Definition 2.7 .

Let N 𝑁 N italic_N and K 𝐾 K italic_K be groups, and assume that there exists a group homomorphism Ξ± : K β†’ Aut ⁒ N normal-: 𝛼 normal-β†’ 𝐾 normal-Aut 𝑁 \alpha:K\rightarrow\mathrm{Aut}N italic_Ξ± : italic_K β†’ roman_Aut italic_N . The semidirect product N β‹Š Ξ± K subscript right-normal-factor-semidirect-product 𝛼 𝑁 𝐾 N\rtimes_{\alpha}K italic_N β‹Š start_POSTSUBSCRIPT italic_Ξ± end_POSTSUBSCRIPT italic_K of N 𝑁 N italic_N and K 𝐾 K italic_K with respect to Ξ± 𝛼 \alpha italic_Ξ± is defined as follows:

(1) As set, N β‹Š Ξ± K subscript right-normal-factor-semidirect-product 𝛼 𝑁 𝐾 N\rtimes_{\alpha}K italic_N β‹Š start_POSTSUBSCRIPT italic_Ξ± end_POSTSUBSCRIPT italic_K is the Cartesian product of N and K;

(2) The multiplication is given by

( a , x ) ⁒ ( b , y ) = ( a ⁒ Ξ± ⁒ ( x ) ⁒ ( b ) , x ⁒ y ) π‘Ž π‘₯ 𝑏 𝑦 π‘Ž 𝛼 π‘₯ 𝑏 π‘₯ 𝑦 (a,x)(b,y)=(a\alpha(x)(b),xy) ( italic_a , italic_x ) ( italic_b , italic_y ) = ( italic_a italic_Ξ± ( italic_x ) ( italic_b ) , italic_x italic_y )

for any a ∈ \in ∈ N and x ∈ \in ∈ N.

Definition 2.8 .

Let A 𝐴 A italic_A and H 𝐻 H italic_H be two groups and H 𝐻 H italic_H act on the set X 𝑋 X italic_X . Assume that B 𝐡 B italic_B is the set of all maps from X 𝑋 X italic_X to A 𝐴 A italic_A . Define the multiplication of B 𝐡 B italic_B and the group homomorphism Ξ± 𝛼 \alpha italic_Ξ± from H 𝐻 H italic_H to Aut B 𝐡 B italic_B as follows:

( b ⁒ b β€² ) ⁒ ( x ) = b ⁒ ( x ) ⁒ b β€² ⁒ ( x ) ⁒ and ⁒ Ξ± ⁒ ( h ) ⁒ ( b ) ⁒ ( x ) = b ⁒ ( h - 1 β‹… x ) 𝑏 superscript 𝑏 β€² π‘₯ 𝑏 π‘₯ superscript 𝑏 β€² π‘₯ and 𝛼 β„Ž 𝑏 π‘₯ 𝑏 β‹… superscript β„Ž 1 π‘₯ (bb^{\prime})(x)=b(x)b^{\prime}(x)\hbox{ \ and }\alpha(h)(b)(x)=b(h^{-1}\cdot x) ( italic_b italic_b start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ) ( italic_x ) = italic_b ( italic_x ) italic_b start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ( italic_x ) and italic_Ξ± ( italic_h ) ( italic_b ) ( italic_x ) = italic_b ( italic_h start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT β‹… italic_x )

for any x ∈ X , h ∈ H , b , b β€² ∈ B . formulae-sequence π‘₯ 𝑋 formulae-sequence β„Ž 𝐻 𝑏 superscript 𝑏 normal-β€² 𝐡 x\in X,h\in H,b,b^{\prime}\in B. italic_x ∈ italic_X , italic_h ∈ italic_H , italic_b , italic_b start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ∈ italic_B .

The semidirect product B β‹Š Ξ± H subscript right-normal-factor-semidirect-product 𝛼 𝐡 𝐻 B\rtimes_{\alpha}H italic_B β‹Š start_POSTSUBSCRIPT italic_Ξ± end_POSTSUBSCRIPT italic_H is called the (general) wreath product of A 𝐴 A italic_A and H 𝐻 H italic_H , written as A 𝐴 A italic_A wr H 𝐻 H italic_H .


Definition 2.2 .

A (small) category C 𝐢 C italic_C is left locally Garside if

  1. (i)

    It is left Noetherian.

  2. (ii)

    It has the left cancellation property, i.e. x ⁒ y = x ⁒ z π‘₯ 𝑦 π‘₯ 𝑧 xy=xz italic_x italic_y = italic_x italic_z implies y = z 𝑦 𝑧 y=z italic_y = italic_z (in other words, every morphism is an epimorphism).

  3. (iii)

    Two morphisms which have some common right multiple have a right lcm.


Definition 3.16 .

