Definition .

A function f : β„• β†’ β„‚ : 𝑓 β†’ β„• β„‚ f:\mathbb{N}\to\mathbb{C} italic_f : blackboard_N β†’ blackboard_C is called multiplicative if

f ⁒ ( m ⁒ n ) = f ⁒ ( m ) ⁒ f ⁒ ( n ) 𝑓 π‘š 𝑛 𝑓 π‘š 𝑓 𝑛 f(mn)=f(m)f(n) italic_f ( italic_m italic_n ) = italic_f ( italic_m ) italic_f ( italic_n )

whenever ( m , n ) = 1 π‘š 𝑛 1 (m,n)=1 ( italic_m , italic_n ) = 1 .


Definition 10

We call f ∈ π’œ 1 q ⁒ ( F ) \ { 0 } 𝑓 normal-\ superscript subscript π’œ 1 π‘ž 𝐹 0 f\in\mathcal{A}_{1}^{q}\left(F\right)\backslash\left\{0\right\} italic_f ∈ caligraphic_A start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_q end_POSTSUPERSCRIPT ( italic_F ) \ { 0 } a quadratic form if deg ⁑ ( f ) = 2 degree 𝑓 2 \deg\left(f\right)=2 roman_deg ( italic_f ) = 2 . Β In this case it can be written as in equation 4 for some a , b , c , d , e , k ∈ F π‘Ž 𝑏 𝑐 𝑑 𝑒 π‘˜ 𝐹 a,b,c,d,e,k\in F italic_a , italic_b , italic_c , italic_d , italic_e , italic_k ∈ italic_F with at least one of a , b , c π‘Ž 𝑏 𝑐 a,b,c italic_a , italic_b , italic_c nonzero.

f ⁒ ( x , y ) = a ⁒ x 2 + b ⁒ x ⁒ y + c ⁒ y 2 + d ⁒ x + e ⁒ y + k 𝑓 π‘₯ 𝑦 π‘Ž superscript π‘₯ 2 𝑏 π‘₯ 𝑦 𝑐 superscript 𝑦 2 𝑑 π‘₯ 𝑒 𝑦 π‘˜ f\left(x,y\right)=ax^{2}+bxy+cy^{2}+dx+ey+k italic_f ( italic_x , italic_y ) = italic_a italic_x start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_b italic_x italic_y + italic_c italic_y start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_d italic_x + italic_e italic_y + italic_k (4)

The quantum discriminant of f 𝑓 f italic_f is Ξ” q ⁒ ( f ) = b 2 - 4 ⁒ a ⁒ c ⁒ q subscript normal-Ξ” π‘ž 𝑓 superscript 𝑏 2 4 π‘Ž 𝑐 π‘ž \Delta_{q}\left(f\right)=b^{2}-4acq roman_Ξ” start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ( italic_f ) = italic_b start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - 4 italic_a italic_c italic_q .


Definition 3.6 .

For x ∈ ℝ π‘₯ ℝ x\in{\mathbb{R}} italic_x ∈ blackboard_R and m ∈ β„€ π‘š β„€ m\in{\mathbb{Z}} italic_m ∈ blackboard_Z , define

x ( m ) = 1 + m ⁒ x - ⌈ m ⁒ x βŒ‰ . superscript π‘₯ π‘š 1 π‘š π‘₯ π‘š π‘₯ x^{(m)}=1+mx-\lceil mx\rceil. italic_x start_POSTSUPERSCRIPT ( italic_m ) end_POSTSUPERSCRIPT = 1 + italic_m italic_x - ⌈ italic_m italic_x βŒ‰ .

