Definition 2.3 (Distributive Lattice)

Distributive lattices are lattices L , , , , , 𝐿 square-image-of-or-equals square-intersection square-union bottom top \langle L,\sqsubseteq,\sqcap,\sqcup,\bot,\top\rangle ⟨ italic_L , ⊑ , ⊓ , ⊔ , ⊥ , ⊤ ⟩ that satisfy the distributive law

a ( b c ) = ( a b ) ( a c ) square-intersection 𝑎 square-union 𝑏 𝑐 square-union square-intersection 𝑎 𝑏 square-intersection 𝑎 𝑐 a\sqcap(b\sqcup c)=(a\sqcap b)\sqcup(a\sqcap c) italic_a ⊓ ( italic_b ⊔ italic_c ) = ( italic_a ⊓ italic_b ) ⊔ ( italic_a ⊓ italic_c )

for any elements a 𝑎 a italic_a , b 𝑏 b italic_b , and c 𝑐 c italic_c of the lattice.

Definition 2.4 (homomorphism)

A function between distributive lattices f : L K normal-: 𝑓 normal-→ 𝐿 𝐾 f:L\rightarrow K italic_f : italic_L → italic_K , is a homomorphism if

f ( a b ) = f ( a ) f ( b ) 𝑓 square-intersection 𝑎 𝑏 square-intersection 𝑓 𝑎 𝑓 𝑏 \displaystyle f(a\sqcap b)=f(a)\sqcap f(b) italic_f ( italic_a ⊓ italic_b ) = italic_f ( italic_a ) ⊓ italic_f ( italic_b )
f ( a b ) = f ( a ) f ( b ) 𝑓 square-union 𝑎 𝑏 square-union 𝑓 𝑎 𝑓 𝑏 \displaystyle f(a\sqcup b)=f(a)\sqcup f(b) italic_f ( italic_a ⊔ italic_b ) = italic_f ( italic_a ) ⊔ italic_f ( italic_b )
f ( ) = 𝑓 bottom bottom \displaystyle f(\bot)=\bot italic_f ( ⊥ ) = ⊥
f ( ) = 𝑓 top top \displaystyle f(\top)=\top italic_f ( ⊤ ) = ⊤

Definition 4.4 .

Given two twisted commutative algebras A 𝐴 A italic_A and B 𝐵 B italic_B , together with a bilinear pairing ( , ) : Γ Γ : tensor-product Γ Γ (\cdot\,,\cdot):\Gamma\otimes\Gamma\rightarrow\mathbb{Z} ( ⋅ , ⋅ ) : roman_Γ ⊗ roman_Γ → blackboard_Z ( Γ = Γ A Γ B Γ direct-sum subscript Γ 𝐴 subscript Γ 𝐵 \Gamma=\Gamma_{A}\oplus\Gamma_{B} roman_Γ = roman_Γ start_POSTSUBSCRIPT italic_A end_POSTSUBSCRIPT ⊕ roman_Γ start_POSTSUBSCRIPT italic_B end_POSTSUBSCRIPT ) extending 29 29 29 In the case that is of interest to us, this extension is not the trivial one. those on Γ A subscript Γ 𝐴 \Gamma_{A} roman_Γ start_POSTSUBSCRIPT italic_A end_POSTSUBSCRIPT and Γ B subscript Γ 𝐵 \Gamma_{B} roman_Γ start_POSTSUBSCRIPT italic_B end_POSTSUBSCRIPT , we can form the twisted tensor product A ~ B 𝐴 ~ tensor-product 𝐵 A\widetilde{\otimes}B italic_A ~ start_ARG ⊗ end_ARG italic_B , again a twisted commutative algebra, by letting

a b a b = ( - 1 ) p ( λ ) p ( χ ) + ( λ , χ ) a a b b tensor-product tensor-product 𝑎 𝑏 superscript 𝑎 superscript 𝑏 tensor-product superscript 1 𝑝 𝜆 𝑝 𝜒 𝜆 𝜒 𝑎 superscript 𝑎 𝑏 superscript 𝑏 a\otimes b\cdot a^{\prime}\otimes b^{\prime}=(-1)^{p(\lambda)p(\chi)+(\lambda,% \chi)}a\cdot a^{\prime}\otimes b\cdot b^{\prime} italic_a ⊗ italic_b ⋅ italic_a start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ⊗ italic_b start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT = ( - 1 ) start_POSTSUPERSCRIPT italic_p ( italic_λ ) italic_p ( italic_χ ) + ( italic_λ , italic_χ ) end_POSTSUPERSCRIPT italic_a ⋅ italic_a start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ⊗ italic_b ⋅ italic_b start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT

for b B λ 𝑏 superscript 𝐵 𝜆 b\in B^{\lambda} italic_b ∈ italic_B start_POSTSUPERSCRIPT italic_λ end_POSTSUPERSCRIPT and a A χ superscript 𝑎 superscript 𝐴 𝜒 a^{\prime}\in A^{\chi} italic_a start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ∈ italic_A start_POSTSUPERSCRIPT italic_χ end_POSTSUPERSCRIPT .


Definition 2.4 (Hörmander)

Let Λ normal-Λ \Lambda roman_Λ be a C superscript 𝐶 C^{\infty} italic_C start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT conic Lagrangian submanifold in T ( X ) superscript 𝑇 normal-∗ 𝑋 T^{\ast}(X) italic_T start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( italic_X ) . A Lagrangian distribution u ( x ) 𝑢 𝑥 u(x) italic_u ( italic_x ) of order μ 𝜇 \mu italic_μ defined by Λ normal-Λ \Lambda roman_Λ is a locally finite (in X 𝑋 X italic_X ) sum of integrals of the form

u ( x ) = e i ϕ ( x , θ ) a ( x , θ ) 𝑑 θ , 𝑢 𝑥 superscript 𝑒 𝑖 italic-ϕ 𝑥 𝜃 𝑎 𝑥 𝜃 differential-d 𝜃 u(x)=\int e^{i\phi(x,\theta)}a(x,\theta)\,d\theta, italic_u ( italic_x ) = ∫ italic_e start_POSTSUPERSCRIPT italic_i italic_ϕ ( italic_x , italic_θ ) end_POSTSUPERSCRIPT italic_a ( italic_x , italic_θ ) italic_d italic_θ ,

where θ R N 𝜃 superscript 𝑅 𝑁 \theta\in\mathbb{R}^{N} italic_θ ∈ italic_R start_POSTSUPERSCRIPT italic_N end_POSTSUPERSCRIPT , ϕ italic-ϕ \phi italic_ϕ satisfies ( 2.6 ), Λ ϕ subscript normal-Λ italic-ϕ \Lambda_{\phi} roman_Λ start_POSTSUBSCRIPT italic_ϕ end_POSTSUBSCRIPT is a piece of Λ normal-Λ \Lambda roman_Λ and

a ( x , θ ) S μ - N 2 + dim X 4 ( X × R N ) . 𝑎 𝑥 𝜃 superscript 𝑆 𝜇 𝑁 2 dimension 𝑋 4 𝑋 superscript 𝑅 𝑁 a(x,\theta)\in S^{\mu-\frac{N}{2}+\frac{\dim X}{4}}(X\times\mathbb{R}^{N}). italic_a ( italic_x , italic_θ ) ∈ italic_S start_POSTSUPERSCRIPT italic_μ - divide start_ARG italic_N end_ARG start_ARG 2 end_ARG + divide start_ARG roman_dim italic_X end_ARG start_ARG 4 end_ARG end_POSTSUPERSCRIPT ( italic_X × italic_R start_POSTSUPERSCRIPT italic_N end_POSTSUPERSCRIPT ) .
Definition 3.3

For our convenience, we introduce the map

( , ) : ( p , q ) ( p , q ) = ( 1 / p , 1 / q ) . : superscript maps-to 𝑝 𝑞 superscript 𝑝 𝑞 1 𝑝 1 𝑞 (\,\cdot\,,\cdot\,)^{\dagger}:\;(p,q)\mapsto(p,q)^{\dagger}=(1/p,1/q). ( ⋅ , ⋅ ) start_POSTSUPERSCRIPT † end_POSTSUPERSCRIPT : ( italic_p , italic_q ) ↦ ( italic_p , italic_q ) start_POSTSUPERSCRIPT † end_POSTSUPERSCRIPT = ( 1 / italic_p , 1 / italic_q ) . (3.5)

Definition 3.2 .

