Definition 2.14 .

Given a 2 subscript 2 \mathbb{Z}_{2} blackboard_Z start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT -graded algebra A = A 0 ¯ A 1 ¯ 𝐴 direct-sum subscript 𝐴 ¯ 0 subscript 𝐴 ¯ 1 A=A_{\bar{0}}\oplus A_{\bar{1}} italic_A = italic_A start_POSTSUBSCRIPT ¯ start_ARG 0 end_ARG end_POSTSUBSCRIPT ⊕ italic_A start_POSTSUBSCRIPT ¯ start_ARG 1 end_ARG end_POSTSUBSCRIPT , (i.e., A ε A δ A ε + δ subscript 𝐴 𝜀 subscript 𝐴 𝛿 subscript 𝐴 𝜀 𝛿 A_{\varepsilon}\cdot A_{\delta}\subset A_{\varepsilon+\delta} italic_A start_POSTSUBSCRIPT italic_ε end_POSTSUBSCRIPT ⋅ italic_A start_POSTSUBSCRIPT italic_δ end_POSTSUBSCRIPT ⊂ italic_A start_POSTSUBSCRIPT italic_ε + italic_δ end_POSTSUBSCRIPT for any ε , δ 2 = / ( 2 ) = { 0 ¯ , 1 ¯ } 𝜀 𝛿 subscript 2 2 ¯ 0 ¯ 1 \varepsilon,\delta\in\mathbb{Z}_{2}=\mathbb{Z}/(2)=\{\overline{0},\overline{1}\} italic_ε , italic_δ ∈ blackboard_Z start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT = blackboard_Z / ( 2 ) = { ¯ start_ARG 0 end_ARG , ¯ start_ARG 1 end_ARG } ), we say that A 𝐴 A italic_A is a commutative superalgebra if

b a = ( - 1 ) ε δ a b 𝑏 𝑎 superscript 1 𝜀 𝛿 𝑎 𝑏 ba=(-1)^{\varepsilon\delta}ab italic_b italic_a = ( - 1 ) start_POSTSUPERSCRIPT italic_ε italic_δ end_POSTSUPERSCRIPT italic_a italic_b

for any a A ε 𝑎 subscript 𝐴 𝜀 a\in A_{\varepsilon} italic_a ∈ italic_A start_POSTSUBSCRIPT italic_ε end_POSTSUBSCRIPT and b A δ 𝑏 subscript 𝐴 𝛿 b\in A_{\delta} italic_b ∈ italic_A start_POSTSUBSCRIPT italic_δ end_POSTSUBSCRIPT , ε , δ 2 = { 0 ¯ , 1 ¯ } 𝜀 𝛿 subscript 2 ¯ 0 ¯ 1 \varepsilon,\delta\in\mathbb{Z}_{2}=\{\bar{0},\bar{1}\} italic_ε , italic_δ ∈ blackboard_Z start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT = { ¯ start_ARG 0 end_ARG , ¯ start_ARG 1 end_ARG } .

Definition 2.15 .

A bracketed superalgebra is a pair ( A , { , } ) 𝐴 (A,\{\cdot,\cdot\}) ( italic_A , { ⋅ , ⋅ } ) where A 𝐴 A italic_A is a commutative superalgebra and a bilinear map { , } : A × A A : 𝐴 𝐴 𝐴 \{\cdot,\cdot\}:A\times A\to A { ⋅ , ⋅ } : italic_A × italic_A → italic_A such that { A ε , A δ } A ε + δ subscript 𝐴 𝜀 subscript 𝐴 𝛿 subscript 𝐴 𝜀 𝛿 \{A_{\varepsilon},A_{\delta}\}\subset A_{\varepsilon+\delta} { italic_A start_POSTSUBSCRIPT italic_ε end_POSTSUBSCRIPT , italic_A start_POSTSUBSCRIPT italic_δ end_POSTSUBSCRIPT } ⊂ italic_A start_POSTSUBSCRIPT italic_ε + italic_δ end_POSTSUBSCRIPT for any ε , δ 2 𝜀 𝛿 subscript 2 \varepsilon,\delta\in\mathbb{Z}_{2} italic_ε , italic_δ ∈ blackboard_Z start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT and the following identities hold:

(i) super-anti-commutativity :

