Definition 1

Under the PMC model, a syndrome σ 𝜎 \sigma italic_σ for system G 𝐺 G italic_G is defined as follows. For any two distinct nodes u 𝑢 u italic_u and v 𝑣 v italic_v with v N ( u ) 𝑣 𝑁 𝑢 v\in N(u) italic_v ∈ italic_N ( italic_u ) ,

σ ( u , v ) = { 0 , if v is tested by u to be fault-free ; 1 , if v is tested by u to be faulty . 𝜎 𝑢 𝑣 cases 0 if v is tested by u to be fault-free 1 if v is tested by u to be faulty \sigma(u,v)=\left\{\begin{array}[c]{ll}0,&\mbox{if $v$ is tested by $u$ to be % fault-free};\\ 1,&\mbox{if $v$ is tested by $u$ to be faulty}.\end{array}\right. italic_σ ( italic_u , italic_v ) = { start_ARRAY start_ROW start_CELL 0 , end_CELL start_CELL if italic_v is tested by italic_u to be fault-free ; end_CELL end_ROW start_ROW start_CELL 1 , end_CELL start_CELL if italic_v is tested by italic_u to be faulty . end_CELL end_ROW end_ARRAY
Definition 2

Under the MM* model, a syndrome σ 𝜎 \sigma italic_σ for system G 𝐺 G italic_G is defined as follows. For any three distinct nodes u 𝑢 u italic_u , v 𝑣 v italic_v and w 𝑤 w italic_w with u , v N ( w ) 𝑢 𝑣 𝑁 𝑤 u,v\in N(w) italic_u , italic_v ∈ italic_N ( italic_w ) ,

σ ( u , v ; w ) = { 0 , if the test results of u and v by w are identical ; 1 , if the test results of u and v by w are distinct . 𝜎 𝑢 𝑣 𝑤 cases 0 if the test results of u and v by w are identical 1 if the test results of u and v by w are distinct \sigma(u,v;w)=\left\{\begin{array}[c]{ll}0,&\mbox{if the test results of $u$ % and $v$ by $w$ are identical};\\ 1,&\mbox{if the test results of $u$ and $v$ by $w$ are distinct}.\end{array}\right. italic_σ ( italic_u , italic_v ; italic_w ) = { start_ARRAY start_ROW start_CELL 0 , end_CELL start_CELL if the test results of italic_u and italic_v by italic_w are identical ; end_CELL end_ROW start_ROW start_CELL 1 , end_CELL start_CELL if the test results of italic_u and italic_v by italic_w are distinct . end_CELL end_ROW end_ARRAY

Definition 4.1 .

Suppose that A 𝐴 A italic_A is a unital C * superscript 𝐶 C^{*} italic_C start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT -algebra, α 𝛼 \alpha italic_α is an endomorphism of A 𝐴 A italic_A and L 𝐿 L italic_L is a transfer operator for ( A , α ) 𝐴 𝛼 (A,\alpha) ( italic_A , italic_α ) . We say that L 𝐿 L italic_L is faithful on an ideal I 𝐼 I italic_I of A 𝐴 A italic_A if

a I and L ( a * a ) = 0 a = 0 ; 𝑎 𝐼 and 𝐿 superscript 𝑎 𝑎 0 𝑎 0 a\in I\mbox{ and }L(a^{*}a)=0\Longrightarrow a=0; italic_a ∈ italic_I and italic_L ( italic_a start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT italic_a ) = 0 ⟹ italic_a = 0 ;

we say that L 𝐿 L italic_L is almost faithful on I 𝐼 I italic_I if

a I and L ( ( a b ) * a b ) = 0 for all b A a = 0 . 𝑎 𝐼 and 𝐿 superscript 𝑎 𝑏 𝑎 𝑏 0 for all 𝑏 𝐴 𝑎 0 a\in I\mbox{ and }L({(ab)}^{*}ab)=0\text{ for all }b\in A\Longrightarrow a=0. italic_a ∈ italic_I and italic_L ( ( italic_a italic_b ) start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT italic_a italic_b ) = 0 for all italic_b ∈ italic_A ⟹ italic_a = 0 .

Definition 1.1 .