A function

e : X n M : 𝑒 subscript 𝑋 𝑛 𝑀 e:X_{n}\longrightarrow M italic_e : italic_X start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ⟶ italic_M

is called an M 𝑀 M italic_M -valued Manin symbol over Γ 0 ( p n ) subscript normal-Γ 0 superscript 𝑝 𝑛 \Gamma_{0}(p^{n}) roman_Γ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_p start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT ) if e 𝑒 e italic_e satisfies the following “Manin relations” for all 𝐱 = ( x , y ) X n 𝐱 𝑥 𝑦 subscript 𝑋 𝑛 {\bf x}=(x,y)\in X_{n} bold_x = ( italic_x , italic_y ) ∈ italic_X start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT and λ ( / p n ) × 𝜆 superscript superscript 𝑝 𝑛 \lambda\in\left(\mathbb{Z}/p^{n}\mathbb{Z}\right)^{\times} italic_λ ∈ ( blackboard_Z / italic_p start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT blackboard_Z ) start_POSTSUPERSCRIPT × end_POSTSUPERSCRIPT :

We denote by

Manin Γ 0 ( p n ) ( M ) . subscript Manin subscript Γ 0 superscript 𝑝 𝑛 𝑀 {{\hbox{\rm Manin}}_{\Gamma_{0}(p^{n})}}(M). Manin start_POSTSUBSCRIPT roman_Γ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_p start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT ) end_POSTSUBSCRIPT ( italic_M ) .

the group of all M 𝑀 M italic_M -valued Manin symbols over Γ 0 ( p n ) subscript normal-Γ 0 superscript 𝑝 𝑛 {\Gamma_{0}(p^{n})} roman_Γ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_p start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT ) .


Definition 1.1 .

A Hom-associative algebra is a triple ( V , μ , α ) 𝑉 𝜇 𝛼 (V,\mu,\alpha) ( italic_V , italic_μ , italic_α ) consisting of a linear space V 𝑉 V italic_V , a bilinear map μ : V × V V : 𝜇 𝑉 𝑉 𝑉 \mu:V\times V\rightarrow V italic_μ : italic_V × italic_V → italic_V and a homomorphism α : V V : 𝛼 𝑉 𝑉 \alpha:V\rightarrow V italic_α : italic_V → italic_V satisfying

μ ( α ( x ) , μ ( y , z ) ) = μ ( μ ( x , y ) , α ( z ) ) 𝜇 𝛼 𝑥 𝜇 𝑦 𝑧 𝜇 𝜇 𝑥 𝑦 𝛼 𝑧 \mu(\alpha(x),\mu(y,z))=\mu(\mu(x,y),\alpha(z)) italic_μ ( italic_α ( italic_x ) , italic_μ ( italic_y , italic_z ) ) = italic_μ ( italic_μ ( italic_x , italic_y ) , italic_α ( italic_z ) )
Definition 1.2 .

A Hom-Leibniz algebra is a triple ( V , [ , ] , α ) 𝑉 𝛼 (V,[\cdot,\cdot],\alpha) ( italic_V , [ ⋅ , ⋅ ] , italic_α ) consisting of a linear space V 𝑉 V italic_V , bilinear map [ , ] : V × V V : 𝑉 𝑉 𝑉 [\cdot,\cdot]:V\times V\rightarrow V [ ⋅ , ⋅ ] : italic_V × italic_V → italic_V and a homomorphism α : V V : 𝛼 𝑉 𝑉 \alpha:V\rightarrow V italic_α : italic_V → italic_V satisfying

[ [ x , y ] , α ( z ) ] = [ [ x , z ] , α ( y ) ] + [ α ( x ) , [ y , z ] ] 𝑥 𝑦 𝛼 𝑧 𝑥 𝑧 𝛼 𝑦 𝛼 𝑥 𝑦 𝑧 [[x,y],\alpha(z)]=[[x,z],\alpha(y)]+[\alpha(x),[y,z]] [ [ italic_x , italic_y ] , italic_α ( italic_z ) ] = [ [ italic_x , italic_z ] , italic_α ( italic_y ) ] + [ italic_α ( italic_x ) , [ italic_y , italic_z ] ] (1.1)
Definition 1.3 (Hartwig, Larsson and Silvestrov [ 4 ] ) .

