8.1 Definition .

A duplicial algebra over K 𝐾 K italic_K is a vector space A 𝐴 A italic_A equipped with two bilinear maps / / / , \ : A A A fragments \ : A tensor-product A A \backslash:A\otimes A\longrightarrow A \ : italic_A ⊗ italic_A ⟶ italic_A , verifying the following relations:

x / ( y / z ) = ( x / y ) / z x / ( y \ z ) = ( x / y ) \ z x \ ( y \ z ) = ( x \ y ) \ z , formulae-sequence 𝑥 𝑦 𝑧 𝑥 𝑦 𝑧 italic- 𝑥 \ 𝑦 𝑧 \ \ 𝑥 𝑦 𝑧 italic- 𝑥 \ 𝑦 𝑧 \ \ 𝑥 𝑦 𝑧 italic- x/(y/z)=(x/y)/z\hfill\default@cr x/(y\backslash z)=(x/y)\backslash z\hfill% \default@cr x\backslash(y\backslash z)=(x\backslash y)\backslash z,\hfill\default@cr italic_x / ( italic_y / italic_z ) = ( italic_x / italic_y ) / italic_z italic_x / ( italic_y \ italic_z ) = ( italic_x / italic_y ) \ italic_z italic_x \ ( italic_y \ italic_z ) = ( italic_x \ italic_y ) \ italic_z ,

for x , y , z A 𝑥 𝑦 𝑧 𝐴 x,y,z\in A italic_x , italic_y , italic_z ∈ italic_A .


Definition 4 .

A bi-invariant metric on 𝒢 𝒢 \mathcal{G} caligraphic_G is a distance d 𝑑 d italic_d on 𝒢 𝒢 \mathcal{G} caligraphic_G such that for any ϕ , ψ , χ italic-ϕ 𝜓 𝜒 \phi,\psi,\chi italic_ϕ , italic_ψ , italic_χ in 𝒢 𝒢 \mathcal{G} caligraphic_G ,

d ( ϕ , ψ ) = d ( ϕ χ , ψ χ ) = d ( χ ϕ , χ ψ ) . 𝑑 italic-ϕ 𝜓 𝑑 italic-ϕ 𝜒 𝜓 𝜒 𝑑 𝜒 italic-ϕ 𝜒 𝜓 d(\phi,\psi)=d(\phi\chi,\psi\chi)=d(\chi\phi,\chi\psi). italic_d ( italic_ϕ , italic_ψ ) = italic_d ( italic_ϕ italic_χ , italic_ψ italic_χ ) = italic_d ( italic_χ italic_ϕ , italic_χ italic_ψ ) .

It will be said C - 1 superscript 𝐶 1 C^{-1} italic_C start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT if its composition with the map Φ : H ϕ H 1 normal-: normal-Φ maps-to 𝐻 superscript subscript italic-ϕ 𝐻 1 \Phi:H\mapsto\phi_{H}^{1} roman_Φ : italic_H ↦ italic_ϕ start_POSTSUBSCRIPT italic_H end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT is a continuous map Φ - 1 ( 𝒢 ) × Φ - 1 ( 𝒢 ) normal-→ superscript normal-Φ 1 𝒢 superscript normal-Φ 1 𝒢 \Phi^{-1}(\mathcal{G})\times\Phi^{-1}(\mathcal{G})\to\mathbb{R} roman_Φ start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ( caligraphic_G ) × roman_Φ start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ( caligraphic_G ) → blackboard_R , where Φ - 1 ( 𝒢 ) H a m superscript normal-Φ 1 𝒢 𝐻 𝑎 𝑚 \Phi^{-1}(\mathcal{G})\subset Ham roman_Φ start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ( caligraphic_G ) ⊂ italic_H italic_a italic_m is endowed with the compact-open topology.


Definition 2.6

A linear transformation d 𝑑 d italic_d of a Leibniz algebra L 𝐿 L italic_L is called a derivation if for any x , y L 𝑥 𝑦 𝐿 x,y\in L italic_x , italic_y ∈ italic_L

d ( [ x , y ] ) = [ d ( x ) , y ] + [ x , d ( y ) ] . 𝑑 𝑥 𝑦 𝑑 𝑥 𝑦 𝑥 𝑑 𝑦 d([x,y])=[d(x),y]+[x,d(y)]. italic_d ( [ italic_x , italic_y ] ) = [ italic_d ( italic_x ) , italic_y ] + [ italic_x , italic_d ( italic_y ) ] .

