Definition 2.2 .

A symplectic Calabi-Yau manifold consists of ( M , ω , J , ψ ) 𝑀 𝜔 𝐽 𝜓 (M,\omega,J,\psi) ( italic_M , italic_ω , italic_J , italic_ψ ) , where ( M , ω ) 𝑀 𝜔 (M,\omega) ( italic_M , italic_ω ) is a 2 n 2 𝑛 2n 2 italic_n -dimensional symplectic manifold, J 𝐽 J italic_J is an ω 𝜔 \omega italic_ω -calibrated almost complex structure on M 𝑀 M italic_M and ψ 𝜓 \psi italic_ψ is a nowhere vanishing ( n , 0 ) 𝑛 0 (n,0) ( italic_n , 0 ) -form on M 𝑀 M italic_M satisfying

ψ = 0 , 𝜓 0 \nabla\psi=0\,, ∇ italic_ψ = 0 ,

where normal-∇ \nabla is the Chern connection of ( ω , J ) 𝜔 𝐽 (\omega,J) ( italic_ω , italic_J ) .


Definition 4.1 .

Define d g 𝒩 ( R ) 𝑑 𝑔 𝒩 𝑅 dg\mathcal{N}(R) italic_d italic_g caligraphic_N ( italic_R ) to be the category of R 𝑅 R italic_R -representations in finite-dimensional nilpotent non-negatively graded chain Lie algebras. Let d g 𝒩 ^ ( R ) 𝑑 𝑔 ^ 𝒩 𝑅 dg\hat{\mathcal{N}}(R) italic_d italic_g ^ start_ARG caligraphic_N end_ARG ( italic_R ) be the category of pro-objects in the Artinian category d g 𝒩 ( R ) 𝑑 𝑔 𝒩 𝑅 dg\mathcal{N}(R) italic_d italic_g caligraphic_N ( italic_R ) .

Here, a chain Lie algebra is a chain complex 𝔤 = i 0 𝔤 i 𝔤 subscript direct-sum 𝑖 subscript 0 subscript 𝔤 𝑖 \mathfrak{g}=\bigoplus_{i\in\mathbb{N}_{0}}\mathfrak{g}_{i} fraktur_g = ⊕ start_POSTSUBSCRIPT italic_i ∈ blackboard_N start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_POSTSUBSCRIPT fraktur_g start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT over k 𝑘 k italic_k , equipped with a bilinear Lie bracket [ , ] : 𝔤 i × 𝔤 j 𝔤 i + j fragments fragments [ , ] : subscript 𝔤 𝑖 subscript 𝔤 𝑗 subscript 𝔤 𝑖 𝑗 [,]\colon\thinspace\mathfrak{g}_{i}\times\mathfrak{g}_{j}\rightarrow\mathfrak{% g}_{i+j} [ , ] : fraktur_g start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT × fraktur_g start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT → fraktur_g start_POSTSUBSCRIPT italic_i + italic_j end_POSTSUBSCRIPT , satisfying:

  1. 1.

    [ a , b ] + ( - 1 ) a ¯ b ¯ [ b , a ] = 0 𝑎 𝑏 superscript 1 ¯ 𝑎 ¯ 𝑏 𝑏 𝑎 0 [a,b]+(-1)^{\bar{a}\bar{b}}[b,a]=0 [ italic_a , italic_b ] + ( - 1 ) start_POSTSUPERSCRIPT ¯ start_ARG italic_a end_ARG ¯ start_ARG italic_b end_ARG end_POSTSUPERSCRIPT [ italic_b , italic_a ] = 0 ,

  2. 2.

    ( - 1 ) c ¯ a ¯ [ a , [ b , c ] ] + ( - 1 ) a ¯ b ¯ [ b , [ c , a ] ] + ( - 1 ) b ¯ c ¯ [ c , [ a , b ] ] = 0 superscript 1 ¯ 𝑐 ¯ 𝑎 𝑎 𝑏 𝑐 superscript 1 ¯ 𝑎 ¯ 𝑏 𝑏 𝑐 𝑎 superscript 1 ¯ 𝑏 ¯ 𝑐 𝑐 𝑎 𝑏 0 (-1)^{\bar{c}\bar{a}}[a,[b,c]]+(-1)^{\bar{a}\bar{b}}[b,[c,a]]+(-1)^{\bar{b}% \bar{c}}[c,[a,b]]=0 ( - 1 ) start_POSTSUPERSCRIPT ¯ start_ARG italic_c end_ARG ¯ start_ARG italic_a end_ARG end_POSTSUPERSCRIPT [ italic_a , [ italic_b , italic_c ] ] + ( - 1 ) start_POSTSUPERSCRIPT ¯ start_ARG italic_a end_ARG ¯ start_ARG italic_b end_ARG end_POSTSUPERSCRIPT [ italic_b , [ italic_c , italic_a ] ] + ( - 1 ) start_POSTSUPERSCRIPT ¯ start_ARG italic_b end_ARG ¯ start_ARG italic_c end_ARG end_POSTSUPERSCRIPT [ italic_c , [ italic_a , italic_b ] ] = 0 ,