A Hom-Lie algebra is a triple ( V , [ , ] , α ) 𝑉 𝛼 (V,[\cdot,\cdot],\alpha) ( italic_V , [ ⋅ , ⋅ ] , italic_α ) consisting of a linear space V 𝑉 V italic_V , bilinear map [ , ] : V × V V : 𝑉 𝑉 𝑉 [\cdot,\cdot]:V\times V\rightarrow V [ ⋅ , ⋅ ] : italic_V × italic_V → italic_V and a linear space homomorphism α : V V : 𝛼 𝑉 𝑉 \alpha:V\rightarrow V italic_α : italic_V → italic_V satisfying

[ x , y ] = - [ y , x ] 𝑥 𝑦 𝑦 𝑥 \displaystyle[x,y]=-[y,x] [ italic_x , italic_y ] = - [ italic_y , italic_x ] (skew-symmetry) (1.4)
x , y , z [ α ( x ) , [ y , z ] ] = 0 subscript 𝑥 𝑦 𝑧 absent 𝛼 𝑥 𝑦 𝑧 0 \displaystyle{}\circlearrowleft_{x,y,z}{[\alpha(x),[y,z]]}=0 ↺ start_POSTSUBSCRIPT italic_x , italic_y , italic_z end_POSTSUBSCRIPT [ italic_α ( italic_x ) , [ italic_y , italic_z ] ] = 0 (Hom-Jacobi identity) (1.5)

for all x , y , z 𝑥 𝑦 𝑧 x,y,z italic_x , italic_y , italic_z from V 𝑉 V italic_V , where x , y , z subscript 𝑥 𝑦 𝑧 \circlearrowleft_{x,y,z} ↺ start_POSTSUBSCRIPT italic_x , italic_y , italic_z end_POSTSUBSCRIPT denotes summation over the cyclic permutation on x , y , z 𝑥 𝑦 𝑧 x,y,z italic_x , italic_y , italic_z .

Definition 2.1 .

Let 𝒜 𝒜 \mathcal{A} caligraphic_A be a Hom-algebra structure on V 𝑉 V italic_V defined by the multiplication μ 𝜇 \mu italic_μ and a homomorphism α 𝛼 \alpha italic_α . Then 𝒜 𝒜 \mathcal{A} caligraphic_A is said to be Hom-Lie admissible algebra over V 𝑉 V italic_V if the bracket defined for all x , y V 𝑥 𝑦 𝑉 x,y\in V italic_x , italic_y ∈ italic_V by

[ x , y ] = μ ( x , y ) - μ ( y , x ) 𝑥 𝑦 𝜇 𝑥 𝑦 𝜇 𝑦 𝑥 [x,y]=\mu(x,y)-\mu(y,x) [ italic_x , italic_y ] = italic_μ ( italic_x , italic_y ) - italic_μ ( italic_y , italic_x ) (2.1)

satisfies the Hom-Jacobi identity x , y , z [ α ( x ) , [ y , z ] ] = 0 subscript 𝑥 𝑦 𝑧 absent 𝛼 𝑥 𝑦 𝑧 0 \circlearrowleft_{x,y,z}{[\alpha(x),[y,z]]}=0 ↺ start_POSTSUBSCRIPT italic_x , italic_y , italic_z end_POSTSUBSCRIPT [ italic_α ( italic_x ) , [ italic_y , italic_z ] ] = 0 for all x , y , z V 𝑥 𝑦 𝑧 𝑉 x,y,z\in V italic_x , italic_y , italic_z ∈ italic_V .

Definition 3.5 .

A Hom-Vinberg algebra is a triple ( V , μ , α ) 𝑉 𝜇 𝛼 (V,\mu,\alpha) ( italic_V , italic_μ , italic_α ) consisting of a linear space V 𝑉 V italic_V , a bilinear map μ : V × V V : 𝜇 𝑉 𝑉 𝑉 \mu:V\times V\rightarrow V italic_μ : italic_V × italic_V → italic_V and a homomorphism α 𝛼 \alpha italic_α satisfying