Definition 1.1 .

A multiplicative Lie algebra consists of a multiplicative (possibly nonabelian) group L 𝐿 L italic_L together with a binary function { , } : L × L L fragments fragments normal-{ normal-, normal-} normal-: L L normal-→ L \{\;,\;\}:L\times L\to L { , } : italic_L × italic_L → italic_L , which we shall call Lie product, satisfying the following identities for all x , x , y , y , z 𝑥 superscript 𝑥 normal-′ 𝑦 superscript 𝑦 normal-′ 𝑧 x,x^{\prime},y,y^{\prime},z italic_x , italic_x start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT , italic_y , italic_y start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT , italic_z in L 𝐿 L italic_L

(1.1) { x , x } = 1 , fragments { x , x } 1 , \displaystyle\{x,x\}=1\;, { italic_x , italic_x } = 1 ,
(1.2) { x , y y } = { x , y } y { x , y } , fragments { x , y superscript 𝑦 } { x , y } 𝑦 { x , superscript 𝑦 } , \displaystyle\{x,yy^{\prime}\}=\{x,y\}\;^{y}{\{x,y^{\prime}\}}\;, { italic_x , italic_y italic_y start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT } = { italic_x , italic_y } start_POSTSUPERSCRIPT italic_y end_POSTSUPERSCRIPT { italic_x , italic_y start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT } ,
(1.3) { x x , y } = x { x , y } { x , y } , fragments { x superscript 𝑥 , y } 𝑥 { superscript 𝑥 , y } { x , y } , \displaystyle\{xx^{\prime},y\}=\,^{x}{\{x^{\prime},y\}}\{x,y\}\;, { italic_x italic_x start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT , italic_y } = start_POSTSUPERSCRIPT italic_x end_POSTSUPERSCRIPT { italic_x start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT , italic_y } { italic_x , italic_y } ,
(1.4) { { y , x } , x z } { { x , z } , z y } { { z , y } , y x } = 1 , fragments { fragments { y , x } superscript , 𝑥 z } { fragments { x , z } superscript , 𝑧 y } { fragments { z , y } superscript , 𝑦 x } 1 , \displaystyle\{\{y,x\},^{x}z\}\{\{x,z\},^{z}y\}\{\{z,y\},^{y}x\}=1\;, { { italic_y , italic_x } , start_POSTSUPERSCRIPT italic_x end_POSTSUPERSCRIPT italic_z } { { italic_x , italic_z } , start_POSTSUPERSCRIPT italic_z end_POSTSUPERSCRIPT italic_y } { { italic_z , italic_y } , start_POSTSUPERSCRIPT italic_y end_POSTSUPERSCRIPT italic_x } = 1 ,
(1.5) { x , y } z = { z x , z y } . fragments superscript fragments { x , y } 𝑧 fragments superscript { 𝑧 x superscript , 𝑧 y } . {}^{z}{\{x,y\}}=\{^{z}x,^{z}y\}\;. start_FLOATSUPERSCRIPT italic_z end_FLOATSUPERSCRIPT { italic_x , italic_y } = { start_POSTSUPERSCRIPT italic_z end_POSTSUPERSCRIPT italic_x , start_POSTSUPERSCRIPT italic_z end_POSTSUPERSCRIPT italic_y } .

Definition 3.1 .

A map f : X Y : 𝑓 𝑋 𝑌 f:X\to Y italic_f : italic_X → italic_Y between metric spaces has metrically parallel fibers if for every x , y X 𝑥 𝑦 𝑋 x,y\in X italic_x , italic_y ∈ italic_X there exists z X 𝑧 𝑋 z\in X italic_z ∈ italic_X such that

d ( x , z ) = d ( f ( x ) , f ( z ) ) and f ( y ) = f ( z ) . 𝑑 𝑥 𝑧 𝑑 𝑓 𝑥 𝑓 𝑧 and 𝑓 𝑦 𝑓 𝑧 d(x,z)=d(f(x),f(z))\text{ and }f(y)=f(z). italic_d ( italic_x , italic_z ) = italic_d ( italic_f ( italic_x ) , italic_f ( italic_z ) ) and italic_f ( italic_y ) = italic_f ( italic_z ) .