The sc-smooth map f : X β†’ Y normal-: 𝑓 normal-β†’ 𝑋 π‘Œ f:X\to Y italic_f : italic_X β†’ italic_Y between two M-polyfolds is called a fred-submersion if at every point x 0 ∈ X subscript π‘₯ 0 𝑋 x_{0}\in X italic_x start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ∈ italic_X resp. f ⁒ ( x 0 ) ∈ Y 𝑓 subscript π‘₯ 0 π‘Œ f(x_{0})\in Y italic_f ( italic_x start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) ∈ italic_Y there exists a chart ( U , Ο† , 𝒯 βŠ• 𝒯 ^ ) π‘ˆ πœ‘ direct-sum 𝒯 normal-^ 𝒯 (U,\varphi,{\mathcal{T}}\oplus\widehat{\mathcal{T}}) ( italic_U , italic_Ο† , caligraphic_T βŠ• ^ start_ARG caligraphic_T end_ARG ) resp. ( W , ψ , 𝒯 ) π‘Š πœ“ 𝒯 (W,\psi,{\mathcal{T}}) ( italic_W , italic_ψ , caligraphic_T ) satisfying f ⁒ ( U ) βŠ‚ W 𝑓 π‘ˆ π‘Š f(U)\subset W italic_f ( italic_U ) βŠ‚ italic_W and

ψ ∘ f ∘ Ο† - 1 ⁒ ( v , e β€² , e β€²β€² ) = ( v , e β€² ) πœ“ 𝑓 superscript πœ‘ 1 𝑣 superscript 𝑒 β€² superscript 𝑒 β€²β€² 𝑣 superscript 𝑒 β€² \psi\circ f\circ\varphi^{-1}(v,e^{\prime},e^{\prime\prime})=(v,e^{\prime}) italic_ψ ∘ italic_f ∘ italic_Ο† start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ( italic_v , italic_e start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT , italic_e start_POSTSUPERSCRIPT β€² β€² end_POSTSUPERSCRIPT ) = ( italic_v , italic_e start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT )

and, moreover, the splicing 𝒯 ^ = ( ρ ^ , E , V ) normal-^ 𝒯 normal-^ 𝜌 𝐸 𝑉 \widehat{\mathcal{T}}=(\widehat{\rho},E,V) ^ start_ARG caligraphic_T end_ARG = ( ^ start_ARG italic_ρ end_ARG , italic_E , italic_V ) has the special property that the projections ρ ^ v subscript normal-^ 𝜌 𝑣 \widehat{\rho}_{v} ^ start_ARG italic_ρ end_ARG start_POSTSUBSCRIPT italic_v end_POSTSUBSCRIPT do not depend on v 𝑣 v italic_v and project onto a finite dimensional subspace of E 𝐸 E italic_E .


Definition 2.1 .

A differential form Ο‰ ∈ Ξ© βˆ™ ⁒ ( 𝒒 ) πœ” superscript Ξ© βˆ™ 𝒒 \omega\in\Omega^{\bullet}(\mathcal{G}) italic_Ο‰ ∈ roman_Ξ© start_POSTSUPERSCRIPT βˆ™ end_POSTSUPERSCRIPT ( caligraphic_G ) is multiplicative if

βˆ‚ * ⁑ Ο‰ = 0 . superscript πœ” 0 \partial^{*}\omega=0. βˆ‚ start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT italic_Ο‰ = 0 . (2.1b)

A symplectic groupoid is a groupoid Ξ£ Ξ£ \Sigma roman_Ξ£ with a multiplicative symplectic form Ο‰ ∈ Ξ© 2 ⁒ ( Ξ£ ) πœ” superscript Ξ© 2 Ξ£ \omega\in\Omega^{2}(\Sigma) italic_Ο‰ ∈ roman_Ξ© start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( roman_Ξ£ ) . (I usually denote a symplectic groupoid as Ξ£ Ξ£ \Sigma roman_Ξ£ .)


Definition 1.2 .

For every n β‰₯ 0 𝑛 0 n\geq 0 italic_n β‰₯ 0 we denote by * n absent 𝑛 *n * italic_n a strip in Nim of length n 𝑛 n italic_n . We write 0 0 and * * * as shorthand for * 0 absent 0 *0 * 0 and * 1 absent 1 *1 * 1 , respectively. Formally, we have

* n = { 0 , * , * 2 , * 3 , … , * ( n - 1 ) } . fragments n fragments { 0 , , 2 , 3 , … , fragments ( n 1 ) } . *n=\{0,*,*2,*3,\ldots,*(n-1)\}. * italic_n = { 0 , * , * 2 , * 3 , … , * ( italic_n - 1 ) } .
Definition 5.19 .

A quotient map Ξ¦ : π’œ β†’ 𝒬 normal-: normal-Ξ¦ normal-β†’ π’œ 𝒬 \Phi:\mathscr{A}\to\mathcal{Q} roman_Ξ¦ : script_A β†’ caligraphic_Q is faithful if, for all G , H ∈ π’œ 𝐺 𝐻 π’œ G,H\in\mathscr{A} italic_G , italic_H ∈ script_A ,

Ξ¦ ⁒ ( G ) = Ξ¦ ⁒ ( H ) β‡’ 𝒒 ⁒ ( G ) = 𝒒 ⁒ ( H ) . Ξ¦ 𝐺 Ξ¦ 𝐻 β‡’ 𝒒 𝐺 𝒒 𝐻 \Phi(G)=\Phi(H)\Rightarrow\mathscr{G}(G)=\mathscr{G}(H). roman_Ξ¦ ( italic_G ) = roman_Ξ¦ ( italic_H ) β‡’ script_G ( italic_G ) = script_G ( italic_H ) .