Note that this operation induces a selfmap of the half-open interval ( 0 , 1 ] 0 1 (0,1] ( 0 , 1 ] . For x ∈ ℝ d π‘₯ superscript ℝ 𝑑 x\in{\mathbb{R}}^{d} italic_x ∈ blackboard_R start_POSTSUPERSCRIPT italic_d end_POSTSUPERSCRIPT and m ∈ β„€ π‘š β„€ m\in{\mathbb{Z}} italic_m ∈ blackboard_Z , define x ( m ) ∈ ℝ d superscript π‘₯ π‘š superscript ℝ 𝑑 x^{(m)}\in{\mathbb{R}}^{d} italic_x start_POSTSUPERSCRIPT ( italic_m ) end_POSTSUPERSCRIPT ∈ blackboard_R start_POSTSUPERSCRIPT italic_d end_POSTSUPERSCRIPT componentwise.


Definition 5.1 .

Let k π‘˜ k italic_k be a representative of the fundamental class ΞΊ πœ… \kappa italic_ΞΊ . The evaluation map ev ⁑ \co ⁒ P β†’ β„€ / 2 β†’ ev \co 𝑃 β„€ 2 \operatorname{ev}\co P\to\mathbb{Z}/2 roman_ev italic_P β†’ blackboard_Z / 2 is defined by

ev ⁑ ( p ) = ⟨ p , k ⟩ ev 𝑝 𝑝 π‘˜ \operatorname{ev}(p)=\langle p,k\rangle roman_ev ( italic_p ) = ⟨ italic_p , italic_k ⟩

on P 1 superscript 𝑃 1 P^{1} italic_P start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT and is extended to the rest of P 𝑃 P italic_P by 0 0 .

The cap product map Ο• ⁒ \co ⁒ P β†’ Q β†’ italic-Ο• \co 𝑃 𝑄 \phi\co P\to Q italic_Ο• italic_P β†’ italic_Q is defined by

Ο• = ( 1 βŠ— ev ) ⁒ Ξ¦ Q ⁒ P . italic-Ο• tensor-product 1 ev subscript Ξ¦ 𝑄 𝑃 \phi=(1\otimes\operatorname{ev})\Phi_{QP}. italic_Ο• = ( 1 βŠ— roman_ev ) roman_Ξ¦ start_POSTSUBSCRIPT italic_Q italic_P end_POSTSUBSCRIPT .

Definition 2.3 .

A homotopy operator between two chain complexes f , g : X βˆ™ β†’ Y βˆ™ : 𝑓 𝑔 β†’ subscript 𝑋 βˆ™ subscript π‘Œ βˆ™ f,g:X_{\bullet}\rightarrow Y_{\bullet} italic_f , italic_g : italic_X start_POSTSUBSCRIPT βˆ™ end_POSTSUBSCRIPT β†’ italic_Y start_POSTSUBSCRIPT βˆ™ end_POSTSUBSCRIPT is a linear map h : X βˆ™ β†’ Y βˆ™ + 1 : β„Ž β†’ subscript 𝑋 βˆ™ subscript π‘Œ βˆ™ absent 1 h:X_{\bullet}\rightarrow Y_{\bullet+1} italic_h : italic_X start_POSTSUBSCRIPT βˆ™ end_POSTSUBSCRIPT β†’ italic_Y start_POSTSUBSCRIPT βˆ™ + 1 end_POSTSUBSCRIPT such that

h βˆ‚ + βˆ‚ h = f - g . ( ⋆ ) fragments h h f g . italic- fragments ( ⋆ ) h\partial+\partial h=f-g.\quad(\star) italic_h βˆ‚ + βˆ‚ italic_h = italic_f - italic_g . ( ⋆ )