Definition 6.2 .

Let σ 𝜎 \sigma italic_σ and τ 𝜏 \tau italic_τ be elements of Γ * superscript normal-Γ \Gamma^{*} roman_Γ start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT . Then we define

( σ , τ ) = σ d x , τ d y . 𝜎 𝜏 𝜎 𝑑 𝑥 𝜏 𝑑 𝑦 (\sigma,\tau)=\langle\sigma dx,\tau dy\rangle. ( italic_σ , italic_τ ) = ⟨ italic_σ italic_d italic_x , italic_τ italic_d italic_y ⟩ .

Definition 3.1 .

A Riemannian manifold ( M n + 1 , g ) superscript 𝑀 𝑛 1 𝑔 (M^{n+1},g) ( italic_M start_POSTSUPERSCRIPT italic_n + 1 end_POSTSUPERSCRIPT , italic_g ) is asymptotically hyperbolic provided it is conformally compact, with smooth conformal compactification ( M ~ , g ~ ) normal-~ 𝑀 normal-~ 𝑔 (\tilde{M},\tilde{g}) ( ~ start_ARG italic_M end_ARG , ~ start_ARG italic_g end_ARG ) , and with conformal boundary M ~ = S n normal-~ 𝑀 superscript 𝑆 𝑛 \partial\tilde{M}=S^{n} ∂ ~ start_ARG italic_M end_ARG = italic_S start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT , such that the metric g 𝑔 g italic_g on a deleted neighborhood ( 0 , T ) × S n 0 𝑇 superscript 𝑆 𝑛 (0,T)\times S^{n} ( 0 , italic_T ) × italic_S start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT of M ~ = { t = 0 } fragments normal-~ 𝑀 fragments normal-{ t 0 normal-} \partial\tilde{M}=\{t=0\} ∂ ~ start_ARG italic_M end_ARG = { italic_t = 0 } takes the form

g = sinh - 2 ( t ) ( d t 2 + h ) , 𝑔 superscript 2 𝑡 𝑑 superscript 𝑡 2 g=\sinh^{-2}(t)(dt^{2}+h)\,, italic_g = roman_sinh start_POSTSUPERSCRIPT - 2 end_POSTSUPERSCRIPT ( italic_t ) ( italic_d italic_t start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_h ) , (3.19)

where h = h ( t , ) 𝑡 normal-⋅ h=h(t,\cdot) italic_h = italic_h ( italic_t , ⋅ ) is a family of metrics on S n superscript 𝑆 𝑛 S^{n} italic_S start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT , depending smoothly on t [ 0 , T ) 𝑡 0 𝑇 t\in[0,T) italic_t ∈ [ 0 , italic_T ) , of the form,

h = h 0 + t n + 1 k + O ( t n + 2 ) , subscript 0 superscript 𝑡 𝑛 1 𝑘 𝑂 superscript 𝑡 𝑛 2 h=h_{0}+t^{n+1}k+O(t^{n+2})\,, italic_h = italic_h start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT + italic_t start_POSTSUPERSCRIPT italic_n + 1 end_POSTSUPERSCRIPT italic_k + italic_O ( italic_t start_POSTSUPERSCRIPT italic_n + 2 end_POSTSUPERSCRIPT ) , (3.20)

where h 0 subscript 0 h_{0} italic_h start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT is the standard metric on S n superscript 𝑆 𝑛 S^{n} italic_S start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT , and k 𝑘 k italic_k is a symmetric 2 2 2 2 -tensor on S n superscript 𝑆 𝑛 S^{n} italic_S start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT .


Definition 2.4 .

