Definition 2.4

We say that two S 1 superscript 𝑆 1 S^{1} italic_S start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT -central extensions S 1 Γ ~ Γ M superscript 𝑆 1 ~ Γ Γ 𝑀 S^{1}\to{\widetilde{\Gamma}}\to\Gamma\rightrightarrows M italic_S start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT → ~ start_ARG roman_Γ end_ARG → roman_Γ ⇉ italic_M and S 1 Γ ~ Γ M superscript 𝑆 1 superscript ~ Γ superscript Γ superscript 𝑀 S^{1}\to{\widetilde{\Gamma}}^{\prime}\to\Gamma^{\prime}\rightrightarrows M^{\prime} italic_S start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT → ~ start_ARG roman_Γ end_ARG start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT → roman_Γ start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ⇉ italic_M start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT are Morita equivalent if there exists an S 1 superscript 𝑆 1 S^{1} italic_S start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT -equivariant Γ ~ subscript ~ Γ {\widetilde{\Gamma}}_{\scriptscriptstyle\bullet} ~ start_ARG roman_Γ end_ARG start_POSTSUBSCRIPT ∙ end_POSTSUBSCRIPT - Γ ~ subscript superscript ~ Γ {\widetilde{\Gamma}}^{\prime}_{\scriptscriptstyle\bullet} ~ start_ARG roman_Γ end_ARG start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT ∙ end_POSTSUBSCRIPT -bitorsor Z 𝑍 Z italic_Z , by which we mean that Z 𝑍 Z italic_Z is a Γ ~ subscript ~ Γ {\widetilde{\Gamma}}_{\scriptscriptstyle\bullet} ~ start_ARG roman_Γ end_ARG start_POSTSUBSCRIPT ∙ end_POSTSUBSCRIPT - Γ ~ subscript superscript ~ Γ {\widetilde{\Gamma}}^{\prime}_{\scriptscriptstyle\bullet} ~ start_ARG roman_Γ end_ARG start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT ∙ end_POSTSUBSCRIPT -bitorsor endowed with an S 1 superscript 𝑆 1 S^{1} italic_S start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT -action such that

( λ r ) z r = r ( λ z ) r = r z ( λ r ) 𝜆 𝑟 𝑧 superscript 𝑟 𝑟 𝜆 𝑧 superscript 𝑟 𝑟 𝑧 𝜆 superscript 𝑟 (\lambda r)\cdot z\cdot r^{\prime}=r\cdot(\lambda z)\cdot r^{\prime}=r\cdot z% \cdot(\lambda r^{\prime}) ( italic_λ italic_r ) ⋅ italic_z ⋅ italic_r start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT = italic_r ⋅ ( italic_λ italic_z ) ⋅ italic_r start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT = italic_r ⋅ italic_z ⋅ ( italic_λ italic_r start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT )

whenever ( λ , r , r , z ) S 1 × Γ ~ × Γ ~ × Z 𝜆 𝑟 superscript 𝑟 𝑧 superscript 𝑆 1 ~ Γ superscript ~ Γ 𝑍 (\lambda,r,r^{\prime},z)\in S^{1}\times{\widetilde{\Gamma}}\times{\widetilde{% \Gamma}}^{\prime}\times Z ( italic_λ , italic_r , italic_r start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT , italic_z ) ∈ italic_S start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT × ~ start_ARG roman_Γ end_ARG × ~ start_ARG roman_Γ end_ARG start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT × italic_Z and the products make sense.


Definition 2.1.3 .

A homotopy operator between two chain complexes f , g : X Y : 𝑓 𝑔 subscript 𝑋 subscript 𝑌 f,g:X_{\bullet}\rightarrow Y_{\bullet} italic_f , italic_g : italic_X start_POSTSUBSCRIPT ∙ end_POSTSUBSCRIPT → italic_Y start_POSTSUBSCRIPT ∙ end_POSTSUBSCRIPT is a linear map h : X Y + 1 : subscript 𝑋 subscript 𝑌 absent 1 h:X_{\bullet}\rightarrow Y_{\bullet+1} italic_h : italic_X start_POSTSUBSCRIPT ∙ end_POSTSUBSCRIPT → italic_Y start_POSTSUBSCRIPT ∙ + 1 end_POSTSUBSCRIPT such that

h + h = f - g . ( ) fragments h h f g . italic- fragments ( ) h\partial+\partial h=f-g.\quad(\star) italic_h ∂ + ∂ italic_h = italic_f - italic_g . ( ⋆ )

