Definition 2.2 .

The Hyperbolic algebra R ⁒ { ΞΈ , ΞΎ } 𝑅 πœƒ πœ‰ R\{\theta,\xi\} italic_R { italic_ΞΈ , italic_ΞΎ } is defined to be the R - limit-from 𝑅 R- italic_R - algebra generated by x , y π‘₯ 𝑦 x,y italic_x , italic_y subject to the following relations:

x ⁒ y = ΞΎ , y ⁒ x = ΞΈ - 1 ⁒ ( ΞΎ ) formulae-sequence π‘₯ 𝑦 πœ‰ 𝑦 π‘₯ superscript πœƒ 1 πœ‰ xy=\xi,\quad yx=\theta^{-1}(\xi) italic_x italic_y = italic_ΞΎ , italic_y italic_x = italic_ΞΈ start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ( italic_ΞΎ )

and

x ⁒ a = ΞΈ ⁒ ( a ) ⁒ x , y ⁒ a = ΞΈ - 1 ⁒ ( a ) ⁒ y formulae-sequence π‘₯ π‘Ž πœƒ π‘Ž π‘₯ 𝑦 π‘Ž superscript πœƒ 1 π‘Ž 𝑦 xa=\theta(a)x,\quad ya=\theta^{-1}(a)y italic_x italic_a = italic_ΞΈ ( italic_a ) italic_x , italic_y italic_a = italic_ΞΈ start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ( italic_a ) italic_y

for any a ∈ R π‘Ž 𝑅 a\in R italic_a ∈ italic_R . R ⁒ { ΞΈ , ΞΎ } 𝑅 πœƒ πœ‰ R\{\theta,\xi\} italic_R { italic_ΞΈ , italic_ΞΎ } is called a Hyperbolic algebra over R 𝑅 R italic_R .


Definition 8

The symplectic inner product of vectors ( a , b ) , ( a β€² , b β€² ) ∈ 𝔽 q 2 ⁒ m π‘Ž 𝑏 superscript π‘Ž normal-β€² superscript 𝑏 normal-β€² superscript subscript 𝔽 π‘ž 2 π‘š (a,b),(a^{\prime},b^{\prime})\in\mathbb{F}_{q}^{2m} ( italic_a , italic_b ) , ( italic_a start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT , italic_b start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ) ∈ blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 italic_m end_POSTSUPERSCRIPT is given by

( a , b ) βŠ™ ( a β€² , b β€² ) = a β‹… b β€² βŠ• a β€² β‹… b . direct-product π‘Ž 𝑏 superscript π‘Ž β€² superscript 𝑏 β€² direct-sum β‹… π‘Ž superscript 𝑏 β€² β‹… superscript π‘Ž β€² 𝑏 (a,b)\odot(a^{\prime},b^{\prime})=a\cdot b^{\prime}\oplus a^{\prime}\cdot b. ( italic_a , italic_b ) βŠ™ ( italic_a start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT , italic_b start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ) = italic_a β‹… italic_b start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT βŠ• italic_a start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT β‹… italic_b . (1)

Definition 2.2 .

A Poisson (or Hamiltonian 4 4 4 The expression Hamiltonian manifold is often used for the generalization of Poisson structure in the case of infinite dimension manifolds. ) structure on a C ∞ superscript 𝐢 C^{\infty} italic_C start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT manifold M 𝑀 M italic_M is a skew-symmetric bilinear mapping ( f , g ) ↦ { f , g } maps-to 𝑓 𝑔 𝑓 𝑔 (f,g)\mapsto\{f,g\,\} ( italic_f , italic_g ) ↦ { italic_f , italic_g } on the space C ∞ ⁒ ( M ) superscript 𝐢 𝑀 C^{\infty}(M) italic_C start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT ( italic_M ) , which satisfies the Jacobi identity

(3) { { f , g } , h } + { { g , h } , f } + { { h , f } , g } = 0 , 𝑓 𝑔 β„Ž 𝑔 β„Ž 𝑓 β„Ž 𝑓 𝑔 0 \{\{f,g\,\},h\,\}+\{\{g,h\,\},f\,\}+\{\{h,f\,\},g\,\}=0, { { italic_f , italic_g } , italic_h } + { { italic_g , italic_h } , italic_f } + { { italic_h , italic_f } , italic_g } = 0 ,

as well as the Leibnitz identity

(4) { f , g ⁒ h } = { f , g } ⁒ h + g ⁒ { f , h } . 𝑓 𝑔 β„Ž 𝑓 𝑔 β„Ž 𝑔 𝑓 β„Ž \{f,gh\,\}=\{f,g\,\}h+g\{f,h\,\}. { italic_f , italic_g italic_h } = { italic_f , italic_g } italic_h + italic_g { italic_f , italic_h } .

