Definition 6.5

A co-product β–³ normal-β–³ {\triangle} β–³ is co-associative if

( 𝟏 βŠ— β–³ ) ⁒ β–³ = ( β–³ βŠ— 𝟏 ) ⁒ β–³ . tensor-product 1 β–³ β–³ tensor-product β–³ 1 β–³ ({\bf 1}{\otimes}\triangle)\triangle~{}=~{}(\triangle{\otimes}{\bf 1})% \triangle~{}. ( bold_1 βŠ— β–³ ) β–³ = ( β–³ βŠ— bold_1 ) β–³ . (6.23)
Definition 6.6

A linear operator Ξ΄ : Sym Ο΅ βˆ™ ⁒ π’œ β†’ Sym Ο΅ βˆ™ ⁒ π’œ normal-: 𝛿 normal-β†’ subscript superscript normal-Sym normal-βˆ™ italic-Ο΅ π’œ subscript superscript normal-Sym normal-βˆ™ italic-Ο΅ π’œ {\delta:~{}{\rm Sym}^{\bullet}_{\epsilon}{\cal A}~{}\to~{}{\rm Sym}^{\bullet}_% {\epsilon}{\cal A}} italic_Ξ΄ : roman_Sym start_POSTSUPERSCRIPT βˆ™ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_Ο΅ end_POSTSUBSCRIPT caligraphic_A β†’ roman_Sym start_POSTSUPERSCRIPT βˆ™ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_Ο΅ end_POSTSUBSCRIPT caligraphic_A is a co-derivation [ 27 ] if

β–³ ⁒ Ξ΄ = ( Ξ΄ βŠ— 𝟏 + 𝟏 βŠ— Ξ΄ ) ⁒ β–³ . β–³ 𝛿 tensor-product 𝛿 1 tensor-product 1 𝛿 β–³ \triangle\delta~{}=~{}\left(\delta{\otimes}{\bf 1}+{\bf 1}{\otimes}\delta% \right)\triangle~{}. β–³ italic_Ξ΄ = ( italic_Ξ΄ βŠ— bold_1 + bold_1 βŠ— italic_Ξ΄ ) β–³ . (6.25)

Definition 1.1.7 .

Let Ο€ ∈ Ξ  πœ‹ Ξ  \pi\in\Pi italic_Ο€ ∈ roman_Ξ  . The subset π’Ÿ Ο€ subscript π’Ÿ πœ‹ \mathcal{D}_{\pi} caligraphic_D start_POSTSUBSCRIPT italic_Ο€ end_POSTSUBSCRIPT of W ^ ^ π‘Š {\widehat{W}} ^ start_ARG italic_W end_ARG is the set of those elements such that for any w ∈ W ^ Ο€ 𝑀 subscript ^ π‘Š πœ‹ w\in{\widehat{W}}_{\pi} italic_w ∈ ^ start_ARG italic_W end_ARG start_POSTSUBSCRIPT italic_Ο€ end_POSTSUBSCRIPT and d ∈ π’Ÿ Ο€ 𝑑 subscript π’Ÿ πœ‹ d\in\mathcal{D}_{\pi} italic_d ∈ caligraphic_D start_POSTSUBSCRIPT italic_Ο€ end_POSTSUBSCRIPT ,

β„“ ⁒ ( w ⁒ d ) = β„“ ⁒ ( w ) + β„“ ⁒ ( d ) . β„“ 𝑀 𝑑 β„“ 𝑀 β„“ 𝑑 \ell(wd)=\ell(w)+\ell(d). roman_β„“ ( italic_w italic_d ) = roman_β„“ ( italic_w ) + roman_β„“ ( italic_d ) .

We call π’Ÿ Ο€ subscript π’Ÿ πœ‹ \mathcal{D}_{\pi} caligraphic_D start_POSTSUBSCRIPT italic_Ο€ end_POSTSUBSCRIPT the set of distinguished right coset representatives of W ^ Ο€ subscript ^ π‘Š πœ‹ {\widehat{W}}_{\pi} ^ start_ARG italic_W end_ARG start_POSTSUBSCRIPT italic_Ο€ end_POSTSUBSCRIPT in W ^ ^ π‘Š {\widehat{W}} ^ start_ARG italic_W end_ARG .