{ a , b } + ( - 1 ) ε δ { b , a } = 0 𝑎 𝑏 superscript 1 𝜀 𝛿 𝑏 𝑎 0 \{a,b\}+(-1)^{\varepsilon\delta}\{b,a\}=0 { italic_a , italic_b } + ( - 1 ) start_POSTSUPERSCRIPT italic_ε italic_δ end_POSTSUPERSCRIPT { italic_b , italic_a } = 0

for any a A ε , b A δ formulae-sequence 𝑎 subscript 𝐴 𝜀 𝑏 subscript 𝐴 𝛿 a\in A_{\varepsilon},b\in A_{\delta} italic_a ∈ italic_A start_POSTSUBSCRIPT italic_ε end_POSTSUBSCRIPT , italic_b ∈ italic_A start_POSTSUBSCRIPT italic_δ end_POSTSUBSCRIPT ,

(ii) the super-Leibniz rule

(2.4) { a , b c } = { a , b } c + ( - 1 ) ε δ b { a , c } 𝑎 𝑏 𝑐 𝑎 𝑏 𝑐 superscript 1 𝜀 𝛿 𝑏 𝑎 𝑐 \{a,bc\}=\{a,b\}c+(-1)^{\varepsilon\delta}b\{a,c\} { italic_a , italic_b italic_c } = { italic_a , italic_b } italic_c + ( - 1 ) start_POSTSUPERSCRIPT italic_ε italic_δ end_POSTSUPERSCRIPT italic_b { italic_a , italic_c }

for any a A ε , b A δ , c A γ formulae-sequence 𝑎 subscript 𝐴 𝜀 formulae-sequence 𝑏 subscript 𝐴 𝛿 𝑐 subscript 𝐴 𝛾 a\in A_{\varepsilon},b\in A_{\delta},c\in A_{\gamma} italic_a ∈ italic_A start_POSTSUBSCRIPT italic_ε end_POSTSUBSCRIPT , italic_b ∈ italic_A start_POSTSUBSCRIPT italic_δ end_POSTSUBSCRIPT , italic_c ∈ italic_A start_POSTSUBSCRIPT italic_γ end_POSTSUBSCRIPT .

If, in addition, the bracket satisfies

(iii) the super-Jacobi identity :

( - 1 ) ε γ { a , { b , c } } + ( - 1 ) γ δ { c , { a , b } } + ( - 1 ) δ ε { b , { c , a } } = 0 superscript 1 𝜀 𝛾 𝑎 𝑏 𝑐 superscript 1 𝛾 𝛿 𝑐 𝑎 𝑏 superscript 1 𝛿 𝜀 𝑏 𝑐 𝑎 0 (-1)^{\varepsilon\gamma}\{a,\{b,c\}\}+(-1)^{\gamma\delta}\{c,\{a,b\}\}+(-1)^{% \delta\varepsilon}\{b,\{c,a\}\}=0 ( - 1 ) start_POSTSUPERSCRIPT italic_ε italic_γ end_POSTSUPERSCRIPT { italic_a , { italic_b , italic_c } } + ( - 1 ) start_POSTSUPERSCRIPT italic_γ italic_δ end_POSTSUPERSCRIPT { italic_c , { italic_a , italic_b } } + ( - 1 ) start_POSTSUPERSCRIPT italic_δ italic_ε end_POSTSUPERSCRIPT { italic_b , { italic_c , italic_a } } = 0

for any a A ε , b A δ , c A γ formulae-sequence 𝑎 subscript 𝐴 𝜀 formulae-sequence 𝑏 subscript 𝐴 𝛿 𝑐 subscript 𝐴 𝛾 a\in A_{\varepsilon},b\in A_{\delta},c\in A_{\gamma} italic_a ∈ italic_A start_POSTSUBSCRIPT italic_ε end_POSTSUBSCRIPT , italic_b ∈ italic_A start_POSTSUBSCRIPT italic_δ end_POSTSUBSCRIPT , italic_c ∈ italic_A start_POSTSUBSCRIPT italic_γ end_POSTSUBSCRIPT , then we will refer to A 𝐴 A italic_A as a Poisson superalgebra and will refer to { , } \{\cdot,\cdot\} { ⋅ , ⋅ } as super-Poisson bracket .