μ ( α ( x ) , μ ( y , z ) ) - μ ( α ( y ) , μ ( x , z ) ) = μ ( μ ( x , y ) , α ( z ) ) - μ ( μ ( y , x ) , α ( z ) ) 𝜇 𝛼 𝑥 𝜇 𝑦 𝑧 𝜇 𝛼 𝑦 𝜇 𝑥 𝑧 𝜇 𝜇 𝑥 𝑦 𝛼 𝑧 𝜇 𝜇 𝑦 𝑥 𝛼 𝑧 \mu(\alpha(x),\mu(y,z))-\mu(\alpha(y),\mu(x,z))=\mu(\mu(x,y),\alpha(z))-\mu(% \mu(y,x),\alpha(z)) italic_μ ( italic_α ( italic_x ) , italic_μ ( italic_y , italic_z ) ) - italic_μ ( italic_α ( italic_y ) , italic_μ ( italic_x , italic_z ) ) = italic_μ ( italic_μ ( italic_x , italic_y ) , italic_α ( italic_z ) ) - italic_μ ( italic_μ ( italic_y , italic_x ) , italic_α ( italic_z ) ) (3.5)
Definition 3.6 .

A Hom-pre-Lie algebra is a triple ( V , μ , α ) 𝑉 𝜇 𝛼 (V,\mu,\alpha) ( italic_V , italic_μ , italic_α ) consisting of a linear space V 𝑉 V italic_V , a bilinear map μ : V × V V : 𝜇 𝑉 𝑉 𝑉 \mu:V\times V\rightarrow V italic_μ : italic_V × italic_V → italic_V and a homomorphism α 𝛼 \alpha italic_α satisfying

μ ( α ( x ) , μ ( y , z ) ) - μ ( α ( x ) , μ ( z , y ) ) = μ ( μ ( x , y ) , α ( z ) ) - μ ( μ ( x , z ) , α ( y ) ) 𝜇 𝛼 𝑥 𝜇 𝑦 𝑧 𝜇 𝛼 𝑥 𝜇 𝑧 𝑦 𝜇 𝜇 𝑥 𝑦 𝛼 𝑧 𝜇 𝜇 𝑥 𝑧 𝛼 𝑦 \mu(\alpha(x),\mu(y,z))-\mu(\alpha(x),\mu(z,y))=\mu(\mu(x,y),\alpha(z))-\mu(% \mu(x,z),\alpha(y)) italic_μ ( italic_α ( italic_x ) , italic_μ ( italic_y , italic_z ) ) - italic_μ ( italic_α ( italic_x ) , italic_μ ( italic_z , italic_y ) ) = italic_μ ( italic_μ ( italic_x , italic_y ) , italic_α ( italic_z ) ) - italic_μ ( italic_μ ( italic_x , italic_z ) , italic_α ( italic_y ) ) (3.6)
Definition 4.1 .

A Hom-algebra 𝒜 = ( V , μ , α ) 𝒜 𝑉 𝜇 𝛼 \mathcal{A}=(V,\mu,\alpha) caligraphic_A = ( italic_V , italic_μ , italic_α ) is called flexible if for any x , y 𝑥 𝑦 x,y italic_x , italic_y in V 𝑉 V italic_V

μ ( μ ( x , y ) , α ( x ) ) = μ ( α ( x ) , μ ( y , x ) ) ) fragments μ fragments ( μ fragments ( x , y ) , α fragments ( x ) ) μ fragments ( α fragments ( x ) , μ fragments ( y , x ) ) ) \mu(\mu(x,y),\alpha(x))=\mu(\alpha(x),\mu(y,x))) italic_μ ( italic_μ ( italic_x , italic_y ) , italic_α ( italic_x ) ) = italic_μ ( italic_α ( italic_x ) , italic_μ ( italic_y , italic_x ) ) ) (4.1)

Definition 2

Let ( X , O ) 𝑋 𝑂 (X,O) ( italic_X , italic_O ) be a germ of normal surface singularity, π : X ~ X normal-: 𝜋 normal-⟶ normal-~ 𝑋 𝑋 \pi:\tilde{X}\longrightarrow X italic_π : ~ start_ARG italic_X end_ARG ⟶ italic_X be the minimal resolution of singularities and E 1 , , E n subscript 𝐸 1 normal-… subscript 𝐸 𝑛 E_{1},\ldots,E_{n} italic_E start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … , italic_E start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT be the components of the exceptional divisor. Let K X ~ subscript 𝐾 normal-~ 𝑋 K_{\tilde{X}} italic_K start_POSTSUBSCRIPT ~ start_ARG italic_X end_ARG end_POSTSUBSCRIPT the canonical divisor on X ~ normal-~ 𝑋 {\tilde{X}} ~ start_ARG italic_X end_ARG . We say that ( X , O ) 𝑋 𝑂 (X,O) ( italic_X , italic_O ) satisfies numerical Nash condition for ( i , j ) 𝑖 𝑗 (i,j) ( italic_i , italic_j ) if the following condition is fulfilled