The subset π’Ÿ Ο€ - 1 superscript subscript π’Ÿ πœ‹ 1 \mathcal{D}_{\pi}^{-1} caligraphic_D start_POSTSUBSCRIPT italic_Ο€ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT is called the set of distinguished left coset representatives of W ^ Ο€ subscript ^ π‘Š πœ‹ {\widehat{W}}_{\pi} ^ start_ARG italic_W end_ARG start_POSTSUBSCRIPT italic_Ο€ end_POSTSUBSCRIPT in W ^ ^ π‘Š {\widehat{W}} ^ start_ARG italic_W end_ARG ; elements d ∈ π’Ÿ Ο€ - 1 𝑑 superscript subscript π’Ÿ πœ‹ 1 d\in\mathcal{D}_{\pi}^{-1} italic_d ∈ caligraphic_D start_POSTSUBSCRIPT italic_Ο€ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT have the property that β„“ ⁒ ( d ⁒ w ) = β„“ ⁒ ( d ) + β„“ ⁒ ( w ) β„“ 𝑑 𝑀 β„“ 𝑑 β„“ 𝑀 \ell(dw)=\ell(d)+\ell(w) roman_β„“ ( italic_d italic_w ) = roman_β„“ ( italic_d ) + roman_β„“ ( italic_w ) for any w ∈ W ^ Ο€ 𝑀 subscript ^ π‘Š πœ‹ w\in{\widehat{W}}_{\pi} italic_w ∈ ^ start_ARG italic_W end_ARG start_POSTSUBSCRIPT italic_Ο€ end_POSTSUBSCRIPT .


Definition 14 ( [ tncdf ] )

Functional ( 4 ) is said to be invariant under the one-parameter group of infinitesimal transformations

{ t Β― = t + Ξ΅ ⁒ Ο„ ⁒ ( t , q ) + o ⁒ ( Ξ΅ ) , q Β― ⁒ ( t Β― ) = q ⁒ ( t ) + Ξ΅ ⁒ ΞΎ ⁒ ( t , q ) + o ⁒ ( Ξ΅ ) , cases Β― 𝑑 𝑑 πœ€ 𝜏 𝑑 π‘ž π‘œ πœ€ π‘œπ‘‘β„Žπ‘’π‘Ÿπ‘€π‘–π‘ π‘’ Β― π‘ž Β― 𝑑 π‘ž 𝑑 πœ€ πœ‰ 𝑑 π‘ž π‘œ πœ€ π‘œπ‘‘β„Žπ‘’π‘Ÿπ‘€π‘–π‘ π‘’ \begin{cases}\bar{t}=t+\varepsilon\tau(t,q)+o(\varepsilon)\,,\\ \bar{q}(\bar{t})=q(t)+\varepsilon\xi(t,q)+o(\varepsilon)\,,\\ \end{cases} { start_ROW start_CELL Β― start_ARG italic_t end_ARG = italic_t + italic_Ξ΅ italic_Ο„ ( italic_t , italic_q ) + italic_o ( italic_Ξ΅ ) , end_CELL start_CELL end_CELL end_ROW start_ROW start_CELL Β― start_ARG italic_q end_ARG ( Β― start_ARG italic_t end_ARG ) = italic_q ( italic_t ) + italic_Ξ΅ italic_ΞΎ ( italic_t , italic_q ) + italic_o ( italic_Ξ΅ ) , end_CELL start_CELL end_CELL end_ROW (8)