Definition Definition 2.1

The Kac-Moody Lie algebra 𝔀 ⁒ ( A ) 𝔀 𝐴 \mathfrak{g}(A) fraktur_g ( italic_A ) associated with the generalized Cartan matrix A 𝐴 A italic_A is the Lie algebra generated by the elements e i , f i ( i = 1 , 2 , β‹― , n ) fragments subscript 𝑒 𝑖 , subscript 𝑓 𝑖 fragments ( i 1 , 2 , β‹― , n ) e_{i},\;f_{i}\;(i=1,2,\cdots,n) italic_e start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT , italic_f start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ( italic_i = 1 , 2 , β‹― , italic_n ) and π”₯ π”₯ \mathfrak{h} fraktur_h with the defining relations

[ h , h β€² ] = 0 for all ⁒ h , h β€² ∈ π”₯ , formulae-sequence β„Ž superscript β„Ž β€² 0 for all β„Ž superscript β„Ž β€² π”₯ \displaystyle[h,h^{\prime}]=0\qquad\text{for all}\;h,h^{\prime}\in\mathfrak{h}, [ italic_h , italic_h start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ] = 0 for all italic_h , italic_h start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ∈ fraktur_h ,
[ e i , f j ] = Ξ΄ i ⁒ j ⁒ Ξ± i ∨ for ⁒ 1 ≀ i , j ≀ n , formulae-sequence subscript 𝑒 𝑖 subscript 𝑓 𝑗 subscript 𝛿 𝑖 𝑗 superscript subscript 𝛼 𝑖 formulae-sequence for 1 𝑖 𝑗 𝑛 \displaystyle[e_{i},f_{j}]=\delta_{ij}\alpha_{i}^{\vee}\qquad\text{for}\;1\leq i% ,j\leq n, [ italic_e start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT , italic_f start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT ] = italic_Ξ΄ start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT italic_Ξ± start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∨ end_POSTSUPERSCRIPT for 1 ≀ italic_i , italic_j ≀ italic_n ,
[ h , e i ] = Ξ± i ⁒ ( h ) ⁒ e i , [ h , f i ] = - Ξ± i ⁒ ( h ) ⁒ f i for ⁒ i = 1 , 2 , β‹― , n , formulae-sequence β„Ž subscript 𝑒 𝑖 subscript 𝛼 𝑖 β„Ž subscript 𝑒 𝑖 formulae-sequence β„Ž subscript 𝑓 𝑖 subscript 𝛼 𝑖 β„Ž subscript 𝑓 𝑖 for 𝑖 1 2 β‹― 𝑛 \displaystyle[h,e_{i}]=\alpha_{i}(h)e_{i},\;\;[h,f_{i}]=-\alpha_{i}(h)f_{i}\;% \quad\text{for}\;i=1,2,\cdots,n, [ italic_h , italic_e start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ] = italic_Ξ± start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ( italic_h ) italic_e start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT , [ italic_h , italic_f start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ] = - italic_Ξ± start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ( italic_h ) italic_f start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT for italic_i = 1 , 2 , β‹― , italic_n ,
( a ⁒ d ⁒ e i ) 1 - a i ⁒ j ⁒ ( e j ) = ( a ⁒ d ⁒ f i ) 1 - a i ⁒ j ⁒ ( f j ) = 0 for ⁒ i β‰  j . formulae-sequence superscript π‘Ž 𝑑 subscript 𝑒 𝑖 1 subscript π‘Ž 𝑖 𝑗 subscript 𝑒 𝑗 superscript π‘Ž 𝑑 subscript 𝑓 𝑖 1 subscript π‘Ž 𝑖 𝑗 subscript 𝑓 𝑗 0 for 𝑖 𝑗 \displaystyle(ad\,e_{i})^{1-a_{ij}}(e_{j})=\;\;(ad\,f_{i})^{1-a_{ij}}(f_{j})=0% \;\quad\text{for}\;i\neq j. ( italic_a italic_d italic_e start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT 1 - italic_a start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT end_POSTSUPERSCRIPT ( italic_e start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT ) = ( italic_a italic_d italic_f start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT 1 - italic_a start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT end_POSTSUPERSCRIPT ( italic_f start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT ) = 0 for italic_i β‰  italic_j .

The elements of Ξ  Ξ  \Pi roman_Ξ  (resp. Ξ  ∨ superscript Ξ  \Pi^{\vee} roman_Ξ  start_POSTSUPERSCRIPT ∨ end_POSTSUPERSCRIPT ) are called simple roots (resp. simple coroots ) of 𝔀 ⁒ ( A ) . 𝔀 𝐴 \mathfrak{g}(A). fraktur_g ( italic_A ) .


5.8 Definition (Factor sets) .

Let A 𝐴 A italic_A and C 𝐢 C italic_C be (Abelian) groups. A factor set is a map 𝒻 : π’ž Γ— π’ž β†’ π’œ : 𝒻 β†’ π’ž π’ž π’œ \mathpzc{f}:C\times C\to A italic_script_f : italic_script_C Γ— italic_script_C β†’ italic_script_A such that, for every x π‘₯ x italic_x , y 𝑦 y italic_y , z ∈ C 𝑧 𝐢 z\in C italic_z ∈ italic_C ,

Given such a factor set, the crossed product of C 𝐢 C italic_C and A 𝐴 A italic_A is the group Γ— ( C , A , 𝒻 ) absent 𝐢 𝐴 𝒻 \times(C,A,\mathpzc{f}) Γ— ( italic_C , italic_A , italic_script_f ) , whose underlying set is C Γ— A 𝐢 𝐴 C\times A italic_C Γ— italic_A , and whose sum is defined as follows:

( c , a ) + ( c β€² , a β€² ) = ( c + c β€² , a + a β€² + 𝒻 ⁒ ( 𝒸 , 𝒸 β€² ) ) . 𝑐 π‘Ž superscript 𝑐 β€² superscript π‘Ž β€² 𝑐 superscript 𝑐 β€² π‘Ž superscript π‘Ž β€² 𝒻 𝒸 superscript 𝒸 β€² (c,a)+(c^{\prime},a^{\prime})=\bigl{(}c+c^{\prime},a+a^{\prime}+\mathpzc{f}(c,% c^{\prime})\bigr{)}. ( italic_c , italic_a ) + ( italic_c start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT , italic_a start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ) = ( italic_c + italic_c start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT , italic_a + italic_a start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT + italic_script_f ( italic_script_c , italic_script_c start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ) ) .