( N N ( i , j ) ) E = k = 1 n n k E k , n k 𝐼𝑁 * with n i < n j and - E E k 2 K X ~ E k , k = 1 , , n formulae-sequence 𝑁 subscript 𝑁 𝑖 𝑗 𝐸 superscript subscript 𝑘 1 𝑛 subscript 𝑛 𝑘 subscript 𝐸 𝑘 subscript 𝑛 𝑘 superscript 𝐼𝑁 with subscript 𝑛 𝑖 subscript 𝑛 𝑗 and 𝐸 subscript 𝐸 𝑘 2 subscript 𝐾 ~ 𝑋 subscript 𝐸 𝑘 for-all 𝑘 1 𝑛 ( italic_N italic_N start_POSTSUBSCRIPT ( italic_i , italic_j ) end_POSTSUBSCRIPT ) ∃ italic_E = ∑ start_POSTSUBSCRIPT italic_k = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT italic_n start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT italic_E start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT , italic_n start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ∈ IN start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT roman_with italic_n start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT < italic_n start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT roman_and - italic_E ⋅ italic_E start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ≥ 2 italic_K start_POSTSUBSCRIPT ~ start_ARG italic_X end_ARG end_POSTSUBSCRIPT ⋅ italic_E start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT , ∀ italic_k = 1 , … , italic_n

We also say that ( X , O ) 𝑋 𝑂 (X,O) ( italic_X , italic_O ) satisfies numerical Nash condition, (NN), if ( N N ( i , j ) ) 𝑁 subscript 𝑁 𝑖 𝑗 (NN_{(i,j)}) ( italic_N italic_N start_POSTSUBSCRIPT ( italic_i , italic_j ) end_POSTSUBSCRIPT ) is true for all couples ( i , j ) 𝑖 𝑗 (i,j) ( italic_i , italic_j ) , with i j 𝑖 𝑗 i\not=j italic_i ≠ italic_j .


Definition II.1

birk2nd A lattice is an algebra L = O , , normal-L subscript normal-O {\rm L}=\langle\mathcal{L}_{\rm O},\cap,\cup\rangle roman_L = ⟨ caligraphic_L start_POSTSUBSCRIPT roman_O end_POSTSUBSCRIPT , ∩ , ∪ ⟩ such that the following conditions are satisfied for any a , b , c O 𝑎 𝑏 𝑐 subscript normal-O a,b,c\in\mathcal{L}_{\rm O} italic_a , italic_b , italic_c ∈ caligraphic_L start_POSTSUBSCRIPT roman_O end_POSTSUBSCRIPT :

a b = b a a b = b a ( a b ) c = a ( b c ) ( a b ) c = a ( b c ) a ( a b ) = a a ( a b ) = a 𝑎 𝑏 𝑏 𝑎 𝑎 𝑏 𝑏 𝑎 𝑎 𝑏 𝑐 𝑎 𝑏 𝑐 missing-subexpression 𝑎 𝑏 𝑐 𝑎 𝑏 𝑐 𝑎 𝑎 𝑏 𝑎 missing-subexpression 𝑎 𝑎 𝑏 𝑎 \displaystyle\begin{array}[]{ccc}a\cup b=b\cup a\hfill&\hbox to 56.905512pt{% \hfill}&a\cap b=b\cap a\hfill\\ (a\cup b)\cup c=a\cup(b\cup c)&&(a\cap b)\cap c=a\cap(b\cap c)\\ a\cap(a\cup b)=a\hfill&&a\cup(a\cap b)=a\hfill\end{array} start_ARRAY start_ROW start_CELL italic_a ∪ italic_b = italic_b ∪ italic_a end_CELL start_CELL end_CELL start_CELL italic_a ∩ italic_b = italic_b ∩ italic_a end_CELL end_ROW start_ROW start_CELL ( italic_a ∪ italic_b ) ∪ italic_c = italic_a ∪ ( italic_b ∪ italic_c ) end_CELL start_CELL end_CELL start_CELL ( italic_a ∩ italic_b ) ∩ italic_c = italic_a ∩ ( italic_b ∩ italic_c ) end_CELL end_ROW start_ROW start_CELL italic_a ∩ ( italic_a ∪ italic_b ) = italic_a end_CELL start_CELL end_CELL start_CELL italic_a ∪ ( italic_a ∩ italic_b ) = italic_a end_CELL end_ROW end_ARRAY
Definition II.3