Definition 2

We say that the function a ∈ L 1 ⁒ ( 0 , T ) π‘Ž superscript 𝐿 1 0 𝑇 a\in L^{1}(0,T) italic_a ∈ italic_L start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT ( 0 , italic_T ) is completely positive on [ 0 , T ] 0 𝑇 [0,T] [ 0 , italic_T ] , if for any ΞΌ β‰₯ 0 πœ‡ 0 \mu\geq 0 italic_ΞΌ β‰₯ 0 , the solutions of the equations

s ⁒ ( t ) + ΞΌ ⁒ ( a ⋆ s ) ⁒ ( t ) = 1 π‘Žπ‘›π‘‘ r ⁒ ( t ) + ΞΌ ⁒ ( a ⋆ r ) ⁒ ( t ) = a ⁒ ( t ) formulae-sequence 𝑠 𝑑 πœ‡ ⋆ π‘Ž 𝑠 𝑑 1 π‘Žπ‘›π‘‘ π‘Ÿ 𝑑 πœ‡ ⋆ π‘Ž π‘Ÿ 𝑑 π‘Ž 𝑑 s(t)\!+\!\mu(a\star s)(t)=1\quad\mbox{and}\quad r(t)\!+\!\mu(a\star r)(t)=a(t) italic_s ( italic_t ) + italic_ΞΌ ( italic_a ⋆ italic_s ) ( italic_t ) = 1 and italic_r ( italic_t ) + italic_ΞΌ ( italic_a ⋆ italic_r ) ( italic_t ) = italic_a ( italic_t ) (3)

satisfy s ⁒ ( t ) β‰₯ 0 𝑠 𝑑 0 s(t)\geq 0 italic_s ( italic_t ) β‰₯ 0 and r ⁒ ( t ) β‰₯ 0 π‘Ÿ 𝑑 0 r(t)\geq 0 italic_r ( italic_t ) β‰₯ 0 on [ 0 , T ] 0 𝑇 [0,T] [ 0 , italic_T ] .


Definition 2.1 .

We denote by R ⁒ { ΞΈ , ΞΎ } 𝑅 πœƒ πœ‰ R\{\theta,\xi\} italic_R { italic_ΞΈ , italic_ΞΎ } the corresponding R - limit-from 𝑅 R- italic_R - algebra generated by x , y π‘₯ 𝑦 x,y italic_x , italic_y subject to the following relations:

x ⁒ y = ΞΎ , y ⁒ x = ΞΈ - 1 ⁒ ( ΞΎ ) formulae-sequence π‘₯ 𝑦 πœ‰ 𝑦 π‘₯ superscript πœƒ 1 πœ‰ xy=\xi,\quad yx=\theta^{-1}(\xi) italic_x italic_y = italic_ΞΎ , italic_y italic_x = italic_ΞΈ start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ( italic_ΞΎ )

and

x ⁒ a = ΞΈ ⁒ ( a ) ⁒ x , y ⁒ a = ΞΈ - 1 ⁒ ( a ) ⁒ y formulae-sequence π‘₯ π‘Ž πœƒ π‘Ž π‘₯ 𝑦 π‘Ž superscript πœƒ 1 π‘Ž 𝑦 xa=\theta(a)x,\quad ya=\theta^{-1}(a)y italic_x italic_a = italic_ΞΈ ( italic_a ) italic_x , italic_y italic_a = italic_ΞΈ start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ( italic_a ) italic_y

for any a ∈ R π‘Ž 𝑅 a\in R italic_a ∈ italic_R . And R ⁒ { ΞΈ , ΞΎ } 𝑅 πœƒ πœ‰ R\{\theta,\xi\} italic_R { italic_ΞΈ , italic_ΞΎ } is called a Hyperbolic algebra over R 𝑅 R italic_R .


Definition 8.10 .