if, and only if,

∫ t a t b L ⁒ ( t , q ⁒ ( t ) , D t Ξ± t a ⁒ q ⁒ ( t ) ) ⁒ 𝑑 t = ∫ t Β― ⁒ ( t a ) t Β― ⁒ ( t b ) L ⁒ ( t Β― , q Β― ⁒ ( t Β― ) , D t Β― Ξ± t Β― a ⁒ q Β― ⁒ ( t Β― ) ) ⁒ 𝑑 t Β― superscript subscript subscript 𝑑 π‘Ž subscript 𝑑 𝑏 𝐿 𝑑 π‘ž 𝑑 subscript superscript subscript 𝐷 𝑑 𝛼 subscript 𝑑 π‘Ž π‘ž 𝑑 differential-d 𝑑 superscript subscript Β― 𝑑 subscript 𝑑 π‘Ž Β― 𝑑 subscript 𝑑 𝑏 𝐿 Β― 𝑑 Β― π‘ž Β― 𝑑 subscript superscript subscript 𝐷 Β― 𝑑 𝛼 subscript Β― 𝑑 π‘Ž Β― π‘ž Β― 𝑑 differential-d Β― 𝑑 \int_{t_{a}}^{t_{b}}L\left(t,q(t),{{}_{t_{a}}D_{t}^{\alpha}q(t)}\right)dt\\ =\int_{\bar{t}(t_{a})}^{\bar{t}(t_{b})}L\left(\bar{t},\bar{q}(\bar{t}),{{}_{% \bar{t}_{a}}D_{\bar{t}}^{\alpha}\bar{q}(\bar{t})}\right)d\bar{t} ∫ start_POSTSUBSCRIPT italic_t start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT end_POSTSUPERSCRIPT italic_L ( italic_t , italic_q ( italic_t ) , start_FLOATSUBSCRIPT italic_t start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT end_FLOATSUBSCRIPT italic_D start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_Ξ± end_POSTSUPERSCRIPT italic_q ( italic_t ) ) italic_d italic_t = ∫ start_POSTSUBSCRIPT Β― start_ARG italic_t end_ARG ( italic_t start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT ) end_POSTSUBSCRIPT start_POSTSUPERSCRIPT Β― start_ARG italic_t end_ARG ( italic_t start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT ) end_POSTSUPERSCRIPT italic_L ( Β― start_ARG italic_t end_ARG , Β― start_ARG italic_q end_ARG ( Β― start_ARG italic_t end_ARG ) , start_FLOATSUBSCRIPT Β― start_ARG italic_t end_ARG start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT end_FLOATSUBSCRIPT italic_D start_POSTSUBSCRIPT Β― start_ARG italic_t end_ARG end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_Ξ± end_POSTSUPERSCRIPT Β― start_ARG italic_q end_ARG ( Β― start_ARG italic_t end_ARG ) ) italic_d Β― start_ARG italic_t end_ARG (9)

for any subinterval [ t a , t b ] βŠ† [ a , b ] subscript 𝑑 π‘Ž subscript 𝑑 𝑏 π‘Ž 𝑏 [{t_{a}},{t_{b}}]\subseteq[a,b] [ italic_t start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT , italic_t start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT ] βŠ† [ italic_a , italic_b ] .

Definition 22

A fractional optimal control problem ( 10 ) is said to be invariant under the Ξ΅ πœ€ \varepsilon italic_Ξ΅ -parameter local group of transformations