Définition 2.2

Soit ( N , δ ) 𝑁 𝛿 (N,\delta) ( italic_N , italic_δ ) un espace de longueur de diamètre inférieur à π 𝜋 \pi italic_π , on appelle sinus produit tordu, l’espace de longueur ( ( 0 , π ) × N , d ) 0 𝜋 𝑁 𝑑 ((0,\pi)\times N,d) ( ( 0 , italic_π ) × italic_N , italic_d ) où la distance d 𝑑 d italic_d est définie pour ( t , x ) , ( s , y ) 𝑡 𝑥 𝑠 𝑦 (t,x),(s,y) ( italic_t , italic_x ) , ( italic_s , italic_y ) dans ( 0 , π ) × N 0 𝜋 𝑁 (0,\pi)\times N ( 0 , italic_π ) × italic_N , par

cos d ( ( t , x ) , ( s , y ) ) = cos s cos t + sin s sin t cos δ ( x , y ) . 𝑑 𝑡 𝑥 𝑠 𝑦 𝑠 𝑡 𝑠 𝑡 𝛿 𝑥 𝑦 \cos d((t,x),(s,y))=\cos s\cos t+\sin s\sin t\cos\delta(x,y). roman_cos italic_d ( ( italic_t , italic_x ) , ( italic_s , italic_y ) ) = roman_cos italic_s roman_cos italic_t + roman_sin italic_s roman_sin italic_t roman_cos italic_δ ( italic_x , italic_y ) . (11)

Definition 5.2.2

( The d superscript 𝑑 normal-′ d^{\prime} italic_d start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT and d ′′ superscript 𝑑 normal-′′ d^{\prime\prime} italic_d start_POSTSUPERSCRIPT ′ ′ end_POSTSUPERSCRIPT Laplacians )

d = - d ′′ , d ′′ = ( d ′′ ) = - d fragments superscript 𝑑 superscript 𝑑 ′′ , fragments superscript 𝑑 ′′ superscript fragments ( superscript 𝑑 ′′ ) superscript 𝑑 \framebox{$d^{\prime\star}=-\star d^{\prime\prime}\star,$}\qquad\framebox{$d^{% \prime\prime\star}=(d^{\prime\prime})^{\star}=-\star d^{\prime}\star$} start_ARG italic_d start_POSTSUPERSCRIPT ′ ⋆ end_POSTSUPERSCRIPT = - ⋆ italic_d start_POSTSUPERSCRIPT ′ ′ end_POSTSUPERSCRIPT ⋆ , end_ARG start_ARG italic_d start_POSTSUPERSCRIPT ′ ′ ⋆ end_POSTSUPERSCRIPT = ( italic_d start_POSTSUPERSCRIPT ′ ′ end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT ⋆ end_POSTSUPERSCRIPT = - ⋆ italic_d start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ⋆ end_ARG
Δ = d d + d d , Δ ′′ = d ′′ d ′′ + d ′′ d ′′ . fragments superscript Δ superscript 𝑑 superscript 𝑑 superscript 𝑑 superscript 𝑑 , fragments superscript Δ ′′ superscript 𝑑 ′′ superscript 𝑑 ′′ superscript 𝑑 ′′ superscript 𝑑 ′′ . \framebox{$\Delta^{\prime}=d^{\prime}d^{\prime\star}+d^{\prime\star}d^{\prime}% ,$}\qquad\framebox{$\Delta^{\prime\prime}=d^{\prime\prime}d^{\prime\prime\star% }+d^{\prime\prime\star}d^{\prime\prime}.$} start_ARG roman_Δ start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT = italic_d start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT italic_d start_POSTSUPERSCRIPT ′ ⋆ end_POSTSUPERSCRIPT + italic_d start_POSTSUPERSCRIPT ′ ⋆ end_POSTSUPERSCRIPT italic_d start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT , end_ARG start_ARG roman_Δ start_POSTSUPERSCRIPT ′ ′ end_POSTSUPERSCRIPT = italic_d start_POSTSUPERSCRIPT ′ ′ end_POSTSUPERSCRIPT italic_d start_POSTSUPERSCRIPT ′ ′ ⋆ end_POSTSUPERSCRIPT + italic_d start_POSTSUPERSCRIPT ′ ′ ⋆ end_POSTSUPERSCRIPT italic_d start_POSTSUPERSCRIPT ′ ′ end_POSTSUPERSCRIPT . end_ARG

Definition 3.3 .

Take λ Λ n 𝜆 subscript Λ 𝑛 \lambda\in\Lambda_{n} italic_λ ∈ roman_Λ start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT and μ Λ m 𝜇 subscript Λ 𝑚 \mu\in\Lambda_{m} italic_μ ∈ roman_Λ start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT with λ μ = 𝜆 𝜇 \lambda\cap\mu=\emptyset italic_λ ∩ italic_μ = ∅ . For t l ( λ ) 𝑡 𝑙 𝜆 t\in l(\lambda) italic_t ∈ italic_l ( italic_λ ) and s l ( μ ) 𝑠 𝑙 𝜇 s\in l(\mu) italic_s ∈ italic_l ( italic_μ ) , we define t s l ( λ μ ) 𝑡 𝑠 𝑙 𝜆 𝜇 ts\in l(\lambda\cup\mu) italic_t italic_s ∈ italic_l ( italic_λ ∪ italic_μ ) by