birk3rd An ortholattice (OL) is an algebra O , , , , 0 , 1 fragments normal-⟨ subscript normal-O superscript normal-, normal-′ normal-, normal-, normal-, 0 normal-, 1 normal-⟩ \langle\mathcal{L}_{\rm O},^{\prime},\cap,\cup,0,1\rangle ⟨ caligraphic_L start_POSTSUBSCRIPT roman_O end_POSTSUBSCRIPT , start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT , ∩ , ∪ , 0 , 1 ⟩ such that O , , subscript normal-O \langle\mathcal{L}_{\rm O},\cap,\cup\rangle ⟨ caligraphic_L start_POSTSUBSCRIPT roman_O end_POSTSUBSCRIPT , ∩ , ∪ ⟩ is a lattice with unary operation normal-′ {}^{\prime} start_FLOATSUPERSCRIPT ′ end_FLOATSUPERSCRIPT called orthocomlementation which satisfies the following conditions for a , b O 𝑎 𝑏 subscript normal-O a,b\in\mathcal{L}_{\rm O} italic_a , italic_b ∈ caligraphic_L start_POSTSUBSCRIPT roman_O end_POSTSUBSCRIPT ( a superscript 𝑎 normal-′ a^{\prime} italic_a start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT is called the orthocomplement of a 𝑎 a italic_a ):

a a = 1 , a a = 0 formulae-sequence 𝑎 superscript 𝑎 1 𝑎 superscript 𝑎 0 \displaystyle a\cup a^{\prime}=1,\qquad\qquad a\cap a^{\prime}=0 italic_a ∪ italic_a start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT = 1 , italic_a ∩ italic_a start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT = 0 (2)
a b b a formulae-sequence 𝑎 𝑏 superscript 𝑏 superscript 𝑎 \displaystyle a\leq b\quad\Rightarrow\quad b^{\prime}\leq a^{\prime} italic_a ≤ italic_b ⇒ italic_b start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ≤ italic_a start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT (3)
a ′′ = a superscript 𝑎 ′′ 𝑎 \displaystyle a^{\prime\prime}=a italic_a start_POSTSUPERSCRIPT ′ ′ end_POSTSUPERSCRIPT = italic_a (4)
Definition II.5

zeman We say that a 𝑎 a italic_a and b 𝑏 b italic_b commute in OML , and write a C b 𝑎 𝐶 𝑏 aCb italic_a italic_C italic_b , when either of the following equivalent equations hold:

a = ( ( a b ) ( a b ) ) 𝑎 𝑎 𝑏 𝑎 superscript 𝑏 \displaystyle a=((a\cap b)\cup(a\cap b^{\prime})) italic_a = ( ( italic_a ∩ italic_b ) ∪ ( italic_a ∩ italic_b start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) ) (6)
a ( a b ) b 𝑎 superscript 𝑎 𝑏 𝑏 \displaystyle a\cap(a^{\prime}\cup b)\leq b italic_a ∩ ( italic_a start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ∪ italic_b ) ≤ italic_b (7)

Definition 4.1

(a) Let A 𝐴 A italic_A be a \mathbb{H} blackboard_H -vector space as well as a \mathbb{R} blackboard_R -algebra (with respect to the induced \mathbb{R} blackboard_R -vector space structure on A 𝐴 A italic_A ). Then A 𝐴 A italic_A is called a \mathbb{H} blackboard_H -algebra if the following conditions are satisfied for any a , b A 𝑎 𝑏 𝐴 a,b\in A italic_a , italic_b ∈ italic_A and γ 𝛾 \gamma\in\mathbb{H} italic_γ ∈ blackboard_H :