{ t Β― = t + Ξ΅ ⁒ Ο„ ⁒ ( t , q ⁒ ( t ) , u ⁒ ( t ) , p ⁒ ( t ) ) + o ⁒ ( Ξ΅ ) , q Β― ⁒ ( t Β― ) = q ⁒ ( t ) + Ξ΅ ⁒ ΞΎ ⁒ ( t , q ⁒ ( t ) , u ⁒ ( t ) , p ⁒ ( t ) ) + o ⁒ ( Ξ΅ ) , u Β― ⁒ ( t Β― ) = u ⁒ ( t ) + Ξ΅ ⁒ Οƒ ⁒ ( t , q ⁒ ( t ) , u ⁒ ( t ) , p ⁒ ( t ) ) + o ⁒ ( Ξ΅ ) , p Β― ⁒ ( t Β― ) = p ⁒ ( t ) + Ξ΅ ⁒ ΞΆ ⁒ ( t , q ⁒ ( t ) , u ⁒ ( t ) , p ⁒ ( t ) ) + o ⁒ ( Ξ΅ ) , cases Β― 𝑑 𝑑 πœ€ 𝜏 𝑑 π‘ž 𝑑 𝑒 𝑑 𝑝 𝑑 π‘œ πœ€ π‘œπ‘‘β„Žπ‘’π‘Ÿπ‘€π‘–π‘ π‘’ Β― π‘ž Β― 𝑑 π‘ž 𝑑 πœ€ πœ‰ 𝑑 π‘ž 𝑑 𝑒 𝑑 𝑝 𝑑 π‘œ πœ€ π‘œπ‘‘β„Žπ‘’π‘Ÿπ‘€π‘–π‘ π‘’ Β― 𝑒 Β― 𝑑 𝑒 𝑑 πœ€ 𝜎 𝑑 π‘ž 𝑑 𝑒 𝑑 𝑝 𝑑 π‘œ πœ€ π‘œπ‘‘β„Žπ‘’π‘Ÿπ‘€π‘–π‘ π‘’ Β― 𝑝 Β― 𝑑 𝑝 𝑑 πœ€ 𝜁 𝑑 π‘ž 𝑑 𝑒 𝑑 𝑝 𝑑 π‘œ πœ€ π‘œπ‘‘β„Žπ‘’π‘Ÿπ‘€π‘–π‘ π‘’ \begin{cases}\bar{t}=t+\varepsilon\tau(t,q(t),u(t),p(t))+o(\varepsilon)\,,\\ \bar{q}(\bar{t})=q(t)+\varepsilon\xi(t,q(t),u(t),p(t))+o(\varepsilon)\,,\\ \bar{u}(\bar{t})=u(t)+\varepsilon\sigma(t,q(t),u(t),p(t))+o(\varepsilon)\,,\\ \bar{p}(\bar{t})=p(t)+\varepsilon\zeta(t,q(t),u(t),p(t))+o(\varepsilon)\,,\\ \end{cases} { start_ROW start_CELL Β― start_ARG italic_t end_ARG = italic_t + italic_Ξ΅ italic_Ο„ ( italic_t , italic_q ( italic_t ) , italic_u ( italic_t ) , italic_p ( italic_t ) ) + italic_o ( italic_Ξ΅ ) , end_CELL start_CELL end_CELL end_ROW start_ROW start_CELL Β― start_ARG italic_q end_ARG ( Β― start_ARG italic_t end_ARG ) = italic_q ( italic_t ) + italic_Ξ΅ italic_ΞΎ ( italic_t , italic_q ( italic_t ) , italic_u ( italic_t ) , italic_p ( italic_t ) ) + italic_o ( italic_Ξ΅ ) , end_CELL start_CELL end_CELL end_ROW start_ROW start_CELL Β― start_ARG italic_u end_ARG ( Β― start_ARG italic_t end_ARG ) = italic_u ( italic_t ) + italic_Ξ΅ italic_Οƒ ( italic_t , italic_q ( italic_t ) , italic_u ( italic_t ) , italic_p ( italic_t ) ) + italic_o ( italic_Ξ΅ ) , end_CELL start_CELL end_CELL end_ROW start_ROW start_CELL Β― start_ARG italic_p end_ARG ( Β― start_ARG italic_t end_ARG ) = italic_p ( italic_t ) + italic_Ξ΅ italic_ΞΆ ( italic_t , italic_q ( italic_t ) , italic_u ( italic_t ) , italic_p ( italic_t ) ) + italic_o ( italic_Ξ΅ ) , end_CELL start_CELL end_CELL end_ROW (13)