In that case, f 𝑓 f italic_f and g 𝑔 g italic_g are called chain homotopic and we denote it by f g similar-to-or-equals 𝑓 𝑔 f\simeq g italic_f ≃ italic_g .
Two chain maps f : X Y : 𝑓 subscript 𝑋 subscript 𝑌 f:X_{\bullet}\rightarrow Y_{\bullet} italic_f : italic_X start_POSTSUBSCRIPT ∙ end_POSTSUBSCRIPT → italic_Y start_POSTSUBSCRIPT ∙ end_POSTSUBSCRIPT and g : Y X : 𝑔 subscript 𝑌 subscript 𝑋 g:Y_{\bullet}\rightarrow X_{\bullet} italic_g : italic_Y start_POSTSUBSCRIPT ∙ end_POSTSUBSCRIPT → italic_X start_POSTSUBSCRIPT ∙ end_POSTSUBSCRIPT are called homotopy inverse if g f i d X similar-to-or-equals 𝑔 𝑓 𝑖 subscript 𝑑 𝑋 g\circ f\simeq id_{X} italic_g ∘ italic_f ≃ italic_i italic_d start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT and f g i d Y similar-to-or-equals 𝑓 𝑔 𝑖 subscript 𝑑 𝑌 f\circ g\simeq id_{Y} italic_f ∘ italic_g ≃ italic_i italic_d start_POSTSUBSCRIPT italic_Y end_POSTSUBSCRIPT are both homotopic to the identity. If f : X Y : 𝑓 subscript 𝑋 subscript 𝑌 f:X_{\bullet}\rightarrow Y_{\bullet} italic_f : italic_X start_POSTSUBSCRIPT ∙ end_POSTSUBSCRIPT → italic_Y start_POSTSUBSCRIPT ∙ end_POSTSUBSCRIPT admits a homotopy inverse, it is called a homotopy equivalence. In particular every homotopy equivalence is a quasi-isomorphism.


Definition 3.2 .

The Hodge star operator : Ω j ( M ) Ω n - j ( M ) fragments normal-⋆ normal-: superscript normal-Ω 𝑗 fragments normal-( M normal-) normal-→ superscript normal-Ω 𝑛 𝑗 fragments normal-( M normal-) \star:\Omega^{j}(M)\to\Omega^{n-j}(M) ⋆ : roman_Ω start_POSTSUPERSCRIPT italic_j end_POSTSUPERSCRIPT ( italic_M ) → roman_Ω start_POSTSUPERSCRIPT italic_n - italic_j end_POSTSUPERSCRIPT ( italic_M ) is defined by:

ω , η = ( ω , η ) . fragments fragments ω , η fragments ( ω , η ) . \langle\star\omega,\eta\rangle=(\omega,\eta). ⟨ ⋆ italic_ω , italic_η ⟩ = ( italic_ω , italic_η ) .
Definition 4.3 .

Let K 𝐾 K italic_K be a triangulation of an n 𝑛 n italic_n -dimensional manifold M 𝑀 M italic_M . The mesh η = η ( K ) 𝜂 𝜂 𝐾 \eta=\eta(K) italic_η = italic_η ( italic_K ) of a triangulation is:

η = sup r ( p , q ) , 𝜂 supremum 𝑟 𝑝 𝑞 \eta=\sup r(p,q), italic_η = roman_sup italic_r ( italic_p , italic_q ) ,

where r 𝑟 r italic_r means the geodesic distance in M 𝑀 M italic_M and the supremum is taken over all pairs of vertices p 𝑝 p italic_p , q 𝑞 q italic_q of a 1 1 1 1 -simplex in K 𝐾 K italic_K .

The fullness Θ = Θ ( K ) normal-Θ normal-Θ 𝐾 \Theta=\Theta(K) roman_Θ = roman_Θ ( italic_K ) of a triangulation K 𝐾 K italic_K is

Θ ( K ) = inf v o l ( σ ) η n , Θ 𝐾 infimum 𝑣 𝑜 𝑙 𝜎 superscript 𝜂 𝑛 \Theta(K)=\inf\frac{vol(\sigma)}{\eta^{n}}, roman_Θ ( italic_K ) = roman_inf divide start_ARG italic_v italic_o italic_l ( italic_σ ) end_ARG start_ARG italic_η start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT end_ARG ,

where the inf infimum \inf roman_inf is taken over all n 𝑛 n italic_n -simplexes σ 𝜎 \sigma italic_σ of K 𝐾 K italic_K and v o l ( σ ) 𝑣 𝑜 𝑙 𝜎 vol(\sigma) italic_v italic_o italic_l ( italic_σ ) is the Riemannian volume of σ 𝜎 \sigma italic_σ , as a Riemannian submanifold of M 𝑀 M italic_M .