Definition 1.4 .

Let f : [ Ξ» ] < β„΅ 0 β†’ ΞΌ : 𝑓 β†’ superscript delimited-[] πœ† absent subscript β„΅ 0 πœ‡ f:[\lambda]^{<\aleph_{0}}\rightarrow\mu italic_f : [ italic_Ξ» ] start_POSTSUPERSCRIPT < roman_β„΅ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT β†’ italic_ΞΌ be a function.
I D ( f ) := { ( a , e ) : ( a , e ) fragments I D fragments ( f ) assign fragments { fragments ( a , e ) : fragments ( a , e ) ID(f):=\{(a,e):(a,e) italic_I italic_D ( italic_f ) := { ( italic_a , italic_e ) : ( italic_a , italic_e ) is an identity, and there exists a one-to-one mapping

h : a β†’ Ξ» , such that b e c β‡’ f ( h β€²β€² ( b ) ) = f ( h β€²β€² ( c ) ) } fragments h : a β†’ Ξ» , such that b e c β‡’ f fragments ( superscript β„Ž β€²β€² fragments ( b ) ) f fragments ( superscript β„Ž β€²β€² fragments ( c ) ) } h:a\rightarrow\lambda,\hbox{ {such that}\ }bec\Rightarrow f(h^{\prime\prime}(b% ))=f(h^{\prime\prime}(c))\} italic_h : italic_a β†’ italic_Ξ» , such that italic_b italic_e italic_c β‡’ italic_f ( italic_h start_POSTSUPERSCRIPT β€² β€² end_POSTSUPERSCRIPT ( italic_b ) ) = italic_f ( italic_h start_POSTSUPERSCRIPT β€² β€² end_POSTSUPERSCRIPT ( italic_c ) ) }

Notice that I D ( Ξ» , ΞΌ ) βŠ† β‹‚ { I D ( f ) : f fragments I D fragments ( Ξ» , ΞΌ ) fragments { I D fragments ( f ) : f ID(\lambda,\mu)\subseteq\bigcap\{ID(f):f italic_I italic_D ( italic_Ξ» , italic_ΞΌ ) βŠ† β‹‚ { italic_I italic_D ( italic_f ) : italic_f is a function from [ Ξ» ] < β„΅ 0 superscript delimited-[] πœ† absent subscript β„΅ 0 [\lambda]^{<\aleph_{0}} [ italic_Ξ» ] start_POSTSUPERSCRIPT < roman_β„΅ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT into ΞΌ } fragments ΞΌ } \mu\} italic_ΞΌ } .
One of the basic tools for investigating identities is the notion of refinement. The idea is to compute the values of a coloring c : [ Ξ» ] n β†’ ΞΌ : 𝑐 β†’ superscript delimited-[] πœ† 𝑛 πœ‡ c:[\lambda]^{n}\rightarrow\mu italic_c : [ italic_Ξ» ] start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT β†’ italic_ΞΌ , with a coloring d : [ Ξ» ] m β†’ ΞΌ : 𝑑 β†’ superscript delimited-[] πœ† π‘š πœ‡ d:[\lambda]^{m}\rightarrow\mu italic_d : [ italic_Ξ» ] start_POSTSUPERSCRIPT italic_m end_POSTSUPERSCRIPT β†’ italic_ΞΌ , when m < n π‘š 𝑛 m<n italic_m < italic_n .


Definition 1 .

A group G 𝐺 G italic_G of tree automorphisms is self-similar if, for every g 𝑔 g italic_g in G 𝐺 G italic_G and a letter x π‘₯ x italic_x in X 𝑋 X italic_X there exists a letter y 𝑦 y italic_y in X 𝑋 X italic_X and an element h β„Ž h italic_h in G 𝐺 G italic_G such that

g ⁒ ( x ⁒ w ) = y ⁒ h ⁒ ( w ) , 𝑔 π‘₯ 𝑀 𝑦 β„Ž 𝑀 g(xw)=yh(w), italic_g ( italic_x italic_w ) = italic_y italic_h ( italic_w ) ,

for all words w 𝑀 w italic_w over X 𝑋 X italic_X .


Definition 3.1 .