Let A 𝐴 A italic_A be a commutative k 𝑘 k italic_k -algebra where k 𝑘 k italic_k is a commutative ring. A ( k , A ) 𝑘 𝐴 (k,A) ( italic_k , italic_A ) -Lie-Rinehart algebra on A 𝐴 A italic_A is a k 𝑘 k italic_k -Lie algebra and an A 𝐴 A italic_A -module 𝔤 𝔤 \mathfrak{g} fraktur_g with a map α : 𝔤 Der k ( A ) : 𝛼 𝔤 subscript Der 𝑘 𝐴 \alpha:\mathfrak{g}\rightarrow\operatorname{Der}_{k}(A) italic_α : fraktur_g → roman_Der start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ( italic_A ) satisfying the following properties:

(1.1.1) α ( a δ ) = a α ( δ ) 𝛼 𝑎 𝛿 𝑎 𝛼 𝛿 \displaystyle\alpha(a\delta)=a\alpha(\delta) italic_α ( italic_a italic_δ ) = italic_a italic_α ( italic_δ )
(1.1.2) α ( [ δ , η ] ) = [ α ( δ ) , α ( η ) ] 𝛼 𝛿 𝜂 𝛼 𝛿 𝛼 𝜂 \displaystyle\alpha([\delta,\eta])=[\alpha(\delta),\alpha(\eta)] italic_α ( [ italic_δ , italic_η ] ) = [ italic_α ( italic_δ ) , italic_α ( italic_η ) ]
(1.1.3) [ δ , a η ] = a [ δ , η ] + α ( δ ) ( a ) η 𝛿 𝑎 𝜂 𝑎 𝛿 𝜂 𝛼 𝛿 𝑎 𝜂 \displaystyle[\delta,a\eta]=a[\delta,\eta]+\alpha(\delta)(a)\eta [ italic_δ , italic_a italic_η ] = italic_a [ italic_δ , italic_η ] + italic_α ( italic_δ ) ( italic_a ) italic_η

for all a A 𝑎 𝐴 a\in A italic_a ∈ italic_A and δ , η 𝔤 𝛿 𝜂 𝔤 \delta,\eta\in\mathfrak{g} italic_δ , italic_η ∈ fraktur_g . Let W 𝑊 W italic_W be an A 𝐴 A italic_A -module. A 𝔤 𝔤 \mathfrak{g} fraktur_g - connection \nabla on W 𝑊 W italic_W , is an A 𝐴 A italic_A -linear map : 𝔤 End k ( W ) : 𝔤 subscript End 𝑘 𝑊 \nabla:\mathfrak{g}\rightarrow\operatorname{End}_{k}(W) ∇ : fraktur_g → roman_End start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ( italic_W ) which satisfies the Leibniz-property , i.e.

( δ ) ( a w ) = a ( δ ) ( w ) + α ( δ ) ( a ) w 𝛿 𝑎 𝑤 𝑎 𝛿 𝑤 𝛼 𝛿 𝑎 𝑤 \nabla(\delta)(aw)=a\nabla(\delta)(w)+\alpha(\delta)(a)w ∇ ( italic_δ ) ( italic_a italic_w ) = italic_a ∇ ( italic_δ ) ( italic_w ) + italic_α ( italic_δ ) ( italic_a ) italic_w

for all a A 𝑎 𝐴 a\in A italic_a ∈ italic_A and w W 𝑤 𝑊 w\in W italic_w ∈ italic_W . The 𝔤 𝔤 \mathfrak{g} fraktur_g -connection \nabla is flat if it is a map of Lie algebras. If \nabla is flat, we say that the pair ( W , ) 𝑊 (W,\nabla) ( italic_W , ∇ ) is a 𝔤 𝔤 \mathfrak{g} fraktur_g -module .


Definition 3.3 .