Let G 𝐺 G italic_G be a locally finite graph, F 𝐹 F italic_F a finite graph, and ϕ italic-ϕ \phi italic_ϕ an Aut( F 𝐹 F italic_F )-voltage assignment on G 𝐺 G italic_G . We define a graph bundle G × ϕ F superscript italic-ϕ 𝐺 𝐹 G\times^{\phi}F italic_G × start_POSTSUPERSCRIPT italic_ϕ end_POSTSUPERSCRIPT italic_F to be the graph with vertex set V ( G ) × V ( F ) 𝑉 𝐺 𝑉 𝐹 V(G)\times V(F) italic_V ( italic_G ) × italic_V ( italic_F ) , with two vertices ( u , i ) , ( v , j ) G × ϕ F 𝑢 𝑖 𝑣 𝑗 superscript italic-ϕ 𝐺 𝐹 (u,i),(v,j)\in G\times^{\phi}F ( italic_u , italic_i ) , ( italic_v , italic_j ) ∈ italic_G × start_POSTSUPERSCRIPT italic_ϕ end_POSTSUPERSCRIPT italic_F adjacent if either one of the following two conditions hold:

  1. (1)

    u v and j = i ϕ ( u v ) similar-to 𝑢 𝑣 and 𝑗 superscript 𝑖 italic-ϕ 𝑢 𝑣 u\sim v\text{ and }j=i^{\phi(uv)} italic_u ∼ italic_v and italic_j = italic_i start_POSTSUPERSCRIPT italic_ϕ ( italic_u italic_v ) end_POSTSUPERSCRIPT

  2. (2)

    u = v and i j . 𝑢 𝑣 and 𝑖 similar-to 𝑗 u=v\text{ and }i\sim j. italic_u = italic_v and italic_i ∼ italic_j .


Definition 3

Let M 𝑀 M italic_M be a finite dimensional free module over a commutative ring with identity R 𝑅 R italic_R and let , : M × M R fragments fragments , : M M R \langle,\rangle:M\times M\to R ⟨ , ⟩ : italic_M × italic_M → italic_R be an antisymmetric bilinear form such that 𝐱 , 𝐱 = 0 𝐱 𝐱 0 \langle\mathbf{x},\mathbf{x}\rangle=0 ⟨ bold_x , bold_x ⟩ = 0 for all 𝐱 M 𝐱 𝑀 \mathbf{x}\in M bold_x ∈ italic_M . Then M 𝑀 M italic_M is a quandle with quandle operation

𝐱 𝐲 = 𝐱 + 𝐱 , 𝐲 𝐲 . 𝐱 𝐲 𝐱 𝐱 𝐲 𝐲 \mathbf{x}\triangleright\mathbf{y}=\mathbf{x}+\langle\mathbf{x},\mathbf{y}% \rangle\mathbf{y}. bold_x ▷ bold_y = bold_x + ⟨ bold_x , bold_y ⟩ bold_y .

The dual quandle operation is given by

𝐱 - 1 𝐲 = 𝐱 - 𝐱 , 𝐲 𝐲 . superscript 1 𝐱 𝐲 𝐱 𝐱 𝐲 𝐲 \mathbf{x}\triangleright^{-1}\mathbf{y}=\mathbf{x}-\langle\mathbf{x},\mathbf{y% }\rangle\mathbf{y}. bold_x ▷ start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT bold_y = bold_x - ⟨ bold_x , bold_y ⟩ bold_y .

If R 𝑅 R italic_R is a field and the form is non-degenerate, i.e., if 𝐱 , 𝐲 = 𝟎 𝐱 𝐲 0 \langle\mathbf{x},\mathbf{y}\rangle=\mathbf{0} ⟨ bold_x , bold_y ⟩ = bold_0 for all 𝐲 M 𝐲 𝑀 \mathbf{y}\in M bold_y ∈ italic_M implies 𝐱 = 𝟎 M 𝐱 0 𝑀 \mathbf{x}=\mathbf{0}\in M bold_x = bold_0 ∈ italic_M , then M 𝑀 M italic_M is symplectic vector space and , fragments , \langle,\rangle ⟨ , ⟩ is a symplectic form ; thus it is natural to refer to such M 𝑀 M italic_M as symplectic quandles . For simplicity, we will use the term “symplectic quandle over R 𝑅 R italic_R ” to refer to the general case where R 𝑅 R italic_R is any ring and , fragments , \langle,\rangle ⟨ , ⟩ is any antisymmetric bilinear form. If , fragments , \langle,\rangle ⟨ , ⟩ is non-degenerate, we will say ( M , ) 𝑀 (M,\triangleright) ( italic_M , ▷ ) is a non-degenerate symplectic quandle over R 𝑅 R italic_R . M 𝑀 M italic_M and M superscript 𝑀 M^{\prime} italic_M start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT are isometric if there is an R 𝑅 R italic_R -module isomorphism ϕ : M M : italic-ϕ 𝑀 superscript 𝑀 \phi:M\to M^{\prime} italic_ϕ : italic_M → italic_M start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT which preserves the bilinear form , fragments , \langle,\rangle ⟨ , ⟩ .