Suppose f ⁒ ( x ) 𝑓 π‘₯ f(\sqrt{x}) italic_f ( square-root start_ARG italic_x end_ARG ) is a polynomial in x π‘₯ \sqrt{x} square-root start_ARG italic_x end_ARG where x π‘₯ x italic_x is a formal indeterminate and x π‘₯ \sqrt{x} square-root start_ARG italic_x end_ARG a formal square root. Then f ⁒ ( x ) 𝑓 π‘₯ f(\sqrt{x}) italic_f ( square-root start_ARG italic_x end_ARG ) can be written uniquely in the form

f ⁒ ( x ) = g ⁒ ( x ) + x ⁒ h ⁒ ( x ) , 𝑓 π‘₯ 𝑔 π‘₯ π‘₯ β„Ž π‘₯ f(\sqrt{x})=g(x)+\sqrt{x}h(x), italic_f ( square-root start_ARG italic_x end_ARG ) = italic_g ( italic_x ) + square-root start_ARG italic_x end_ARG italic_h ( italic_x ) ,

where g ⁒ ( x ) 𝑔 π‘₯ g(x) italic_g ( italic_x ) and h ⁒ ( x ) β„Ž π‘₯ h(x) italic_h ( italic_x ) are polynomials in x π‘₯ x italic_x . Define { f ⁒ ( x ) } := h ⁒ ( x ) assign 𝑓 π‘₯ β„Ž π‘₯ \big{\{}f(\sqrt{x})\big{\}}:=h(x) { italic_f ( square-root start_ARG italic_x end_ARG ) } := italic_h ( italic_x ) . More generally, suppose r π‘Ÿ r italic_r is any element of any β„‚ β„‚ \mathbb{C} blackboard_C -algebra. Define { f ⁒ ( r ) } 𝑓 π‘Ÿ \big{\{}f(\sqrt{r})\big{\}} { italic_f ( square-root start_ARG italic_r end_ARG ) } to be the result of substituting r π‘Ÿ r italic_r for x π‘₯ x italic_x in { f ⁒ ( x ) } 𝑓 π‘₯ \big{\{}f(\sqrt{x})\big{\}} { italic_f ( square-root start_ARG italic_x end_ARG ) } . There is no assumption here that r π‘Ÿ r italic_r has a square root.


Definition 4.4 .

Let Y βŠ‚ X π‘Œ 𝑋 Y\subset X italic_Y βŠ‚ italic_X be a Lagrangian submanifold and ( h , ψ ) β„Ž πœ“ (h,\psi) ( italic_h , italic_ψ ) an exact Lagrangian isotopy. The time-reversal of ( h , ψ ) β„Ž πœ“ (h,\psi) ( italic_h , italic_ψ ) is the pair ( h ~ , ψ ~ ) ~ β„Ž ~ πœ“ (\widetilde{h},\widetilde{\psi}) ( ~ start_ARG italic_h end_ARG , ~ start_ARG italic_ψ end_ARG ) defined by

ψ ~ ⁒ ( t , x ) = ψ ⁒ ( 1 - t , x ) , h ~ ⁒ ( t , x ) = - h ⁒ ( 1 - t , x ) . formulae-sequence ~ πœ“ 𝑑 π‘₯ πœ“ 1 𝑑 π‘₯ ~ β„Ž 𝑑 π‘₯ β„Ž 1 𝑑 π‘₯ \widetilde{\psi}(t,x)=\psi(1-t,x),\quad\widetilde{h}(t,x)=-h(1-t,x). ~ start_ARG italic_ψ end_ARG ( italic_t , italic_x ) = italic_ψ ( 1 - italic_t , italic_x ) , ~ start_ARG italic_h end_ARG ( italic_t , italic_x ) = - italic_h ( 1 - italic_t , italic_x ) .

Definition 5.1 .

For matrices defined over a field we define a function which is called the determinant of the matrix ,

(5.1) det ⁑ ( ) = 1 1 \det()=1 roman_det ( ) = 1
(5.2) det ⁑ a = βˆ‘ a ( - 1 ) | a | + | b | ⁒ a a b ⁒ det ⁑ a [ b ] [ a ] π‘Ž subscript π‘Ž superscript 1 π‘Ž 𝑏 subscript superscript π‘Ž 𝑏 π‘Ž subscript superscript π‘Ž delimited-[] π‘Ž delimited-[] 𝑏 \det a=\sum_{a}(-1)^{|a|+|b|}a^{b}_{a}\det a^{[a]}_{[b]} roman_det italic_a = βˆ‘ start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT ( - 1 ) start_POSTSUPERSCRIPT | italic_a | + | italic_b | end_POSTSUPERSCRIPT italic_a start_POSTSUPERSCRIPT italic_b end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT roman_det italic_a start_POSTSUPERSCRIPT [ italic_a ] end_POSTSUPERSCRIPT start_POSTSUBSCRIPT [ italic_b ] end_POSTSUBSCRIPT

∎


Definition 2.1 .

A self-similar group ( G , 𝖷 ) 𝐺 𝖷 (G,\mathsf{X}) ( italic_G , sansserif_X ) is a group G 𝐺 G italic_G acting faithfully on the rooted tree 𝖷 * superscript 𝖷 \mathsf{X}^{*} sansserif_X start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT such that for every g ∈ G 𝑔 𝐺 g\in G italic_g ∈ italic_G and every x ∈ 𝖷 π‘₯ 𝖷 x\in\mathsf{X} italic_x ∈ sansserif_X there exist h ∈ G β„Ž 𝐺 h\in G italic_h ∈ italic_G and y ∈ 𝖷 𝑦 𝖷 y\in\mathsf{X} italic_y ∈ sansserif_X such that

g ⁒ ( x ⁒ w ) = y ⁒ h ⁒ ( w ) 𝑔 π‘₯ 𝑀 𝑦 β„Ž 𝑀 g(xw)=yh(w) italic_g ( italic_x italic_w ) = italic_y italic_h ( italic_w )

for all w ∈ 𝖷 * 𝑀 superscript 𝖷 w\in\mathsf{X}^{*} italic_w ∈ sansserif_X start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT .


Definition 6.5

Denote by ΞΌ 0 : X 𝐑 β†’ π’ž * ⁒ ( 𝐍 0 ) normal-: superscript πœ‡ 0 normal-β†’ superscript 𝑋 𝐑 superscript π’ž superscript 𝐍 0 \mu^{0}:X^{{\mathbf{R}}}\rightarrow{\cal C}^{*}({{\mathbf{N}}^{0}}) italic_ΞΌ start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT : italic_X start_POSTSUPERSCRIPT bold_R end_POSTSUPERSCRIPT β†’ caligraphic_C start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT ( bold_N start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT ) the sequence measure function defined as

ΞΌ 0 ⁒ ( 𝐱 ) ⁒ ( p ^ ) = ΞΌ ⁒ ( 𝐱 ) ⁒ ( p ) superscript πœ‡ 0 𝐱 ^ 𝑝 πœ‡ 𝐱 𝑝 \mu^{0}({\bf x})(\hat{p})=\mu({\bf x})(p) italic_ΞΌ start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT ( bold_x ) ( ^ start_ARG italic_p end_ARG ) = italic_ΞΌ ( bold_x ) ( italic_p ) (22)

Denote by ΞΌ 0 superscript πœ‡ 0 \mu^{0} italic_ΞΌ start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT as well the corresponding frame measure function ΞΌ 0 ∘ b superscript πœ‡ 0 𝑏 \mu^{0}\circ b italic_ΞΌ start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT ∘ italic_b .


Definition 2 (Well-formed prefix.)

Let M = ( K , β†’ , ⊲ , ∦ ) 𝑀 𝐾 normal-β†’ subgroup-of not-parallel-to M=(K,\rightarrow,\lhd,\nparallel) italic_M = ( italic_K , β†’ , ⊲ , ∦ ) and M β€² = ( K β€² , β†’ β€² , ⊲ β€² , ∦ β€² ) superscript 𝑀 normal-β€² superscript 𝐾 normal-β€² superscript normal-β†’ normal-β€² fragments subgroup-of normal-β€² superscript not-parallel-to normal-β€² M^{\prime}=(K^{\prime},\mathbin{\rightarrow^{\prime}},\mathbin{\lhd{}^{\prime}% },\mathbin{\nparallel^{\prime}}) italic_M start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT = ( italic_K start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT , start_BINOP β†’ start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT end_BINOP , start_BINOP ⊲ start_FLOATSUPERSCRIPT β€² end_FLOATSUPERSCRIPT end_BINOP , start_BINOP ∦ start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT end_BINOP ) be two multilogs. M β€² superscript 𝑀 normal-β€² M^{\prime} italic_M start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT is a well-formed prefix of M 𝑀 M italic_M , noted M β€² ⊏ 𝑀𝑓 M superscript square-image-of 𝑀𝑓 superscript 𝑀 normal-β€² 𝑀 M^{\prime}\stackrel{{\scriptstyle\mathit{wf}}}{{\sqsubset}}M italic_M start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT start_RELOP SUPERSCRIPTOP start_ARG ⊏ end_ARG start_ARG italic_wf end_ARG end_RELOP italic_M , if (i) it is a subset of M 𝑀 M italic_M , (ii) it is stable, (iii) it is left-closed for its actions, and (iv) it is closed for its constraints.