if, and only if,

[ β„‹ ⁒ ( t Β― , q Β― ⁒ ( t Β― ) , u Β― ⁒ ( t Β― ) , p Β― ⁒ ( t Β― ) ) - p Β― ⁒ ( t Β― ) β‹… D t Β― Ξ± a Β― ⁒ q Β― ⁒ ( t Β― ) ] ⁒ d ⁒ t Β― = [ β„‹ ⁒ ( t , q ⁒ ( t ) , u ⁒ ( t ) , p ⁒ ( t ) ) - p ⁒ ( t ) β‹… D t Ξ± a ⁒ q ⁒ ( t ) ] ⁒ d ⁒ t . delimited-[] β„‹ Β― 𝑑 Β― π‘ž Β― 𝑑 Β― 𝑒 Β― 𝑑 Β― 𝑝 Β― 𝑑 β‹… Β― 𝑝 Β― 𝑑 subscript superscript subscript 𝐷 Β― 𝑑 𝛼 Β― π‘Ž Β― π‘ž Β― 𝑑 𝑑 Β― 𝑑 delimited-[] β„‹ 𝑑 π‘ž 𝑑 𝑒 𝑑 𝑝 𝑑 β‹… 𝑝 𝑑 subscript superscript subscript 𝐷 𝑑 𝛼 π‘Ž π‘ž 𝑑 𝑑 𝑑 \displaystyle\left[{\cal H}(\bar{t},\bar{q}(\bar{t}),\bar{u}(\bar{t}),\bar{p}(% \bar{t}))-\bar{p}(\bar{t})\cdot{{}_{\bar{a}}D_{\bar{t}}}^{\alpha}\bar{q}(\bar{% t})\right]d\bar{t}\\ \displaystyle=\left[{\cal H}(t,q(t),u(t),p(t))-p(t)\cdot{{}_{a}D_{t}}^{\alpha}% q(t)\right]dt\,. start_ROW start_CELL [ caligraphic_H ( Β― start_ARG italic_t end_ARG , Β― start_ARG italic_q end_ARG ( Β― start_ARG italic_t end_ARG ) , Β― start_ARG italic_u end_ARG ( Β― start_ARG italic_t end_ARG ) , Β― start_ARG italic_p end_ARG ( Β― start_ARG italic_t end_ARG ) ) - Β― start_ARG italic_p end_ARG ( Β― start_ARG italic_t end_ARG ) β‹… start_FLOATSUBSCRIPT Β― start_ARG italic_a end_ARG end_FLOATSUBSCRIPT italic_D start_POSTSUBSCRIPT Β― start_ARG italic_t end_ARG end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_Ξ± end_POSTSUPERSCRIPT Β― start_ARG italic_q end_ARG ( Β― start_ARG italic_t end_ARG ) ] italic_d Β― start_ARG italic_t end_ARG end_CELL end_ROW start_ROW start_CELL = [ caligraphic_H ( italic_t , italic_q ( italic_t ) , italic_u ( italic_t ) , italic_p ( italic_t ) ) - italic_p ( italic_t ) β‹… start_FLOATSUBSCRIPT italic_a end_FLOATSUBSCRIPT italic_D start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_Ξ± end_POSTSUPERSCRIPT italic_q ( italic_t ) ] italic_d italic_t . end_CELL end_ROW (14)

Definition 4.13 .

Write s = Z ⁒ ( Ξ³ ) 𝑠 𝑍 𝛾 s=Z(\gamma) italic_s = italic_Z ( italic_Ξ³ ) . The M 𝑀 M italic_M - cycle ΞΌ ⁒ ( Ξ³ ) πœ‡ 𝛾 \mu(\gamma) italic_ΞΌ ( italic_Ξ³ ) associated to a N 𝑁 N italic_N -reduced geodesic Ξ³ = Ξ³ Q 𝛾 subscript 𝛾 𝑄 \gamma=\gamma_{Q} italic_Ξ³ = italic_Ξ³ start_POSTSUBSCRIPT italic_Q end_POSTSUBSCRIPT is the sum

ΞΌ ⁒ ( Ξ³ ) = { i ⁒ ∞ , Ξ³ ^ } + { Ξ³ ^ , i + s } + { i + s , Ξ³ β€² ^ } + { Ξ³ β€² ^ , i ⁒ ∞ } , πœ‡ 𝛾 𝑖 ^ 𝛾 ^ 𝛾 𝑖 𝑠 𝑖 𝑠 ^ superscript 𝛾 β€² ^ superscript 𝛾 β€² 𝑖 \mu(\gamma)=\left\{i\infty,\widehat{\gamma}\right\}+\left\{\widehat{\gamma},i+% s\right\}+\left\{i+s,\widehat{\gamma^{\prime}}\right\}+\left\{\widehat{\gamma^% {\prime}},i\infty\right\}, italic_ΞΌ ( italic_Ξ³ ) = { italic_i ∞ , ^ start_ARG italic_Ξ³ end_ARG } + { ^ start_ARG italic_Ξ³ end_ARG , italic_i + italic_s } + { italic_i + italic_s , ^ start_ARG italic_Ξ³ start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT end_ARG } + { ^ start_ARG italic_Ξ³ start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT end_ARG , italic_i ∞ } ,