In that case, f 𝑓 f italic_f and g 𝑔 g italic_g are called chain homotopic and we denote it by f ≃ g similar-to-or-equals 𝑓 𝑔 f\simeq g italic_f ≃ italic_g .
Two chain maps f : X βˆ™ β†’ Y βˆ™ : 𝑓 β†’ subscript 𝑋 βˆ™ subscript π‘Œ βˆ™ f:X_{\bullet}\rightarrow Y_{\bullet} italic_f : italic_X start_POSTSUBSCRIPT βˆ™ end_POSTSUBSCRIPT β†’ italic_Y start_POSTSUBSCRIPT βˆ™ end_POSTSUBSCRIPT and g : Y βˆ™ β†’ X βˆ™ : 𝑔 β†’ subscript π‘Œ βˆ™ subscript 𝑋 βˆ™ g:Y_{\bullet}\rightarrow X_{\bullet} italic_g : italic_Y start_POSTSUBSCRIPT βˆ™ end_POSTSUBSCRIPT β†’ italic_X start_POSTSUBSCRIPT βˆ™ end_POSTSUBSCRIPT are called homotopy inverse if g ∘ f ≃ i ⁒ d X similar-to-or-equals 𝑔 𝑓 𝑖 subscript 𝑑 𝑋 g\circ f\simeq id_{X} italic_g ∘ italic_f ≃ italic_i italic_d start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT and f ∘ g ≃ i ⁒ d Y similar-to-or-equals 𝑓 𝑔 𝑖 subscript 𝑑 π‘Œ f\circ g\simeq id_{Y} italic_f ∘ italic_g ≃ italic_i italic_d start_POSTSUBSCRIPT italic_Y end_POSTSUBSCRIPT are both homotopic to the identity. If f : X βˆ™ β†’ Y βˆ™ : 𝑓 β†’ subscript 𝑋 βˆ™ subscript π‘Œ βˆ™ f:X_{\bullet}\rightarrow Y_{\bullet} italic_f : italic_X start_POSTSUBSCRIPT βˆ™ end_POSTSUBSCRIPT β†’ italic_Y start_POSTSUBSCRIPT βˆ™ end_POSTSUBSCRIPT admits a homotopy inverse, it is called a homotopy equivalence. In particular, every homotopy equivalence is a quasi-isomorphism.


Definition 3 .

Let H 𝐻 H italic_H be a group which is equipped with an involutive automorphism ΞΈ πœƒ \theta italic_ΞΈ and let g βˆ— := ΞΈ ⁒ ( g ) - 1 assign superscript 𝑔 normal-βˆ— πœƒ superscript 𝑔 1 g^{\ast}:=\theta(g)^{-1} italic_g start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT := italic_ΞΈ ( italic_g ) start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT . A βˆ— normal-βˆ— \ast βˆ— -representation of H 𝐻 H italic_H is a representation of H 𝐻 H italic_H given by operators Ο„ ⁒ ( g ) : V β†’ V normal-: 𝜏 𝑔 normal-β†’ 𝑉 𝑉 \tau(g):V\rightarrow V italic_Ο„ ( italic_g ) : italic_V β†’ italic_V where V 𝑉 V italic_V is a finite-dimensional real or complex vector space which is equipped with a nondegenerate bilinear or sesquilinear form ⟨ , ⟩ fragments normal-⟨ normal-, normal-⟩ \langle\,,\,\rangle ⟨ , ⟩ such that

⟨ v , Ο„ ⁒ ( g ) ⁒ w ⟩ = ⟨ Ο„ ⁒ ( g βˆ— ) ⁒ v , w ⟩ . 𝑣 𝜏 𝑔 𝑀 𝜏 superscript 𝑔 βˆ— 𝑣 𝑀 \langle v,\tau(g)w\rangle=\langle\tau(g^{\ast})v,w\rangle. ⟨ italic_v , italic_Ο„ ( italic_g ) italic_w ⟩ = ⟨ italic_Ο„ ( italic_g start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ) italic_v , italic_w ⟩ . (2.39)

Definition 1 (from [ 17 ] )

A Boolean algebra ( B ; ∧ , ∨ , Β¬ , 0 , 1 ) 𝐡 0 1 (B;\wedge,\vee,\lnot,0,1) ( italic_B ; ∧ , ∨ , Β¬ , 0 , 1 ) is a set B 𝐡 B italic_B , together with operations on the set which satisfy certain laws. We will denote the operations by β€˜ ∧ \wedge ∧ ’, β€˜ ∨ \vee ∨ ’, and β€˜ Β¬ \lnot Β¬ ’ and they will be called β€˜meet’, β€˜join’ and β€˜complement’ respectively. There are two distinguished and distinct elements of B 𝐡 B italic_B , denoted by 0 0 and 1 1 1 1 that are subject to the following laws.