M β€² ⊏ 𝑀𝑓 M = def { M β€² βŠ† M K β€² = π‘†π‘‘π‘Žπ‘π‘™π‘’ ⁒ ( M β€² ) βˆ€ Ξ± , Ξ² ∈ A , Ξ² ∈ K β€² β‡’ { Ξ± β†’ Ξ² β‡’ Ξ± β†’ β€² Ξ² Ξ± ⊲ Ξ² β‡’ Ξ± ⊲ β€² Ξ² Ξ± ∦ Ξ² β‡’ Ξ± ∦ β€² Ξ² βˆ€ Ξ± , Ξ² ∈ A , ( Ξ± β†’ β€² Ξ² ∨ Ξ± ⊲ β€² Ξ² ∨ Ξ± ∦ β€² Ξ² ) β‡’ Ξ± , Ξ² ∈ K β€² superscript square-image-of 𝑀𝑓 superscript 𝑀 β€² 𝑀 superscript def cases superscript 𝑀 β€² 𝑀 superscript 𝐾 β€² π‘†π‘‘π‘Žπ‘π‘™π‘’ superscript 𝑀 β€² formulae-sequence for-all 𝛼 𝛽 𝐴 𝛽 superscript 𝐾 β€² β‡’ cases β‡’ β†’ 𝛼 𝛽 superscript β†’ β€² 𝛼 𝛽 β‡’ subgroup-of 𝛼 𝛽 superscript subgroup-of β€² 𝛼 𝛽 β‡’ not-parallel-to 𝛼 𝛽 superscript not-parallel-to β€² 𝛼 𝛽 formulae-sequence for-all 𝛼 𝛽 𝐴 formulae-sequence β‡’ superscript β†’ β€² 𝛼 𝛽 superscript subgroup-of β€² 𝛼 𝛽 superscript not-parallel-to β€² 𝛼 𝛽 𝛼 𝛽 superscript 𝐾 β€² M^{\prime}\stackrel{{\scriptstyle\mathit{wf}}}{{\sqsubset}}M\stackrel{{% \scriptstyle\mathrm{def}}}{{=}}\left\{\begin{array}[]{l}M^{\prime}\subseteq M% \\ K^{\prime}=\mathit{Stable}(M^{\prime})\\ \forall{\alpha,\beta\in A},\beta\in K^{\prime}\Rightarrow\left\{\begin{array}[% ]{l}\alpha\mathbin{\rightarrow}\beta\Rightarrow\alpha\mathbin{\rightarrow^{% \prime}}\beta\\ \alpha\mathbin{\lhd}\beta\Rightarrow\alpha\mathbin{\lhd^{\prime}}\beta\\ \alpha\mathbin{\nparallel}\beta\Rightarrow\alpha\mathbin{\nparallel^{\prime}}% \beta\\ \end{array}\right.\\ \forall{\alpha,\beta\in A},(\alpha\mathbin{\rightarrow^{\prime}}\beta\lor% \alpha\mathbin{\lhd^{\prime}}\beta\lor\alpha\mathbin{\nparallel^{\prime}}\beta% )\Rightarrow\alpha,\beta\in K^{\prime}\\ \end{array}\right. italic_M start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT start_RELOP SUPERSCRIPTOP start_ARG ⊏ end_ARG start_ARG italic_wf end_ARG end_RELOP italic_M start_RELOP SUPERSCRIPTOP start_ARG = end_ARG start_ARG roman_def end_ARG end_RELOP { start_ARRAY start_ROW start_CELL italic_M start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT βŠ† italic_M end_CELL end_ROW start_ROW start_CELL italic_K start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT = italic_Stable ( italic_M start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ) end_CELL end_ROW start_ROW start_CELL βˆ€ italic_Ξ± , italic_Ξ² ∈ italic_A , italic_Ξ² ∈ italic_K start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT β‡’ { start_ARRAY start_ROW start_CELL italic_Ξ± β†’ italic_Ξ² β‡’ italic_Ξ± start_BINOP β†’ start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT end_BINOP italic_Ξ² end_CELL end_ROW start_ROW start_CELL italic_Ξ± ⊲ italic_Ξ² β‡’ italic_Ξ± start_BINOP ⊲ start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT end_BINOP italic_Ξ² end_CELL end_ROW start_ROW start_CELL italic_Ξ± ∦ italic_Ξ² β‡’ italic_Ξ± start_BINOP ∦ start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT end_BINOP italic_Ξ² end_CELL end_ROW end_ARRAY end_CELL end_ROW start_ROW start_CELL βˆ€ italic_Ξ± , italic_Ξ² ∈ italic_A , ( italic_Ξ± start_BINOP β†’ start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT end_BINOP italic_Ξ² ∨ italic_Ξ± start_BINOP ⊲ start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT end_BINOP italic_Ξ² ∨ italic_Ξ± start_BINOP ∦ start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT end_BINOP italic_Ξ² ) β‡’ italic_Ξ± , italic_Ξ² ∈ italic_K start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT end_CELL end_ROW end_ARRAY

Definition 3.17 .

Let R 𝑅 R italic_R and S 𝑆 S italic_S be idempotent rings. A (surjective) Morita context ( R , S , M , N , ψ , Ο• ) 𝑅 𝑆 𝑀 𝑁 πœ“ italic-Ο• (R,S,M,N,\psi,\phi) ( italic_R , italic_S , italic_M , italic_N , italic_ψ , italic_Ο• ) between R 𝑅 R italic_R and S 𝑆 S italic_S consists of unital bimodules M S R subscript subscript 𝑀 𝑆 𝑅 {}_{R}M_{S} start_FLOATSUBSCRIPT italic_R end_FLOATSUBSCRIPT italic_M start_POSTSUBSCRIPT italic_S end_POSTSUBSCRIPT and N R S subscript subscript 𝑁 𝑅 𝑆 {}_{S}N_{R} start_FLOATSUBSCRIPT italic_S end_FLOATSUBSCRIPT italic_N start_POSTSUBSCRIPT italic_R end_POSTSUBSCRIPT , a surjective R 𝑅 R italic_R -module homomorphism ψ : M βŠ— S N β†’ R : πœ“ β†’ subscript tensor-product 𝑆 𝑀 𝑁 𝑅 \psi:M\otimes_{S}N\to R italic_ψ : italic_M βŠ— start_POSTSUBSCRIPT italic_S end_POSTSUBSCRIPT italic_N β†’ italic_R , and a surjective S 𝑆 S italic_S -module homomorphism Ο• : N βŠ— R M β†’ S : italic-Ο• β†’ subscript tensor-product 𝑅 𝑁 𝑀 𝑆 \phi:N\otimes_{R}M\to S italic_Ο• : italic_N βŠ— start_POSTSUBSCRIPT italic_R end_POSTSUBSCRIPT italic_M β†’ italic_S satisfying