( t s ) ( i ) = { t ( i ) for i = 1 , , n s ( i - n ) for i = n + 1 , , n + m . 𝑡 𝑠 𝑖 cases 𝑡 𝑖 for i = 1 , , n 𝑠 𝑖 𝑛 for i = n + 1 , , n + m (ts)(i)=\begin{cases}t(i)&\text{for $i=1,\ldots,n$}\\ s(i-n)&\text{for $i=n+1,\ldots,n+m$}.\end{cases} ( italic_t italic_s ) ( italic_i ) = { start_ROW start_CELL italic_t ( italic_i ) end_CELL start_CELL for italic_i = 1 , … , italic_n end_CELL end_ROW start_ROW start_CELL italic_s ( italic_i - italic_n ) end_CELL start_CELL for italic_i = italic_n + 1 , … , italic_n + italic_m . end_CELL end_ROW

Definition 12 .

A family of diffeomorphisms ϕ ε : : superscript italic-ϕ 𝜀 \phi^{\varepsilon}:\mathcal{M}\rightarrow\mathcal{M} italic_ϕ start_POSTSUPERSCRIPT italic_ε end_POSTSUPERSCRIPT : caligraphic_M → caligraphic_M is called fiber-preserving if there exists a family of diffeomorphisms on the base space φ ε : : superscript 𝜑 𝜀 \varphi^{\varepsilon}:\mathcal{B}\rightarrow\mathcal{B} italic_φ start_POSTSUPERSCRIPT italic_ε end_POSTSUPERSCRIPT : caligraphic_B → caligraphic_B such that

π ϕ ε = φ ε π . 𝜋 superscript italic-ϕ 𝜀 superscript 𝜑 𝜀 𝜋 \pi\circ\phi^{\varepsilon}=\varphi^{\varepsilon}\circ\pi. italic_π ∘ italic_ϕ start_POSTSUPERSCRIPT italic_ε end_POSTSUPERSCRIPT = italic_φ start_POSTSUPERSCRIPT italic_ε end_POSTSUPERSCRIPT ∘ italic_π .

We say that ϕ ε superscript italic-ϕ 𝜀 \phi^{\varepsilon} italic_ϕ start_POSTSUPERSCRIPT italic_ε end_POSTSUPERSCRIPT is vertical whenever φ ε = 𝕀 superscript 𝜑 𝜀 𝕀 \varphi^{\varepsilon}=\mathbb{I} italic_φ start_POSTSUPERSCRIPT italic_ε end_POSTSUPERSCRIPT = blackboard_I for all ε 𝜀 \varepsilon italic_ε .


Definition 2.1 .

Let H 𝐻 H italic_H be a Lie group and G 𝐺 G italic_G a Lie subgroup of H 𝐻 H italic_H . Denote by 𝔥 𝔥 \mathfrak{h} fraktur_h the Lie algebra of H 𝐻 H italic_H and by 𝔤 𝔤 \mathfrak{g} fraktur_g the Lie algebra of G 𝐺 G italic_G . We shall say that G 𝐺 G italic_G is a reductive Lie subgroup of H 𝐻 H italic_H if there exists a direct sum decomposition

𝔥 = 𝔤 𝔪 , 𝔥 direct-sum 𝔤 𝔪 \mathfrak{h}=\mathfrak{g}\oplus\mathfrak{m}, fraktur_h = fraktur_g ⊕ fraktur_m ,

where 𝔪 𝔪 \mathfrak{m} fraktur_m is an Ad G subscript Ad 𝐺 \mathrm{Ad}_{G} roman_Ad start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT -invariant vector subspace of 𝔥 𝔥 \mathfrak{h} fraktur_h , i.e. Ad a ( 𝔪 ) 𝔪 subscript Ad 𝑎 𝔪 𝔪 \mathrm{Ad}_{a}(\mathfrak{m})\subset\mathfrak{m} roman_Ad start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT ( fraktur_m ) ⊂ fraktur_m for all a G 𝑎 𝐺 a\in G italic_a ∈ italic_G (which means that the Ad G subscript Ad 𝐺 \mathrm{Ad}_{G} roman_Ad start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT representation of G 𝐺 G italic_G in 𝔥 𝔥 \mathfrak{h} fraktur_h is reducible into a direct sum decomposition of two Ad G subscript Ad 𝐺 \mathrm{Ad}_{G} roman_Ad start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT -invariant vector spaces: cf. [ 23 ] , p. 83 83 83 83 ).

