic_z - italic_x ( italic_v italic_u italic_y ) italic_z + italic_x italic_y ( italic_u italic_v italic_z ) (1.2)

for any u , v , x , y , z ∈ J 𝑒 𝑣 π‘₯ 𝑦 𝑧 𝐽 u,v,x,y,z\in J italic_u , italic_v , italic_x , italic_y , italic_z ∈ italic_J .


Definition 4 .

Let ( V , ρ ) 𝑉 𝜌 (V,\rho) ( italic_V , italic_ρ ) and ( W , Οƒ ) π‘Š 𝜎 (W,\sigma) ( italic_W , italic_Οƒ ) be representations of the Hopf algebra A normal-A \mathrm{A} roman_A . A linear map f ∈ H ⁒ o ⁒ m ⁒ ( V , W ) 𝑓 𝐻 π‘œ π‘š 𝑉 π‘Š f\in Hom(V,W) italic_f ∈ italic_H italic_o italic_m ( italic_V , italic_W ) is a homomorphism of representations ( V , Ο€ ) 𝑉 πœ‹ (V,\pi) ( italic_V , italic_Ο€ ) and ( W , ρ ) π‘Š 𝜌 (W,\rho) ( italic_W , italic_ρ ) if

f ∘ Ο€ ⁒ ( a ) = ρ ⁒ ( a ) ∘ f . 𝑓 πœ‹ a 𝜌 a 𝑓 f\circ\pi(\mathrm{a})=\rho(\mathrm{a})\circ f. italic_f ∘ italic_Ο€ ( roman_a ) = italic_ρ ( roman_a ) ∘ italic_f .

for any a ∈ normal-a absent \mathrm{a}\in roman_a ∈ A. The Β subspace of the algebra homomorphisms will be denoted H ⁒ o ⁒ m A ⁒ ( V , W ) 𝐻 π‘œ subscript π‘š normal-A 𝑉 π‘Š Hom_{\mathrm{A}}(V,W) italic_H italic_o italic_m start_POSTSUBSCRIPT roman_A end_POSTSUBSCRIPT ( italic_V , italic_W ) .


Definition 4.5 .

For a ∈ β„‚ ⁒ ( q , t ) π‘Ž β„‚ π‘ž 𝑑 a\in\mathbb{C}(q,t) italic_a ∈ blackboard_C ( italic_q , italic_t ) , we denote by ΞΆ ⁒ ( a ) ∈ β„€ 𝜁 π‘Ž β„€ \zeta(a)\in\mathbb{Z} italic_ΞΆ ( italic_a ) ∈ blackboard_Z the multiplicity of factor 1 - t 2 ⁒ q 1 superscript 𝑑 2 π‘ž 1-t^{2}q 1 - italic_t start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_q in a π‘Ž a italic_a . Namely, we have

a = ( 1 - t 2 ⁒ q ) ΞΆ ⁒ ( a ) ⁒ a β€² , π‘Ž superscript 1 superscript 𝑑 2 π‘ž 𝜁 π‘Ž superscript π‘Ž β€² a=(1-t^{2}q)^{\zeta(a)}a^{\prime}, italic_a = ( 1 - italic_t start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_q ) start_POSTSUPERSCRIPT italic_ΞΆ ( italic_a ) end_POSTSUPERSCRIPT italic_a start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT , (39)

where the factor a β€² superscript π‘Ž β€² a^{\prime} italic_a start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT has neither pole nor zero at t 2 ⁒ q = 1 superscript 𝑑 2 π‘ž 1 t^{2}q=1 italic_t start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_q = 1 .


Definition 46 .

(Variable-idempotence.) A substitution Οƒ ∈ RSubst 𝜎 normal-RSubst \sigma\in\mathrm{RSubst} italic_Οƒ ∈ roman_RSubst is said to be (strongly) variable-idempotent if and only if for all t ∈ HTerms 𝑑 normal-HTerms t\in\mathord{\mathrm{HTerms}} italic_t ∈ roman_HTerms we have

vars ( t ⁒ Οƒ ⁒ Οƒ ) = vars ( t ⁒ Οƒ ) . vars 𝑑 𝜎 𝜎 vars 𝑑 𝜎 \mathop{\mathrm{vars}}\nolimits(t\sigma\sigma)=\mathop{\mathrm{vars}}\nolimits% (t\sigma). roman_vars ( italic_t italic_Οƒ italic_Οƒ ) = roman_vars ( italic_t italic_Οƒ ) .

The set of variable-idempotent substitutions is denoted VSubst normal-VSubst \mathrm{VSubst} roman_VSubst .