Definition 5 .

A Schrödinger representation of the Weyl algebra is a representation on a space of functions ψ : normal-: 𝜓 normal-→ \psi:\mathbbm{R}\rightarrow\mathbbm{C} italic_ψ : blackboard_R → blackboard_C , with the position operator q 𝑞 q italic_q and momentum operator p 𝑝 p italic_p represented as

(12) p ψ ( x ) = - i ψ ( x ) a n d q ψ ( x ) = x ψ ( x ) 𝑝 𝜓 𝑥 𝑖 superscript 𝜓 𝑥 𝑎 𝑛 𝑑 𝑞 𝜓 𝑥 𝑥 𝜓 𝑥 \begin{array}[]{lll}p\psi(x)=-i\psi^{\prime}(x)&and&q\psi(x)=x\cdot\psi(x)\end% {array} start_ARRAY start_ROW start_CELL italic_p italic_ψ ( italic_x ) = - italic_i italic_ψ start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( italic_x ) end_CELL start_CELL italic_a italic_n italic_d end_CELL start_CELL italic_q italic_ψ ( italic_x ) = italic_x ⋅ italic_ψ ( italic_x ) end_CELL end_ROW end_ARRAY

Definition .

Let f L t 2 C k ( Σ d ) 𝑓 subscript superscript 𝐿 2 𝑡 superscript 𝐶 𝑘 subscript Σ 𝑑 f\in L^{2}_{t}C^{k}(\Sigma_{d}) italic_f ∈ italic_L start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT italic_C start_POSTSUPERSCRIPT italic_k end_POSTSUPERSCRIPT ( roman_Σ start_POSTSUBSCRIPT italic_d end_POSTSUBSCRIPT ) , σ Σ s t ( k ) 𝜎 superscript subscript Σ 𝑠 𝑡 𝑘 \sigma\in\Sigma_{st}^{(k)} italic_σ ∈ roman_Σ start_POSTSUBSCRIPT italic_s italic_t end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( italic_k ) end_POSTSUPERSCRIPT .

(1) \qua If there exists α Σ d ( k ) delimited-⟨⟩ 𝛼 superscript subscript Σ 𝑑 𝑘 \langle\alpha\rangle\in\Sigma_{d}^{(k)} ⟨ italic_α ⟩ ∈ roman_Σ start_POSTSUBSCRIPT italic_d end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( italic_k ) end_POSTSUPERSCRIPT such that σ α 𝜎 delimited-⟨⟩ 𝛼 \sigma\subseteq\langle\alpha\rangle italic_σ ⊆ ⟨ italic_α ⟩ (there is at most one such α delimited-⟨⟩ 𝛼 \langle\alpha\rangle ⟨ italic_α ⟩ ), then

θ f ( σ ) = ( - 1 ) d ( σ ) t d ( α ) - d ( σ ) f ( α ) . 𝜃 𝑓 𝜎 superscript 1 𝑑 𝜎 superscript 𝑡 𝑑 delimited-⟨⟩ 𝛼 𝑑 𝜎 𝑓 delimited-⟨⟩ 𝛼 \theta\!f(\sigma)=(-1)^{d(\sigma)}t^{d(\langle\alpha\rangle)-d(\sigma)}f(% \langle\alpha\rangle). italic_θ italic_f ( italic_σ ) = ( - 1 ) start_POSTSUPERSCRIPT italic_d ( italic_σ ) end_POSTSUPERSCRIPT italic_t start_POSTSUPERSCRIPT italic_d ( ⟨ italic_α ⟩ ) - italic_d ( italic_σ ) end_POSTSUPERSCRIPT italic_f ( ⟨ italic_α ⟩ ) .

(2) \qua If there is no α delimited-⟨⟩ 𝛼 \langle\alpha\rangle ⟨ italic_α ⟩ as in (1), we put θ f ( σ ) = 0 𝜃 𝑓 𝜎 0 \theta\!f(\sigma)=0 italic_θ italic_f ( italic_σ ) = 0 .


Definition 6.29 .