For any e 𝑒 e italic_e , if we are given uniformly computable enumerations of { X n , s } n e , s < ω subscript subscript 𝑋 𝑛 𝑠 formulae-sequence 𝑛 𝑒 𝑠 𝜔 \{X_{n,s}\}_{n\leq e,s<\omega} { italic_X start_POSTSUBSCRIPT italic_n , italic_s end_POSTSUBSCRIPT } start_POSTSUBSCRIPT italic_n ≤ italic_e , italic_s < italic_ω end_POSTSUBSCRIPT and { Y n , s } n e , s < ω subscript subscript 𝑌 𝑛 𝑠 formulae-sequence 𝑛 𝑒 𝑠 𝜔 \{Y_{n,s}\}_{n\leq e,s<\omega} { italic_Y start_POSTSUBSCRIPT italic_n , italic_s end_POSTSUBSCRIPT } start_POSTSUBSCRIPT italic_n ≤ italic_e , italic_s < italic_ω end_POSTSUBSCRIPT of c.e. sets { X n } n e subscript subscript 𝑋 𝑛 𝑛 𝑒 \{X_{n}\}_{n\leq e} { italic_X start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT } start_POSTSUBSCRIPT italic_n ≤ italic_e end_POSTSUBSCRIPT and { Y n } n e subscript subscript 𝑌 𝑛 𝑛 𝑒 \{Y_{n}\}_{n\leq e} { italic_Y start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT } start_POSTSUBSCRIPT italic_n ≤ italic_e end_POSTSUBSCRIPT , define the full e 𝑒 e italic_e -state of x 𝑥 x italic_x at stage s 𝑠 s italic_s , ν ( e , x , s ) 𝜈 𝑒 𝑥 𝑠 \nu(e,x,s) italic_ν ( italic_e , italic_x , italic_s ) , with respect to (w.r.t.) { X n , s } n e , s < ω subscript subscript 𝑋 𝑛 𝑠 formulae-sequence 𝑛 𝑒 𝑠 𝜔 \{X_{n,s}\}_{n\leq e,s<\omega} { italic_X start_POSTSUBSCRIPT italic_n , italic_s end_POSTSUBSCRIPT } start_POSTSUBSCRIPT italic_n ≤ italic_e , italic_s < italic_ω end_POSTSUBSCRIPT and { Y n , s } n e , s < ω subscript subscript 𝑌 𝑛 𝑠 formulae-sequence 𝑛 𝑒 𝑠 𝜔 \{Y_{n,s}\}_{n\leq e,s<\omega} { italic_Y start_POSTSUBSCRIPT italic_n , italic_s end_POSTSUBSCRIPT } start_POSTSUBSCRIPT italic_n ≤ italic_e , italic_s < italic_ω end_POSTSUBSCRIPT to be the triple

ν ( e , x , s ) = e , σ ( e , x , s ) , τ ( e , x , s ) 𝜈 𝑒 𝑥 𝑠 𝑒 𝜎 𝑒 𝑥 𝑠 𝜏 𝑒 𝑥 𝑠 \nu(e,x,s)=\langle e,\sigma(e,x,s),\tau(e,x,s)\rangle italic_ν ( italic_e , italic_x , italic_s ) = ⟨ italic_e , italic_σ ( italic_e , italic_x , italic_s ) , italic_τ ( italic_e , italic_x , italic_s ) ⟩

where

σ ( e , x , s ) = { i e : x X i , s } 𝜎 𝑒 𝑥 𝑠 conditional-set 𝑖 𝑒 𝑥 subscript 𝑋 𝑖 𝑠 \sigma(e,x,s)=\{i\leq e:x\in X_{i,s}\} italic_σ ( italic_e , italic_x , italic_s ) = { italic_i ≤ italic_e : italic_x ∈ italic_X start_POSTSUBSCRIPT italic_i , italic_s end_POSTSUBSCRIPT }

and

τ ( e , x , s ) = { i e : x Y i , s } . 𝜏 𝑒 𝑥 𝑠 conditional-set 𝑖 𝑒 𝑥 subscript 𝑌 𝑖 𝑠 \tau(e,x,s)=\{i\leq e:x\in Y_{i,s}\}. italic_τ ( italic_e , italic_x , italic_s ) = { italic_i ≤ italic_e : italic_x ∈ italic_Y start_POSTSUBSCRIPT italic_i , italic_s end_POSTSUBSCRIPT } .
Definition 3.4 .

For any collection of c.e. sets { X n } n e subscript subscript 𝑋 𝑛 𝑛 𝑒 \{X_{n}\}_{n\leq e} { italic_X start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT } start_POSTSUBSCRIPT italic_n ≤ italic_e end_POSTSUBSCRIPT and { Y n } n e subscript subscript 𝑌 𝑛 𝑛 𝑒 \{Y_{n}\}_{n\leq e} { italic_Y start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT } start_POSTSUBSCRIPT italic_n ≤ italic_e end_POSTSUBSCRIPT , define the final e 𝑒 e italic_e -state of x 𝑥 x italic_x , ν ( e , x ) 𝜈 𝑒 𝑥 \nu(e,x) italic_ν ( italic_e , italic_x ) , w.r.t { X n } n e subscript subscript 𝑋 𝑛 𝑛 𝑒 \{X_{n}\}_{n\leq e} { italic_X start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT } start_POSTSUBSCRIPT italic_n ≤ italic_e end_POSTSUBSCRIPT and { Y n } n e subscript subscript 𝑌 𝑛 𝑛 𝑒 \{Y_{n}\}_{n\leq e} { italic_Y start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT } start_POSTSUBSCRIPT italic_n ≤ italic_e end_POSTSUBSCRIPT to be the triple