( γ a ) b = γ ( a b ) , ( a γ ) b = a ( γ b ) and ( a b ) γ = a ( b γ ) . formulae-sequence 𝛾 𝑎 𝑏 𝛾 𝑎 𝑏 formulae-sequence 𝑎 𝛾 𝑏 𝑎 𝛾 𝑏 and 𝑎 𝑏 𝛾 𝑎 𝑏 𝛾 (\gamma a)b\ =\ \gamma(ab),\qquad(a\gamma)b\ =\ a(\gamma b)\qquad{\rm and}% \qquad(ab)\gamma=a(b\gamma). ( italic_γ italic_a ) italic_b = italic_γ ( italic_a italic_b ) , ( italic_a italic_γ ) italic_b = italic_a ( italic_γ italic_b ) roman_and ( italic_a italic_b ) italic_γ = italic_a ( italic_b italic_γ ) .

Moreover, a \mathbb{R} blackboard_R -involution * {}^{*} start_FLOATSUPERSCRIPT * end_FLOATSUPERSCRIPT on A 𝐴 A italic_A is called a \mathbb{H} blackboard_H -involution if for any α 𝛼 \alpha\in\mathbb{H} italic_α ∈ blackboard_H and b A 𝑏 𝐴 b\in A italic_b ∈ italic_A ,

( α b ) * = b * α * and ( b α ) * = α * b * . formulae-sequence superscript 𝛼 𝑏 superscript 𝑏 superscript 𝛼 and superscript 𝑏 𝛼 superscript 𝛼 superscript 𝑏 (\alpha b)^{*}\ =\ b^{*}\alpha^{*}\qquad{\rm and}\qquad(b\alpha)^{*}\ =\ % \alpha^{*}b^{*}. ( italic_α italic_b ) start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT = italic_b start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT italic_α start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT roman_and ( italic_b italic_α ) start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT = italic_α start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT italic_b start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT .

In this case, A 𝐴 A italic_A is called a \mathbb{H} blackboard_H -involutive algebra .

(b) Suppose that A 𝐴 A italic_A is a \mathbb{H} blackboard_H -involutive algebra with a \mathbb{H} blackboard_H -norm fragments parallel-to parallel-to \|\cdot\| ∥ ⋅ ∥ . Then A 𝐴 A italic_A is called a \mathbb{H} blackboard_H - B * superscript 𝐵 B^{*} italic_B start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT -algebra if it is complete under fragments parallel-to parallel-to \|\cdot\| ∥ ⋅ ∥ and fragments parallel-to parallel-to \|\cdot\| ∥ ⋅ ∥ satisfies the following properties:

a b a b and a * a = a 2 ( a , b A ) . fragments parallel-to a b parallel-to parallel-to a parallel-to parallel-to b parallel-to italic- and italic- parallel-to superscript 𝑎 a parallel-to parallel-to a superscript parallel-to 2 italic- fragments ( a , b A ) . \|ab\|\ \leq\ \|a\|\ \|b\|\qquad{\rm and}\qquad\|a^{*}a\|=\|a\|^{2}\qquad% \qquad(a,b\in A). ∥ italic_a italic_b ∥ ≤ ∥ italic_a ∥ ∥ italic_b ∥ roman_and ∥ italic_a start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT italic_a ∥ = ∥ italic_a ∥ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_a , italic_b ∈ italic_A ) .

Definition 4.3 .

Let G 𝐺 G italic_G be an amenable group acting on a probability space X 𝑋 X italic_X . The spectrum of this action is the associated G 𝐺 G italic_G -representation on L 2 ( X ) subscript 𝐿 2 𝑋 L_{2}(X) italic_L start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( italic_X ) given by

( ρ ( g ) f ) ( x ) = f ( g - 1 x ) . 𝜌 𝑔 𝑓 𝑥 𝑓 superscript 𝑔 1 𝑥 (\rho(g)f)(x)=f(g^{-1}x). ( italic_ρ ( italic_g ) italic_f ) ( italic_x ) = italic_f ( italic_g start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT italic_x ) .

The spectrum is called Lebesgue with multiplicity N 𝑁 N italic_N (which can be infinity) if L 2 ( X ) subscript 𝐿 2 𝑋 L_{2}(X) italic_L start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( italic_X ) decomposes into direct sum of N 𝑁 N italic_N copies of the regular representation of G 𝐺 G italic_G .