where Ξ³ β€² = Ξ³ Q β€² superscript 𝛾 β€² subscript 𝛾 superscript 𝑄 β€² \gamma^{\prime}=\gamma_{Q^{\prime}} italic_Ξ³ start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT = italic_Ξ³ start_POSTSUBSCRIPT italic_Q start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT end_POSTSUBSCRIPT , Q β€² = ( T s ⁒ S a 2 ⁒ T - s ) ∘ Q superscript 𝑄 β€² superscript 𝑇 𝑠 superscript 𝑆 π‘Ž 2 superscript 𝑇 𝑠 𝑄 Q^{\prime}=(T^{s}S^{\frac{a}{2}}T^{-s})\circ Q italic_Q start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT = ( italic_T start_POSTSUPERSCRIPT italic_s end_POSTSUPERSCRIPT italic_S start_POSTSUPERSCRIPT divide start_ARG italic_a end_ARG start_ARG 2 end_ARG end_POSTSUPERSCRIPT italic_T start_POSTSUPERSCRIPT - italic_s end_POSTSUPERSCRIPT ) ∘ italic_Q with a = 𝑠𝑖𝑔𝑛 ⁒ ( A ) π‘Ž 𝑠𝑖𝑔𝑛 𝐴 a=\textit{sign}(A) italic_a = sign ( italic_A ) , if s = s β€² 𝑠 superscript 𝑠 β€² s=s^{\prime} italic_s = italic_s start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT and T - s ⁒ Ξ³ Q superscript 𝑇 𝑠 subscript 𝛾 𝑄 T^{-s}\gamma_{Q} italic_T start_POSTSUPERSCRIPT - italic_s end_POSTSUPERSCRIPT italic_Ξ³ start_POSTSUBSCRIPT italic_Q end_POSTSUBSCRIPT contains i 𝑖 i italic_i , and

ΞΌ ⁒ ( Ξ³ ) = { i ⁒ ∞ , Ξ³ ^ } + { Ξ³ ^ , P } + { M s ⁒ P , M s ⁒ Ξ³ ^ } + { M s ⁒ Ξ³ ^ , i ⁒ ∞ } πœ‡ 𝛾 𝑖 ^ 𝛾 ^ 𝛾 𝑃 subscript 𝑀 𝑠 𝑃 ^ subscript 𝑀 𝑠 𝛾 ^ subscript 𝑀 𝑠 𝛾 𝑖 \mu(\gamma)=\left\{i\infty,\widehat{\gamma}\right\}+\left\{\widehat{\gamma},P% \right\}+\left\{M_{s}P,\widehat{M_{s}\gamma}\right\}+\left\{\widehat{M_{s}% \gamma},i\infty\right\} italic_ΞΌ ( italic_Ξ³ ) = { italic_i ∞ , ^ start_ARG italic_Ξ³ end_ARG } + { ^ start_ARG italic_Ξ³ end_ARG , italic_P } + { italic_M start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT italic_P , ^ start_ARG italic_M start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT italic_Ξ³ end_ARG } + { ^ start_ARG italic_M start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT italic_Ξ³ end_ARG , italic_i ∞ }

where P = Ξ³ Q ∩ { s - 1 , s + 1 } 𝑃 subscript 𝛾 𝑄 𝑠 1 𝑠 1 P=\gamma_{Q}\cap\{s-1,s+1\} italic_P = italic_Ξ³ start_POSTSUBSCRIPT italic_Q end_POSTSUBSCRIPT ∩ { italic_s - 1 , italic_s + 1 } , otherwise.


Definition 26 .

For a , b ∈ G π‘Ž 𝑏 𝐺 a,b\in G italic_a , italic_b ∈ italic_G we write

a * b = { a ⁒ b if a ≲ a ⁒ b not defined otherwise. π‘Ž 𝑏 cases π‘Ž 𝑏 if a ≲ a ⁒ b not defined otherwise. a*b=\left\{\begin{array}[]{@{}ll}ab&\text{if $a\lesssim ab$}\\ \text{not defined\qquad}&\text{otherwise.}\end{array}\right. italic_a * italic_b = { start_ARRAY start_ROW start_CELL italic_a italic_b end_CELL start_CELL if italic_a ≲ italic_a italic_b end_CELL end_ROW start_ROW start_CELL not defined end_CELL start_CELL otherwise. end_CELL end_ROW end_ARRAY