ν ( e , x ) = e , σ ( e , x ) , τ ( e , x ) 𝜈 𝑒 𝑥 𝑒 𝜎 𝑒 𝑥 𝜏 𝑒 𝑥 \nu(e,x)=\langle e,\sigma(e,x),\tau(e,x)\rangle italic_ν ( italic_e , italic_x ) = ⟨ italic_e , italic_σ ( italic_e , italic_x ) , italic_τ ( italic_e , italic_x ) ⟩

where

σ ( e , x ) = { i e : x X i } 𝜎 𝑒 𝑥 conditional-set 𝑖 𝑒 𝑥 subscript 𝑋 𝑖 \sigma(e,x)=\{i\leq e:x\in X_{i}\} italic_σ ( italic_e , italic_x ) = { italic_i ≤ italic_e : italic_x ∈ italic_X start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT }

and

τ ( e , x ) = { i e : x Y i } . 𝜏 𝑒 𝑥 conditional-set 𝑖 𝑒 𝑥 subscript 𝑌 𝑖 \tau(e,x)=\{i\leq e:x\in Y_{i}\}. italic_τ ( italic_e , italic_x ) = { italic_i ≤ italic_e : italic_x ∈ italic_Y start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT } .

Definition 1.1 (associative algebra A n subscript 𝐴 𝑛 A_{n} italic_A start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT , algebra of chord diagrams A ( X ) 𝐴 𝑋 A(X) italic_A ( italic_X ) ) .

(a) For each n 2 𝑛 2 n\geq 2 italic_n ≥ 2 , let the associative algebra A n subscript 𝐴 𝑛 A_{n} italic_A start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT over the field {\mathbb{C}} blackboard_C be generated by the symbols t i j = t j i superscript 𝑡 𝑖 𝑗 superscript 𝑡 𝑗 𝑖 t^{ij}=t^{ji} italic_t start_POSTSUPERSCRIPT italic_i italic_j end_POSTSUPERSCRIPT = italic_t start_POSTSUPERSCRIPT italic_j italic_i end_POSTSUPERSCRIPT with 1 i j n 1 𝑖 𝑗 𝑛 1\leq i\neq j\leq n 1 ≤ italic_i ≠ italic_j ≤ italic_n and the relations

[ t i j , t k l ] = 0 if i , j , k , l are pairwise disjoint , [ t i j , t j k + t k i ] = 0 if i , j , k are pairwise disjoint , formulae-sequence superscript 𝑡 𝑖 𝑗 superscript 𝑡 𝑘 𝑙 0 if 𝑖 𝑗 𝑘 𝑙 are pairwise disjoint superscript 𝑡 𝑖 𝑗 superscript 𝑡 𝑗 𝑘 superscript 𝑡 𝑘 𝑖 0 if 𝑖 𝑗 𝑘 are pairwise disjoint [t^{ij},t^{kl}]=0\mbox{ if }i,j,k,l\mbox{ are pairwise disjoint},\quad[t^{ij},% t^{jk}+t^{ki}]=0\mbox{ if }i,j,k\mbox{ are pairwise disjoint}, [ italic_t start_POSTSUPERSCRIPT italic_i italic_j end_POSTSUPERSCRIPT , italic_t start_POSTSUPERSCRIPT italic_k italic_l end_POSTSUPERSCRIPT ] = 0 if italic_i , italic_j , italic_k , italic_l are pairwise disjoint , [ italic_t start_POSTSUPERSCRIPT italic_i italic_j end_POSTSUPERSCRIPT , italic_t start_POSTSUPERSCRIPT italic_j italic_k end_POSTSUPERSCRIPT + italic_t start_POSTSUPERSCRIPT italic_k italic_i end_POSTSUPERSCRIPT ] = 0 if italic_i , italic_j , italic_k are pairwise disjoint ,