The dual braid relations with respect to W π‘Š W italic_W and c 𝑐 c italic_c are all the formal relations of the form

r ⁒ r β€² = r β€² ⁒ r β€²β€² , π‘Ÿ superscript π‘Ÿ β€² superscript π‘Ÿ β€² superscript π‘Ÿ β€²β€² rr^{\prime}=r^{\prime}r^{\prime\prime}, italic_r italic_r start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT = italic_r start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT italic_r start_POSTSUPERSCRIPT β€² β€² end_POSTSUPERSCRIPT ,

where r , r β€² , r β€²β€² ∈ R π‘Ÿ superscript π‘Ÿ β€² superscript π‘Ÿ β€²β€² 𝑅 r,r^{\prime},r^{\prime\prime}\in R italic_r , italic_r start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT , italic_r start_POSTSUPERSCRIPT β€² β€² end_POSTSUPERSCRIPT ∈ italic_R are such that r β‰  r β€² π‘Ÿ superscript π‘Ÿ β€² r\neq r^{\prime} italic_r β‰  italic_r start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT , r ⁒ r β€² ∈ [ 1 , c ] π‘Ÿ superscript π‘Ÿ β€² 1 𝑐 rr^{\prime}\in[1,c] italic_r italic_r start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ∈ [ 1 , italic_c ] , and the relation r ⁒ r β€² = r β€² ⁒ r β€²β€² π‘Ÿ superscript π‘Ÿ β€² superscript π‘Ÿ β€² superscript π‘Ÿ β€²β€² rr^{\prime}=r^{\prime}r^{\prime\prime} italic_r italic_r start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT = italic_r start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT italic_r start_POSTSUPERSCRIPT β€² β€² end_POSTSUPERSCRIPT holds in W π‘Š W italic_W .


Definition 4 (Pre-valuation)

A pre-valuation on an orthomodular lattice β„’ β„’ {\mathcal{L}} caligraphic_L is a function Ξ½ : β„’ β†’ { 0 , 1 } normal-: 𝜈 normal-β†’ β„’ 0 1 \nu:{\mathcal{L}}\rightarrow\left\{{0,1}\right\} italic_Ξ½ : caligraphic_L β†’ { 0 , 1 } whichΒ verifies:

ν ⁒ ( ⊀ ) = 1 𝜈 top 1 \displaystyle\nu(\top)=1 italic_ν ( ⊀ ) = 1
βˆ€ x , y ∈ β„’ , ( x βŠ₯ y β‡’ Ξ½ ( x ∨ y ) β‰₯ Ξ½ ( x ) + Ξ½ ( y ) ) fragments for-all x , y L , fragments ( x bottom y β‡’ Ξ½ fragments ( x y ) Ξ½ fragments ( x ) Ξ½ fragments ( y ) ) \displaystyle{\forall\,{x,y\in{\mathcal{L}}},\ }\bigl{(}x\,\bot\,y\Rightarrow% \nu(x\vee y)\geq\nu(x)+\nu(y)\bigr{)} βˆ€ italic_x , italic_y ∈ caligraphic_L , ( italic_x βŠ₯ italic_y β‡’ italic_Ξ½ ( italic_x ∨ italic_y ) β‰₯ italic_Ξ½ ( italic_x ) + italic_Ξ½ ( italic_y ) )
βˆ€ x , y ∈ β„’ , ( x and y compatible β‡’ Ξ½ ( x ∧ y ) = Ξ½ ( x ) Γ— Ξ½ ( y ) ) fragments for-all x , y L , fragments ( x and y compatible β‡’ Ξ½ fragments ( x y ) Ξ½ fragments ( x ) Ξ½ fragments ( y ) ) \displaystyle{\forall\,{x,y\in{\mathcal{L}}},\ }\bigl{(}x\hbox{\ and\ }y\hbox{% \ compatible}\Rightarrow\nu(x\wedge y)=\nu(x)\times\nu(y)\bigr{)} βˆ€ italic_x , italic_y ∈ caligraphic_L , ( italic_x and italic_y compatible β‡’ italic_Ξ½ ( italic_x ∧ italic_y ) = italic_Ξ½ ( italic_x ) Γ— italic_Ξ½ ( italic_y ) )

Definition 2.2 (Density Matrices)

The set of density matrices (states) on a Hilbert space β„‹ β„‹ \mathcal{H} caligraphic_H fulfilling