  1. 1.

    Idempotence: a ∧ a = a , π‘Ž π‘Ž π‘Ž a\wedge a=a, italic_a ∧ italic_a = italic_a , and a ∨ a = a . π‘Ž π‘Ž π‘Ž a\vee a=a. italic_a ∨ italic_a = italic_a .

  2. 2.

    Complement laws: a ∨ Β¬ ⁒ a = 1 , π‘Ž π‘Ž 1 a\vee\lnot a=1, italic_a ∨ Β¬ italic_a = 1 , a ∧ Β¬ ⁒ a = 0 , π‘Ž π‘Ž 0 a\wedge\lnot a=0, italic_a ∧ Β¬ italic_a = 0 , and Β¬ ⁒ Β¬ ⁒ a = a . π‘Ž π‘Ž \lnot\lnot a=a. Β¬ Β¬ italic_a = italic_a .

  3. 3.

    Commutativity: a ∧ b = b ∧ a , π‘Ž 𝑏 𝑏 π‘Ž a\wedge b=b\wedge a, italic_a ∧ italic_b = italic_b ∧ italic_a , and a ∨ b = b ∨ a . π‘Ž 𝑏 𝑏 π‘Ž a\vee b=b\vee a. italic_a ∨ italic_b = italic_b ∨ italic_a .

  4. 4.

    Associativity: a ∧ ( b ∧ c ) = ( a ∧ b ) ∧ c , π‘Ž 𝑏 𝑐 π‘Ž 𝑏 𝑐 a\wedge(b\wedge c)=(a\wedge b)\wedge c, italic_a ∧ ( italic_b ∧ italic_c ) = ( italic_a ∧ italic_b ) ∧ italic_c , and a ∨ ( b ∨ c ) = ( a ∨ b ) ∨ c . π‘Ž 𝑏 𝑐 π‘Ž 𝑏 𝑐 a\vee(b\vee c)=(a\vee b)\vee c. italic_a ∨ ( italic_b ∨ italic_c ) = ( italic_a ∨ italic_b ) ∨ italic_c .

  5. 5.

    Distributivity: a ∧ ( b ∨ c ) = ( a ∧ b ) ∨ ( a ∧ c ) , π‘Ž 𝑏 𝑐 π‘Ž 𝑏 π‘Ž 𝑐 a\wedge(b\vee c)=(a\wedge b)\vee(a\wedge c), italic_a ∧ ( italic_b ∨ italic_c ) = ( italic_a ∧ italic_b ) ∨ ( italic_a ∧ italic_c ) , and a ∨ ( b ∧ c ) = ( a ∨ b ) ∧ ( a ∨ c ) . π‘Ž 𝑏 𝑐 π‘Ž 𝑏 π‘Ž 𝑐 a\vee(b\wedge c)=(a\vee b)\wedge(a\vee c). italic_a ∨ ( italic_b ∧ italic_c ) = ( italic_a ∨ italic_b ) ∧ ( italic_a ∨ italic_c ) .

  6. 6.

    Property of 1: a ∧ 1 = a . π‘Ž 1 π‘Ž a\wedge 1=a. italic_a ∧ 1 = italic_a .

  7. 7.

    Property of 0: a ∨ 0 = a . π‘Ž 0 π‘Ž a\vee 0=a. italic_a ∨ 0 = italic_a .

  8. 8.