where the bracket [ , ] : A n A n A n fragments fragments [ , ] : subscript 𝐴 𝑛 direct-sum subscript 𝐴 𝑛 subscript 𝐴 𝑛 [\,,]:A_{n}\oplus A_{n}\to A_{n} [ , ] : italic_A start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ⊕ italic_A start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT → italic_A start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT is defined by [ a , b ] := a b - b a assign 𝑎 𝑏 𝑎 𝑏 𝑏 𝑎 [a,b]:=ab-ba [ italic_a , italic_b ] := italic_a italic_b - italic_b italic_a . Observe that the relations [ t i j , t j k + t k i ] = 0 superscript 𝑡 𝑖 𝑗 superscript 𝑡 𝑗 𝑘 superscript 𝑡 𝑘 𝑖 0 [t^{ij},t^{jk}+t^{ki}]=0 [ italic_t start_POSTSUPERSCRIPT italic_i italic_j end_POSTSUPERSCRIPT , italic_t start_POSTSUPERSCRIPT italic_j italic_k end_POSTSUPERSCRIPT + italic_t start_POSTSUPERSCRIPT italic_k italic_i end_POSTSUPERSCRIPT ] = 0 of A n subscript 𝐴 𝑛 A_{n} italic_A start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT are equivalent to

[ t i j , t j k ] = [ t j k , t k i ] = [ t k i , t i j ] for all pairwise disjoint i , j , k { 1 , , n } . formulae-sequence superscript 𝑡 𝑖 𝑗 superscript 𝑡 𝑗 𝑘 superscript 𝑡 𝑗 𝑘 superscript 𝑡 𝑘 𝑖 superscript 𝑡 𝑘 𝑖 superscript 𝑡 𝑖 𝑗 for all pairwise disjoint 𝑖 𝑗 𝑘 1 𝑛 [t^{ij},t^{jk}]=[t^{jk},t^{ki}]=[t^{ki},t^{ij}]\mbox{ for all pairwise % disjoint }i,j,k\in\{1,\ldots,n\}. [ italic_t start_POSTSUPERSCRIPT italic_i italic_j end_POSTSUPERSCRIPT , italic_t start_POSTSUPERSCRIPT italic_j italic_k end_POSTSUPERSCRIPT ] = [ italic_t start_POSTSUPERSCRIPT italic_j italic_k end_POSTSUPERSCRIPT , italic_t start_POSTSUPERSCRIPT italic_k italic_i end_POSTSUPERSCRIPT ] = [ italic_t start_POSTSUPERSCRIPT italic_k italic_i end_POSTSUPERSCRIPT , italic_t start_POSTSUPERSCRIPT italic_i italic_j end_POSTSUPERSCRIPT ] for all pairwise disjoint italic_i , italic_j , italic_k ∈ { 1 , … , italic_n } .

The associative algebra A n subscript 𝐴 𝑛 A_{n} italic_A start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT is graded by the degree defined by deg ( t i j ) = 1 degree superscript 𝑡 𝑖 𝑗 1 \deg(t^{ij})=1 roman_deg ( italic_t start_POSTSUPERSCRIPT italic_i italic_j end_POSTSUPERSCRIPT ) = 1 .

(b) Let us define the same object A n subscript 𝐴 𝑛 A_{n} italic_A start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT geometrically. Let X 𝑋 X italic_X be a 1-dimensional oriented compact manifold, possibly non-connected and with boundary. A chord diagram on X 𝑋 X italic_X is a collection of non-oriented dashed lines ( chords ) with endpoints on X 𝑋 X italic_X . Let A ( X ) 𝐴 𝑋 A(X) italic_A ( italic_X ) be the linear space generated by all chord diagrams on X 𝑋 X italic_X modulo the 4T relations :

- - - = = = - - -

The dotted arcs represent parts of the diagrams that are not shown in the figure. These parts are assumed to be the same in all four diagrams.