Given U × U 𝑈 𝑈 U\times U italic_U × italic_U -variety 𝐗 𝐗 {\bf X} bold_X , subgroups U , U ′′ U superscript 𝑈 superscript 𝑈 ′′ 𝑈 U^{\prime},U^{\prime\prime}\subset U italic_U start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT , italic_U start_POSTSUPERSCRIPT ′ ′ end_POSTSUPERSCRIPT ⊂ italic_U , and a character χ : U 𝔸 1 : 𝜒 𝑈 superscript 𝔸 1 \chi:U\to\mathbb{A}^{1} italic_χ : italic_U → blackboard_A start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT , we say that a regular function f : X 𝔸 1 : 𝑓 𝑋 superscript 𝔸 1 f:X\to\mathbb{A}^{1} italic_f : italic_X → blackboard_A start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT is ( U × U ′′ , χ ) superscript 𝑈 superscript 𝑈 ′′ 𝜒 (U^{\prime}\times U^{\prime\prime},\chi) ( italic_U start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT × italic_U start_POSTSUPERSCRIPT ′ ′ end_POSTSUPERSCRIPT , italic_χ ) - linear if

f ( u x u ′′ ) = χ ( u ) + f ( x ) + χ ( u ′′ ) 𝑓 superscript 𝑢 𝑥 superscript 𝑢 ′′ 𝜒 superscript 𝑢 𝑓 𝑥 𝜒 superscript 𝑢 ′′ f(u^{\prime}xu^{\prime\prime})=\chi(u^{\prime})+f(x)+\chi(u^{\prime\prime}) italic_f ( italic_u start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT italic_x italic_u start_POSTSUPERSCRIPT ′ ′ end_POSTSUPERSCRIPT ) = italic_χ ( italic_u start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) + italic_f ( italic_x ) + italic_χ ( italic_u start_POSTSUPERSCRIPT ′ ′ end_POSTSUPERSCRIPT )

for all u U superscript 𝑢 superscript 𝑈 u^{\prime}\in U^{\prime} italic_u start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ∈ italic_U start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT , u ′′ U ′′ superscript 𝑢 ′′ superscript 𝑈 ′′ u^{\prime\prime}\in U^{\prime\prime} italic_u start_POSTSUPERSCRIPT ′ ′ end_POSTSUPERSCRIPT ∈ italic_U start_POSTSUPERSCRIPT ′ ′ end_POSTSUPERSCRIPT , x X 𝑥 𝑋 x\in X italic_x ∈ italic_X . In particular, we refer to each ( e × U , χ ) 𝑒 𝑈 𝜒 (e\times U,\chi) ( italic_e × italic_U , italic_χ ) -linear (resp. ( U × e , χ ) 𝑈 𝑒 𝜒 (U\times e,\chi) ( italic_U × italic_e , italic_χ ) -linear) function f 𝑓 f italic_f as a right ( U , χ ) 𝑈 𝜒 (U,\chi) ( italic_U , italic_χ ) -linear (resp. left ( U , χ ) 𝑈 𝜒 (U,\chi) ( italic_U , italic_χ ) -linear ) function.

Definition 7.5 .

Given a commutative \mathbb{C} blackboard_C -algebra 𝒜 𝒜 {\mathcal{A}} caligraphic_A without zero divisors and a totally ordered free abelian group Γ Γ \Gamma roman_Γ , a map ν : 𝒜 { 0 } Γ : 𝜈 𝒜 0 Γ \nu:{\mathcal{A}}\setminus\{0\}\to\Gamma italic_ν : caligraphic_A ∖ { 0 } → roman_Γ is said to be a valuation if

ν ( x y ) = ν ( x ) + ν ( y ) 𝜈 𝑥 𝑦 𝜈 𝑥 𝜈 𝑦 \nu(xy)=\nu(x)+\nu(y) italic_ν ( italic_x italic_y ) = italic_ν ( italic_x ) + italic_ν ( italic_y )

for all x , y 𝒜 { 0 } 𝑥 𝑦 𝒜 0 x,y\in{\mathcal{A}}\setminus\{0\} italic_x , italic_y ∈ caligraphic_A ∖ { 0 } ,

ν ( x + y ) = min ( ν ( x ) , ν ( y ) ) 𝜈 𝑥 𝑦 𝜈 𝑥 𝜈 𝑦 \nu(x+y)=\min(\nu(x),\nu(y)) italic_ν ( italic_x + italic_y ) = roman_min ( italic_ν ( italic_x ) , italic_ν ( italic_y ) )

for any x , y 𝒜 { 0 } 𝑥 𝑦 𝒜 0 x,y\in{\mathcal{A}}\setminus\{0\} italic_x , italic_y ∈ caligraphic_A ∖ { 0 } such that ν ( x ) ν ( y ) 𝜈 𝑥 𝜈 𝑦 \nu(x)\neq\nu(y) italic_ν ( italic_x ) ≠ italic_ν ( italic_y ) (we use the convention that ν ( 0 ) = + 𝜈 0 \nu(0)=+\infty italic_ν ( 0 ) = + ∞ , where + +\infty + ∞ is greater than any element of Γ Γ \Gamma roman_Γ ).