    De Morgan’s laws: Β¬ ⁑ ( a ∧ b ) = Β¬ ⁒ a ∨ Β¬ ⁒ b , π‘Ž 𝑏 π‘Ž 𝑏 \lnot(a\wedge b)=\lnot a\vee\lnot b, Β¬ ( italic_a ∧ italic_b ) = Β¬ italic_a ∨ Β¬ italic_b , and Β¬ ⁑ ( a ∨ b ) = Β¬ ⁒ a ∧ Β¬ ⁒ b . π‘Ž 𝑏 π‘Ž 𝑏 \lnot(a\vee b)=\lnot a\wedge\lnot b. Β¬ ( italic_a ∨ italic_b ) = Β¬ italic_a ∧ Β¬ italic_b .

Definition 6 (from [ 6 ] )

Let L 𝐿 L italic_L be a lattice. The elements a , b , c ∈ L π‘Ž 𝑏 𝑐 𝐿 a,b,c\in L italic_a , italic_b , italic_c ∈ italic_L form a distributive triple if

  1. 1.

    a ∧ ( b ∨ c ) = ( a ∧ b ) ∨ ( a ∧ c ) π‘Ž 𝑏 𝑐 π‘Ž 𝑏 π‘Ž 𝑐 a\wedge(b\vee c)=(a\wedge b)\vee(a\wedge c) italic_a ∧ ( italic_b ∨ italic_c ) = ( italic_a ∧ italic_b ) ∨ ( italic_a ∧ italic_c )

  2. 2.

    a ∨ ( b ∧ c ) = ( a ∨ b ) ∧ ( a ∨ c ) π‘Ž 𝑏 𝑐 π‘Ž 𝑏 π‘Ž 𝑐 a\vee(b\wedge c)=(a\vee b)\wedge(a\vee c) italic_a ∨ ( italic_b ∧ italic_c ) = ( italic_a ∨ italic_b ) ∧ ( italic_a ∨ italic_c )

with the other four equalities being obtained by cyclical permutation of a π‘Ž a italic_a , b 𝑏 b italic_b and c 𝑐 c italic_c .


2.5 Definition .

Suppose that Οƒ 𝜎 \sigma italic_Οƒ is a reflection on a lattice L 𝐿 L italic_L . A strict marking for Οƒ 𝜎 \sigma italic_Οƒ is a pair ( b , Ξ² ) 𝑏 𝛽 (b,\beta) ( italic_b , italic_Ξ² ) , where b ∈ L 𝑏 𝐿 b\in L italic_b ∈ italic_L and Ξ² ⁒ \co ⁒ L β†’ β„€ β†’ 𝛽 \co 𝐿 β„€ \beta\co L\to\mathbb{Z} italic_Ξ² italic_L β†’ blackboard_Z is a homomorphism such that for any x ∈ L π‘₯ 𝐿 x\in L italic_x ∈ italic_L

Οƒ ⁒ ( x ) = x + Ξ² ⁒ ( x ) ⁒ b . 𝜎 π‘₯ π‘₯ 𝛽 π‘₯ 𝑏 \sigma(x)=x+\beta(x)b. italic_Οƒ ( italic_x ) = italic_x + italic_Ξ² ( italic_x ) italic_b . (2.6)

Two strict markings ( b , Ξ² ) 𝑏 𝛽 (b,\beta) ( italic_b , italic_Ξ² ) and ( b β€² , Ξ² β€² ) superscript 𝑏 β€² superscript 𝛽 β€² (b^{\prime},\beta^{\prime}) ( italic_b start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT , italic_Ξ² start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ) are equivalent if ( b , Ξ² ) = Β± ( b β€² , Ξ² β€² ) 𝑏 𝛽 plus-or-minus superscript 𝑏 β€² superscript 𝛽 β€² (b,\beta)=\pm(b^{\prime},\beta^{\prime}) ( italic_b , italic_Ξ² ) = Β± ( italic_b start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT , italic_Ξ² start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ) . A marking for Οƒ 𝜎 \sigma italic_Οƒ is an equivalence class of strict markings.