  3. 3.

    d [ a , b ] = [ d a , b ] + ( - 1 ) a ¯ [ a , d b ] 𝑑 𝑎 𝑏 𝑑 𝑎 𝑏 superscript 1 ¯ 𝑎 𝑎 𝑑 𝑏 d[a,b]=[da,b]+(-1)^{\bar{a}}[a,db] italic_d [ italic_a , italic_b ] = [ italic_d italic_a , italic_b ] + ( - 1 ) start_POSTSUPERSCRIPT ¯ start_ARG italic_a end_ARG end_POSTSUPERSCRIPT [ italic_a , italic_d italic_b ] ,

where a ¯ ¯ 𝑎 \bar{a} ¯ start_ARG italic_a end_ARG denotes the degree of a 𝑎 a italic_a , mod 2 2 2 2 , for a 𝑎 a italic_a homogeneous.

Define a small extension in d g 𝒩 ( R ) 𝑑 𝑔 𝒩 𝑅 dg\mathcal{N}(R) italic_d italic_g caligraphic_N ( italic_R ) to be a surjective map 𝔤 𝔥 𝔤 𝔥 \mathfrak{g}\to\mathfrak{h} fraktur_g → fraktur_h with kernel I 𝐼 I italic_I , such that [ 𝔤 , I ] = 0 𝔤 𝐼 0 [\mathfrak{g},I]=0 [ fraktur_g , italic_I ] = 0 . Note that the objects of d g 𝒩 ( R ) 𝑑 𝑔 𝒩 𝑅 dg\mathcal{N}(R) italic_d italic_g caligraphic_N ( italic_R ) are cofinite in d g 𝒩 ^ ( R ) 𝑑 𝑔 ^ 𝒩 𝑅 dg\hat{\mathcal{N}}(R) italic_d italic_g ^ start_ARG caligraphic_N end_ARG ( italic_R ) in the sense of [ Hov ] Definition 2.1.4.

Definition 4.20 .

Define D G Alg ( R ) 𝐷 𝐺 Alg 𝑅 DG\mathrm{Alg}(R) italic_D italic_G roman_Alg ( italic_R ) to be the category of R 𝑅 R italic_R -representations in non-negatively graded cochain algebras. Here, a cochain algebra is a cochain complex A = i 0 A i 𝐴 subscript direct-sum 𝑖 subscript 0 superscript 𝐴 𝑖 A=\bigoplus_{i\in\mathbb{N}_{0}}A^{i} italic_A = ⊕ start_POSTSUBSCRIPT italic_i ∈ blackboard_N start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_POSTSUBSCRIPT italic_A start_POSTSUPERSCRIPT italic_i end_POSTSUPERSCRIPT over k 𝑘 k italic_k , equipped with an associative product A i × A j A i + j superscript 𝐴 𝑖 superscript 𝐴 𝑗 superscript 𝐴 𝑖 𝑗 A^{i}\times A^{j}\rightarrow A^{i+j} italic_A start_POSTSUPERSCRIPT italic_i end_POSTSUPERSCRIPT × italic_A start_POSTSUPERSCRIPT italic_j end_POSTSUPERSCRIPT → italic_A start_POSTSUPERSCRIPT italic_i + italic_j end_POSTSUPERSCRIPT , satisfying:

  1. 1.

    a b = ( - 1 ) a ¯ b ¯ b a 𝑎 𝑏 superscript 1 ¯ 𝑎 ¯ 𝑏 𝑏 𝑎 ab=(-1)^{\bar{a}\bar{b}}ba italic_a italic_b = ( - 1 ) start_POSTSUPERSCRIPT ¯ start_ARG italic_a end_ARG ¯ start_ARG italic_b end_ARG end_POSTSUPERSCRIPT italic_b italic_a ,

  2. 2.

    d ( a b ) = ( d a ) b + ( - 1 ) a ¯ a ( d b ) 𝑑 𝑎 𝑏 𝑑 𝑎 𝑏 superscript 1 ¯ 𝑎 𝑎 𝑑 𝑏 d(ab)=(da)b+(-1)^{\bar{a}}a(db) italic_d ( italic_a italic_b ) = ( italic_d italic_a ) italic_b + ( - 1 ) start_POSTSUPERSCRIPT ¯ start_ARG italic_a end_ARG end_POSTSUPERSCRIPT italic_a ( italic_d italic_b ) ,

where a ¯ ¯ 𝑎 \bar{a} ¯ start_ARG italic_a end_ARG denotes the degree of a 𝑎 a italic_a , mod 2 2 2 2 , for a 𝑎 a italic_a homogeneous, and a multiplicative identity 1 A 0 1 superscript 𝐴 0 1\in A^{0} 1 ∈ italic_A start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT .


Definition .

Define ( 1 / 2 f ) ( x , y ) superscript 1 2 𝑓 𝑥 𝑦 (\triangle^{1/2}f)(x,y) ( △ start_POSTSUPERSCRIPT 1 / 2 end_POSTSUPERSCRIPT italic_f ) ( italic_x , italic_y ) by

1 / 2 f ~ ( ξ , ζ ) = ( ξ 2 + ζ 2 ) 1 / 2 f ~ ( ξ , ζ ) . ~ superscript 1 2 𝑓 𝜉 𝜁 superscript superscript 𝜉 2 superscript 𝜁 2 1 2 ~ 𝑓 𝜉 𝜁 \widetilde{\triangle^{1/2}f}(\xi,\zeta)=\left(\xi^{2}+\zeta^{2}\right)^{1/2}\,% \tilde{f}(\xi,\zeta). ~ start_ARG △ start_POSTSUPERSCRIPT 1 / 2 end_POSTSUPERSCRIPT italic_f end_ARG ( italic_ξ , italic_ζ ) = ( italic_ξ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_ζ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT 1 / 2 end_POSTSUPERSCRIPT ~ start_ARG italic_f end_ARG ( italic_ξ , italic_ζ ) .

Definition 7.4 .

For a given HOPS ( 𝒜 , φ ) 𝒜 𝜑 (\mathcal{A},\varphi) ( caligraphic_A , italic_φ ) we define the corresponding (higher order) free cumulants as a function on 𝒫 𝒮 ( 𝒜 ) 𝒫 𝒮 𝒜 {\mathcal{PS}}(\mathcal{A}) caligraphic_P caligraphic_S ( caligraphic_A ) by

κ = φ * μ , 𝜅 𝜑 𝜇 \kappa=\varphi*\mu, italic_κ = italic_φ * italic_μ ,

or more explicitly

κ ( 𝒰 , γ ) [ a 1 , , a n ] := ( 𝒱 , π ) , ( 𝒲 , σ ) 𝒫 𝒮 ( n ) ( 𝒱 , π ) ( 𝒲 , σ ) = ( 𝒰 , γ ) φ ( 𝒱 , π ) [ a 1 , , a n ] μ ( 𝒲 , σ ) , assign 𝜅 𝒰 𝛾 subscript 𝑎 1 subscript 𝑎 𝑛 subscript FRACOP 𝒱 𝜋 𝒲 𝜎 𝒫 𝒮 𝑛 𝒱 𝜋 𝒲 𝜎 𝒰 𝛾 𝜑 𝒱 𝜋 subscript 𝑎 1 subscript 𝑎 𝑛 𝜇 𝒲 𝜎 \kappa({\mathcal{U}},\gamma)[a_{1},\dots,a_{n}]:=\sum_{({\mathcal{V}},\pi),({% \mathcal{W}},\sigma)\in{\mathcal{PS}}(n)\atop({\mathcal{V}},\pi)\cdot({% \mathcal{W}},\sigma)=({\mathcal{U}},\gamma)}\varphi({\mathcal{V}},\pi)[a_{1},% \dots,a_{n}]\cdot\mu({\mathcal{W}},\sigma), italic_κ ( caligraphic_U , italic_γ ) [ italic_a start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … , italic_a start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ] := ∑ start_POSTSUBSCRIPT FRACOP start_ARG ( caligraphic_V , italic_π ) , ( caligraphic_W , italic_σ ) ∈ caligraphic_P caligraphic_S ( italic_n ) end_ARG start_ARG ( caligraphic_V , italic_π ) ⋅ ( caligraphic_W , italic_σ ) = ( caligraphic_U , italic_γ ) end_ARG end_POSTSUBSCRIPT italic_φ ( caligraphic_V , italic_π ) [ italic_a start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … , italic_a start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ] ⋅ italic_μ ( caligraphic_W , italic_σ ) ,

for all n 𝑛 n\in{\mathbb{N}} italic_n ∈ blackboard_N , ( 𝒰 , γ ) 𝒫 𝒮 ( n ) 𝒰 𝛾 𝒫 𝒮 𝑛 ({\mathcal{U}},\gamma)\in{\mathcal{PS}}(n) ( caligraphic_U , italic_γ ) ∈ caligraphic_P caligraphic_S ( italic_n ) , a 1 , , a n 𝒜 subscript 𝑎 1 subscript 𝑎 𝑛 𝒜 a_{1},\dots,a_{n}\in\mathcal{A} italic_a start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … , italic_a start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ∈ caligraphic_A .