ρ = ρ † 𝜌 superscript 𝜌 † \displaystyle\rho=\rho^{{\dagger}} italic_ρ = italic_ρ start_POSTSUPERSCRIPT † end_POSTSUPERSCRIPT selfadjoint
ρ β‰₯ 0 𝜌 0 \displaystyle\rho\geq 0 italic_ρ β‰₯ 0 positive
t ⁒ r ⁒ [ ρ ] = 1 𝑑 π‘Ÿ delimited-[] 𝜌 1 \displaystyle tr[\rho]=1 italic_t italic_r [ italic_ρ ] = 1 normalised

will be denoted by S ⁒ ( β„‹ ) 𝑆 β„‹ S(\mathcal{H}) italic_S ( caligraphic_H ) . S ⁒ ( β„‹ ) 𝑆 β„‹ S(\mathcal{H}) italic_S ( caligraphic_H ) is a closed convex subset of the bounded linear operators ℬ ⁒ ( β„‹ ) ℬ β„‹ \mathcal{B}(\mathcal{H}) caligraphic_B ( caligraphic_H ) on β„‹ β„‹ \mathcal{H} caligraphic_H . Note, that all states are by definition trace-class operators.


Definition 6.1 .

A complex geodesic is the projection of a solution of the Hamiltonian systemΒ ( 4.3 ) with the non-standard boundary conditions

x ⁒ ( 0 ) = 0 , x ⁒ ( 1 ) = x , z ⁒ ( 0 ) = 0 , z ⁒ ( 1 ) = z , and formulae-sequence π‘₯ 0 0 formulae-sequence π‘₯ 1 π‘₯ formulae-sequence 𝑧 0 0 𝑧 1 𝑧 and x(0)=0,\quad x(1)=x,\quad z(0)=0,\quad z(1)=z,\quad\text{and} italic_x ( 0 ) = 0 , italic_x ( 1 ) = italic_x , italic_z ( 0 ) = 0 , italic_z ( 1 ) = italic_z , and
ΞΈ m = - i ⁒ Ο„ m , m = 1 , 2 , 3 , formulae-sequence subscript πœƒ π‘š 𝑖 subscript 𝜏 π‘š π‘š 1 2 3 \theta_{m}=-i\tau_{m},\quad m=1,2,3, italic_ΞΈ start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT = - italic_i italic_Ο„ start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT , italic_m = 1 , 2 , 3 ,

on the ( x , z ) π‘₯ 𝑧 (x,z) ( italic_x , italic_z ) -space.


Definition 2.2 .

The Hyperbolic algebra R ⁒ { ΞΈ , ΞΎ } 𝑅 πœƒ πœ‰ R\{\theta,\,\xi\} italic_R { italic_ΞΈ , italic_ΞΎ } is defined to be the R - limit-from 𝑅 R- italic_R - algebra generated by x , y π‘₯ 𝑦 x,\,y italic_x , italic_y subject to the following relations:

x ⁒ y = ΞΎ , y ⁒ x = ΞΈ - 1 ⁒ ( ΞΎ ) formulae-sequence π‘₯ 𝑦 πœ‰ 𝑦 π‘₯ superscript πœƒ 1 πœ‰ xy=\xi,\quad yx=\theta^{-1}(\xi) italic_x italic_y = italic_ΞΎ , italic_y italic_x = italic_ΞΈ start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ( italic_ΞΎ )

and

x ⁒ a = ΞΈ ⁒ ( a ) ⁒ x , y ⁒ a = ΞΈ - 1 ⁒ ( a ) ⁒ y formulae-sequence π‘₯ π‘Ž πœƒ π‘Ž π‘₯ 𝑦 π‘Ž superscript πœƒ 1 π‘Ž 𝑦 xa=\theta(a)x,\quad ya=\theta^{-1}(a)y italic_x italic_a = italic_ΞΈ ( italic_a ) italic_x , italic_y italic_a = italic_ΞΈ start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ( italic_a ) italic_y

for any a ∈ R π‘Ž 𝑅 a\in R italic_a ∈ italic_R . And R ⁒ { ΞΈ , ΞΎ } 𝑅 πœƒ πœ‰ R\{\theta,\,\xi\} italic_R { italic_ΞΈ , italic_ΞΎ } is called a Hyperbolic algebra over R 𝑅 R italic_R .