Definition 1

A Cartan decomposition of 𝔤 𝔤 \mathfrak{g} fraktur_g is an orthogonal split of 𝔤 𝔤 \mathfrak{g} fraktur_g

𝔤 = 𝔨 𝔪 𝔤 direct-sum 𝔨 𝔪 \mathfrak{g=k\oplus m} fraktur_g = fraktur_k ⊕ fraktur_m

given by a Lie algebra pair ( 𝔤 , 𝔨 ) 𝔤 𝔨 \left(\mathfrak{g},\mathfrak{k}\right) ( fraktur_g , fraktur_k ) satisfying the commutation relations

[ 𝔨 , 𝔨 ] 𝔨 , 𝔨 𝔨 𝔨 \left[\mathfrak{k,k}\right]\subset\mathfrak{k}, [ fraktur_k , fraktur_k ] ⊂ fraktur_k , [ 𝔪 , 𝔨 ] 𝔪 , 𝔪 𝔨 𝔪 \left[\mathfrak{m},\mathfrak{k}\right]\subset\mathfrak{m}, [ fraktur_m , fraktur_k ] ⊂ fraktur_m , [ 𝔪 , 𝔪 ] 𝔨 . 𝔪 𝔪 𝔨 \left[\mathfrak{m},\mathfrak{m}\right]\subset\mathfrak{k.} [ fraktur_m , fraktur_m ] ⊂ fraktur_k .
(1)

In this case ( 𝔤 , 𝔨 ) 𝔤 𝔨 \left(\mathfrak{g},\mathfrak{k}\right) ( fraktur_g , fraktur_k ) is called a symmetric Lie algebra pair .


Definition 3.6 .

A linear mapping σ 𝜎 \sigma italic_σ is called a semi-endomorphism if

σ ( a σ ( b ) ) = σ ( a ) σ 2 ( b ) 𝜎 𝑎 𝜎 𝑏 𝜎 𝑎 superscript 𝜎 2 𝑏 \sigma(a\sigma(b))=\sigma(a)\sigma^{2}(b) italic_σ ( italic_a italic_σ ( italic_b ) ) = italic_σ ( italic_a ) italic_σ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_b )

and

σ ( a d ( b ) ) = σ ( a ) σ ( d ( b ) ) 𝜎 𝑎 𝑑 𝑏 𝜎 𝑎 𝜎 𝑑 𝑏 \sigma(ad(b))=\sigma(a)\sigma(d(b)) italic_σ ( italic_a italic_d ( italic_b ) ) = italic_σ ( italic_a ) italic_σ ( italic_d ( italic_b ) )

for all a , b 𝒟 𝑎 𝑏 𝒟 a,b\in{\mathcal{D}} italic_a , italic_b ∈ caligraphic_D . Obviously any endomorphism is semi-endomorphism.


Definition 5

A pp-space is a Riemannian spacetime whose metric can be written locally in the form

s 2 = 2 x 0 x 3 - ( x 1 ) 2 - ( x 2 ) 2 + f ( x 1 , x 2 , x 3 ) ( x 3 ) 2 differential-d superscript 𝑠 2 2 differential-d superscript 𝑥 0 differential-d superscript 𝑥 3 superscript differential-d superscript 𝑥 1 2 superscript differential-d superscript 𝑥 2 2 𝑓 superscript 𝑥 1 superscript 𝑥 2 superscript 𝑥 3 superscript differential-d superscript 𝑥 3 2 \rmd s^{2}=\,2\,\rmd x^{0}\,\rmd x^{3}-(\rmd x^{1})^{2}-(\rmd x^{2})^{2}+f(x^{% 1},x^{2},x^{3})\,(\rmd x^{3})^{2} roman_ⅆ italic_s start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT = 2 roman_ⅆ italic_x start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT roman_ⅆ italic_x start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT - ( roman_ⅆ italic_x start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - ( roman_ⅆ italic_x start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_f ( italic_x start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT , italic_x start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT , italic_x start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT ) ( roman_ⅆ italic_x start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT (10)

in some local coordinates ( x 0 , x 1 , x 2 , x 3 ) superscript 𝑥 0 superscript 𝑥 1 superscript 𝑥 2 superscript 𝑥 3 (x^{0},x^{1},x^{2},x^{3}) ( italic_x start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT , italic_x start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT , italic_x start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT , italic_x start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT ) .