If X = X n 𝑋 subscript 𝑋 𝑛 X=X_{n} italic_X = italic_X start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT is the disjoint union of n 𝑛 n italic_n oriented segments ( strands ), then A ( X n ) 𝐴 subscript 𝑋 𝑛 A(X_{n}) italic_A ( italic_X start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) can be equipped with a natural product. If in the definition of A ( X n ) 𝐴 subscript 𝑋 𝑛 A(X_{n}) italic_A ( italic_X start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) one allows only horizontal chords with endpoints on n 𝑛 n italic_n vertical strands, then the resulting algebra A h o r ( X n ) superscript 𝐴 𝑜 𝑟 subscript 𝑋 𝑛 A^{hor}(X_{n}) italic_A start_POSTSUPERSCRIPT italic_h italic_o italic_r end_POSTSUPERSCRIPT ( italic_X start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) is isomorphic to the algebra A n subscript 𝐴 𝑛 A_{n} italic_A start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT . Indeed, thinking of t i j superscript 𝑡 𝑖 𝑗 t^{ij} italic_t start_POSTSUPERSCRIPT italic_i italic_j end_POSTSUPERSCRIPT as a horizontal chord connecting the i 𝑖 i italic_i th and j 𝑗 j italic_j th vertical strands, the relations between the t i j superscript 𝑡 𝑖 𝑗 t^{ij} italic_t start_POSTSUPERSCRIPT italic_i italic_j end_POSTSUPERSCRIPT become the 4T relations: [ t 12 , t 23 ] = superscript 𝑡 12 superscript 𝑡 23 absent [t^{12},t^{23}]= [ italic_t start_POSTSUPERSCRIPT 12 end_POSTSUPERSCRIPT , italic_t start_POSTSUPERSCRIPT 23 end_POSTSUPERSCRIPT ] = - - - = [ t 23 , t 13 ] = absent superscript 𝑡 23 superscript 𝑡 13 absent =[t^{23},t^{13}]= = [ italic_t start_POSTSUPERSCRIPT 23 end_POSTSUPERSCRIPT , italic_t start_POSTSUPERSCRIPT 13 end_POSTSUPERSCRIPT ] = - - - \blacksquare


Definition 32.1

[ 51 , p.122] Let U q ( s l 2 ) subscript 𝑈 𝑞 𝑠 subscript 𝑙 2 U_{q}(sl_{2}) italic_U start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ( italic_s italic_l start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) denote the unital associative 𝕂 𝕂 \mathbb{K} blackboard_K -algebra with generators e , f , k , k - 1 𝑒 𝑓 𝑘 superscript 𝑘 1 e,f,k,k^{-1} italic_e , italic_f , italic_k , italic_k start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT and relations

k k - 1 = k - 1 k = 1 , 𝑘 superscript 𝑘 1 superscript 𝑘 1 𝑘 1 \displaystyle kk^{-1}=k^{-1}k=1, italic_k italic_k start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT = italic_k start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT italic_k = 1 ,
k e = q 2 e k , k f = q - 2 f k , formulae-sequence 𝑘 𝑒 superscript 𝑞 2 𝑒 𝑘 𝑘 𝑓 superscript 𝑞 2 𝑓 𝑘 \displaystyle ke=q^{2}ek,\qquad\qquad kf=q^{-2}fk, italic_k italic_e = italic_q start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_e italic_k , italic_k italic_f = italic_q start_POSTSUPERSCRIPT - 2 end_POSTSUPERSCRIPT italic_f italic_k ,
e f - f e = k - k - 1 q - q - 1 . 𝑒 𝑓 𝑓 𝑒 𝑘 superscript 𝑘 1 𝑞 superscript 𝑞 1 \displaystyle ef-fe={{k-k^{-1}}\over{q-q^{-1}}}. italic_e italic_f - italic_f italic_e = divide start_ARG italic_k - italic_k start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT end_ARG start_ARG italic_q - italic_q start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT end_ARG .

Definition 1 .

Let δ 𝛿 \delta\in\mathbb{C} italic_δ ∈ blackboard_C be a complex number. 𝐓 𝐍 ( δ ) subscript 𝐓 𝐍 𝛿 \bf{T}_{N}(\delta) bold_T start_POSTSUBSCRIPT bold_N end_POSTSUBSCRIPT ( italic_δ ) is an associative \mathbb{C} blackboard_C -algebra spanned over \mathbb{C} blackboard_C by affine diagrams D ( N N ) fragments D fragments normal-( N normal-→ N normal-) D(N\rightarrow N) italic_D ( italic_N → italic_N ) with multiplication

α β = δ m ( α , β ) α β 𝛼 𝛽 superscript 𝛿 𝑚 𝛼 𝛽 𝛼 𝛽 \alpha\beta=\delta^{m(\alpha,\beta)}\alpha\circ\beta italic_α italic_β = italic_δ start_POSTSUPERSCRIPT italic_m ( italic_α , italic_β ) end_POSTSUPERSCRIPT italic_α ∘ italic_β

for α , β D ( N N ) fragments α normal-, β D fragments normal-( N normal-→ N normal-) \alpha,\beta\in D(N\rightarrow N) italic_α , italic_β ∈ italic_D ( italic_N → italic_N ) .