Definition 2.7 .

Let P ( M , G ) 𝑃 𝑀 𝐺 P(M,G) italic_P ( italic_M , italic_G ) be a principal bundle and ρ : Γ G : 𝜌 Γ 𝐺 \rho\colon\Gamma\to G italic_ρ : roman_Γ → italic_G a central homomorphism of a Lie group Γ Γ \Gamma roman_Γ onto G 𝐺 G italic_G , i.e. such that its kernel is discrete and contained in the centre of Γ Γ \Gamma roman_Γ [ 18 ] (see also [ 19 ] ). A Γ normal-Γ \Gamma roman_Γ -structure on P ( M , G ) 𝑃 𝑀 𝐺 P(M,G) italic_P ( italic_M , italic_G ) is a principal bundle map ζ : P ~ P : 𝜁 ~ 𝑃 𝑃 \zeta\colon\tilde{P}\to P italic_ζ : ~ start_ARG italic_P end_ARG → italic_P which is equivariant under the right actions of the structure groups, i.e.

ζ ( u ~ α ) = ζ ( u ~ ) ρ ( α ) 𝜁 ~ 𝑢 𝛼 𝜁 ~ 𝑢 𝜌 𝛼 \zeta(\tilde{u}\cdot\alpha)=\zeta(\tilde{u})\cdot\rho(\alpha) italic_ζ ( ~ start_ARG italic_u end_ARG ⋅ italic_α ) = italic_ζ ( ~ start_ARG italic_u end_ARG ) ⋅ italic_ρ ( italic_α )

for all u ~ P ~ ~ 𝑢 ~ 𝑃 \tilde{u}\in\tilde{P} ~ start_ARG italic_u end_ARG ∈ ~ start_ARG italic_P end_ARG and α Γ 𝛼 Γ \alpha\in\Gamma italic_α ∈ roman_Γ .


Definition 1.6 ( [ A ] ) .

A braided groupoid is a collection ( 𝒱 , , ) 𝒱 ({\mathcal{V}},\rightharpoonup,\leftharpoonup) ( caligraphic_V , ⇀ , ↼ ) where 𝒱 𝒫 𝒱 𝒫 {\mathcal{V}}\rightrightarrows{\mathcal{P}} caligraphic_V ⇉ caligraphic_P is a groupoid, ( 𝒱 , 𝒱 , , ) 𝒱 𝒱 ({\mathcal{V}},{\mathcal{V}},\rightharpoonup,\leftharpoonup) ( caligraphic_V , caligraphic_V , ⇀ , ↼ ) is a matched pair of groupoids and for every pair ( f , g ) 𝒱 𝔢 × 𝔰 𝒱 𝑓 𝑔 subscript 𝔰 subscript 𝒱 𝔢 𝒱 (f,g)\in{\mathcal{V}}_{\mathfrak{e}}\times_{\mathfrak{s}}{\mathcal{V}} ( italic_f , italic_g ) ∈ caligraphic_V start_POSTSUBSCRIPT fraktur_e end_POSTSUBSCRIPT × start_POSTSUBSCRIPT fraktur_s end_POSTSUBSCRIPT caligraphic_V the following equation holds:

(1.9) f g = ( f g ) ( f g ) . fragments f g fragments ( f g ) fragments ( f g ) . fg=(f\rightharpoonup g)(f\leftharpoonup g). italic_f italic_g = ( italic_f ⇀ italic_g ) ( italic_f ↼ italic_g ) .

Definition 3.3.1 .

Define the twisted powers π { m } superscript 𝜋 𝑚 \pi^{\{m\}} italic_π start_POSTSUPERSCRIPT { italic_m } end_POSTSUPERSCRIPT of π 𝜋 \pi italic_π by the two-way recurrence

π { 0 } = 1 , π { m + 1 } = ( π { m } ) σ π . formulae-sequence superscript 𝜋 0 1 superscript 𝜋 𝑚 1 superscript superscript 𝜋 𝑚 𝜎 𝜋 \pi^{\{0\}}=1,\qquad\pi^{\{m+1\}}=(\pi^{\{m\}})^{\sigma}\pi. italic_π start_POSTSUPERSCRIPT { 0 } end_POSTSUPERSCRIPT = 1 , italic_π start_POSTSUPERSCRIPT { italic_m + 1 } end_POSTSUPERSCRIPT = ( italic_π start_POSTSUPERSCRIPT { italic_m } end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT italic_σ end_POSTSUPERSCRIPT italic_π .