Ο• ⁒ ( n βŠ— m ) ⁒ n β€² = n ⁒ ψ ⁒ ( m βŠ— n β€² ) and m β€² ⁒ Ο• ⁒ ( n βŠ— m ) = ψ ⁒ ( m β€² βŠ— n ) ⁒ m formulae-sequence italic-Ο• tensor-product 𝑛 π‘š superscript 𝑛 β€² 𝑛 πœ“ tensor-product π‘š superscript 𝑛 β€² and superscript π‘š β€² italic-Ο• tensor-product 𝑛 π‘š πœ“ tensor-product superscript π‘š β€² 𝑛 π‘š \phi(n\otimes m)n^{\prime}=n\psi(m\otimes n^{\prime})\qquad\text{ and }\qquad m% ^{\prime}\phi(n\otimes m)=\psi(m^{\prime}\otimes n)m italic_Ο• ( italic_n βŠ— italic_m ) italic_n start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT = italic_n italic_ψ ( italic_m βŠ— italic_n start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ) and italic_m start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT italic_Ο• ( italic_n βŠ— italic_m ) = italic_ψ ( italic_m start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT βŠ— italic_n ) italic_m

for every m , m β€² ∈ M π‘š superscript π‘š β€² 𝑀 m,m^{\prime}\in M italic_m , italic_m start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ∈ italic_M and n , n β€² ∈ N 𝑛 superscript 𝑛 β€² 𝑁 n,n^{\prime}\in N italic_n , italic_n start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ∈ italic_N . We say that R 𝑅 R italic_R and S 𝑆 S italic_S are Morita equivalent in the case that there exists a Morita context.


Definition 2.8 .

Let ( M , β„± ) 𝑀 β„± (M,\mathcal{F}) ( italic_M , caligraphic_F ) be a filtered R 𝑅 R italic_R -module. β„± β„± \mathcal{F} caligraphic_F is called faithful if

deg ⁑ ( r β‹… m ) = deg ⁑ r + deg ⁑ m , degree β‹… π‘Ÿ π‘š degree π‘Ÿ degree π‘š \deg{(r\cdot m)}=\deg{r}+\deg{m}, roman_deg ( italic_r β‹… italic_m ) = roman_deg italic_r + roman_deg italic_m ,

for any non-zero elements r ∈ R , m ∈ M formulae-sequence π‘Ÿ 𝑅 π‘š 𝑀 r\in R,~{}m\in M italic_r ∈ italic_R , italic_m ∈ italic_M . In this case, M 𝑀 M italic_M is said to be a faithfully filtered R 𝑅 R italic_R -module.


Definition 2.1 .

[ VdB04 ] A double Poisson algebra is an associative algebra A 𝐴 A italic_A with a 𝐀 𝐀 \mathbf{k} bold_k -linear map { { } } : A βŠ— A β†’ A βŠ— A fragments fragments fragments { { fragments } } : A tensor-product A β†’ A tensor-product A \mathopen{\{\!\!\{}\,\mathclose{\}\!\!\}}:A\otimes A\rightarrow A\otimes A start_OPEN { { end_OPEN start_CLOSE } } end_CLOSE : italic_A βŠ— italic_A β†’ italic_A βŠ— italic_A satisfying:

(2.2) { { a , b } } = - ( 21 ) ⁒ { { b , a } } , π‘Ž 𝑏 21 𝑏 π‘Ž \displaystyle\mathopen{\{\!\!\{}a,b\mathclose{\}\!\!\}}=-(21)\mathopen{\{\!\!% \{}b,a\mathclose{\}\!\!\}}, start_OPEN { { end_OPEN italic_a , italic_b start_CLOSE } } end_CLOSE = - ( 21 ) start_OPEN { { end_OPEN italic_b , italic_a start_CLOSE } } end_CLOSE ,
(2.3) βˆ‘ i = 0 2 ( 231 ) i ∘ { { - , { { - , - } } } } ∘ ( 231 ) - i = 0 , superscript subscript 𝑖 0 2 superscript 231 𝑖 superscript 231 𝑖 0 \displaystyle\sum_{i=0}^{2}(231)^{i}\circ\mathopen{\{\!\!\{}-,\mathopen{\{\!\!% \{}-,-\mathclose{\}\!\!\}}\mathclose{\}\!\!\}}\circ(231)^{-i}=0, βˆ‘ start_POSTSUBSCRIPT italic_i = 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( 231 ) start_POSTSUPERSCRIPT italic_i end_POSTSUPERSCRIPT ∘ start_OPEN { { end_OPEN - , start_OPEN { { end_OPEN - , - start_CLOSE } } end_CLOSE start_CLOSE } } end_CLOSE ∘ ( 231 ) start_POSTSUPERSCRIPT - italic_i end_POSTSUPERSCRIPT = 0 ,
(2.4) { { a , b ⁒ c } } = ( b βŠ— 1 ) ⁒ { { a , c } } + { { a , b } } ⁒ ( 1 βŠ— c ) . π‘Ž 𝑏 𝑐 tensor-product 𝑏 1 π‘Ž 𝑐 π‘Ž 𝑏 tensor-product 1 𝑐 \displaystyle\mathopen{\{\!\!\{}a,bc\mathclose{\}\!\!\}}=(b\otimes 1)\mathopen% {\{\!\!\{}a,c\mathclose{\}\!\!\}}+\mathopen{\{\!\!\{}a,b\mathclose{\}\!\!\}}(1% \otimes c). start_OPEN { { end_OPEN italic_a , italic_b italic_c start_CLOSE } } end_CLOSE = ( italic_b βŠ— 1 ) start_OPEN { { end_OPEN italic_a , italic_c start_CLOSE } } end_CLOSE + start_OPEN { { end_OPEN italic_a , italic_b start_CLOSE } } end_CLOSE ( 1 βŠ— italic_c ) .