We say that ν 𝜈 \nu italic_ν is saturated if for each λ ν ( 𝒜 { 0 } ) , 𝜆 𝜈 𝒜 0 \lambda\in\nu({\mathcal{A}}\setminus\{0\}), italic_λ ∈ italic_ν ( caligraphic_A ∖ { 0 } ) , the entire “half-line” 0 λ Γ subscript absent 0 𝜆 Γ \mathbb{Q}_{\geq 0}\cdot\lambda\cap\Gamma blackboard_Q start_POSTSUBSCRIPT ≥ 0 end_POSTSUBSCRIPT ⋅ italic_λ ∩ roman_Γ also belongs to the semi-group ν ( 𝒜 { 0 } ) 𝜈 𝒜 0 \nu({\mathcal{A}}\setminus\{0\}) italic_ν ( caligraphic_A ∖ { 0 } ) .)


Definition 8

A triangular r 𝑟 r italic_r -matrix of a Lie algebra 𝔤 𝔤 {\mathfrak{g}} fraktur_g is an element r 2 𝔤 𝑟 superscript 2 𝔤 r\in\wedge^{2}{\mathfrak{g}} italic_r ∈ ∧ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT fraktur_g such that

[ r , r ] = 0 . 𝑟 𝑟 0 [r,r]=0. [ italic_r , italic_r ] = 0 . (14)

Definition 4.6

We define U λ ( 𝐡𝐞𝐢𝐬 ) subscript 𝑈 𝜆 𝐡𝐞𝐢𝐬 U_{\lambda}({\bf heis}) italic_U start_POSTSUBSCRIPT italic_λ end_POSTSUBSCRIPT ( bold_heis ) to be the Hopf subalgebra of U CM λ superscript subscript 𝑈 normal-CM 𝜆 U_{\mathrm{CM}}^{\lambda} italic_U start_POSTSUBSCRIPT roman_CM end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_λ end_POSTSUPERSCRIPT generated by z := z 2 assign 𝑧 subscript 𝑧 2 z:={z_{2}} italic_z := italic_z start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , α 𝛼 \alpha italic_α , β 𝛽 \beta italic_β . The presentation of U λ ( 𝐡𝐞𝐢𝐬 ) subscript 𝑈 𝜆 𝐡𝐞𝐢𝐬 U_{\lambda}({\bf heis}) italic_U start_POSTSUBSCRIPT italic_λ end_POSTSUBSCRIPT ( bold_heis ) is then:

[ z , α ] = - 2 λ α β , [ z , β ] = λ β 2 , [ α , β ] = 0 formulae-sequence 𝑧 𝛼 2 𝜆 𝛼 𝛽 formulae-sequence 𝑧 𝛽 𝜆 superscript 𝛽 2 𝛼 𝛽 0 \displaystyle[z,\alpha]=-2\lambda\alpha\beta,\quad[z,\beta]=\lambda\beta^{2},% \quad[\alpha,\beta]=0 [ italic_z , italic_α ] = - 2 italic_λ italic_α italic_β , [ italic_z , italic_β ] = italic_λ italic_β start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT , [ italic_α , italic_β ] = 0
Δ ( α ) = α α , Δ ( β ) = β 1 + α β , Δ ( z ) = z 1 + α z formulae-sequence Δ 𝛼 tensor-product 𝛼 𝛼 formulae-sequence Δ 𝛽 tensor-product 𝛽 1 tensor-product 𝛼 𝛽 Δ 𝑧 tensor-product 𝑧 1 tensor-product 𝛼 𝑧 \displaystyle\Delta(\alpha)=\alpha\otimes\alpha,\quad\Delta(\beta)=\beta% \otimes 1+\alpha\otimes\beta,\quad\Delta(z)=z\otimes 1+\alpha\otimes z roman_Δ ( italic_α ) = italic_α ⊗ italic_α , roman_Δ ( italic_β ) = italic_β ⊗ 1 + italic_α ⊗ italic_β , roman_Δ ( italic_z ) = italic_z ⊗ 1 + italic_α ⊗ italic_z (33)