Definition 5

We say that ϕ , ψ H m italic-ϕ 𝜓 subscript 𝐻 𝑚 \phi,\psi\in H_{m} italic_ϕ , italic_ψ ∈ italic_H start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT are skew-orthogonal, denoted ϕ ψ perpendicular-to italic-ϕ 𝜓 \phi\perp\psi italic_ϕ ⟂ italic_ψ , if

ϕ , ψ = 0 . italic-ϕ 𝜓 0 \langle\phi,\psi\rangle=0. ⟨ italic_ϕ , italic_ψ ⟩ = 0 .

Definition 3.2 .

Let ( 𝒬 , 𝒫 ) = 𝒬 ( 𝒜 ) 𝒬 𝒫 𝒬 𝒜 (\mathcal{Q},\mathcal{P})=\mathcal{Q}(\mathscr{A}) ( caligraphic_Q , caligraphic_P ) = caligraphic_Q ( script_A ) and let Φ : 𝒜 𝒬 normal-: normal-Φ normal-→ 𝒜 𝒬 \Phi:\mathscr{A}\to\mathcal{Q} roman_Φ : script_A → caligraphic_Q be the quotient map. Suppose that

Φ ( G ) = Φ ( H ) 𝒢 ( G ) = 𝒢 ( H ) for all G , H 𝒜 . formulae-sequence Φ 𝐺 Φ 𝐻 𝒢 𝐺 𝒢 𝐻 for all 𝐺 𝐻 𝒜 \Phi(G)=\Phi(H)\Longrightarrow\mathscr{G}(G)=\mathscr{G}(H)\qquad\textrm{for % all }G,H\in\mathscr{A}. roman_Φ ( italic_G ) = roman_Φ ( italic_H ) ⟹ script_G ( italic_G ) = script_G ( italic_H ) for all italic_G , italic_H ∈ script_A .

Then we say that Φ normal-Φ \Phi roman_Φ is faithful . If in addition ( 𝒬 , 𝒫 ) 𝒬 𝒫 (\mathcal{Q},\mathcal{P}) ( caligraphic_Q , caligraphic_P ) is normal, then we say that Φ normal-Φ \Phi roman_Φ is faithfully normal .


Definition 2.9 .

Let 𝝀 𝝀 {\boldsymbol{\lambda}} bold_italic_λ be a bipartition of rank n 𝑛 n italic_n . A standard bitableau of shape 𝛌 𝛌 {\boldsymbol{\lambda}} bold_italic_λ is a sequence of bipartitions

= 𝝀 [ 0 ] 𝝀 [ 1 ] 𝝀 [ n ] = 𝝀 𝝀 delimited-[] 0 𝝀 delimited-[] 1 𝝀 delimited-[] 𝑛 𝝀 {\boldsymbol{\emptyset}}={\boldsymbol{\lambda}}[0]\subseteq{\boldsymbol{% \lambda}}[1]\subseteq\cdots\subseteq{\boldsymbol{\lambda}}[n]={\boldsymbol{% \lambda}} bold_∅ = bold_italic_λ [ 0 ] ⊆ bold_italic_λ [ 1 ] ⊆ ⋯ ⊆ bold_italic_λ [ italic_n ] = bold_italic_λ

such that the rank of 𝝀 [ k ] 𝝀 delimited-[] 𝑘 {\boldsymbol{\lambda}}[k] bold_italic_λ [ italic_k ] is k 𝑘 k italic_k , for 0 k n 0 𝑘 𝑛 0\leqslant k\leqslant n 0 ⩽ italic_k ⩽ italic_n . Let 𝐭 𝐭 {\bf t} bold_t be a standard bitableau of shape 𝝀 𝝀 {\boldsymbol{\lambda}} bold_italic_λ . Then the residue sequence of 𝐭 𝐭 {\bf t} bold_t is the sequence

( res ( γ [ 1 ] ) , , res ( γ [ n ] ) ) ( / e ) n res 𝛾 delimited-[] 1 res 𝛾 delimited-[] 𝑛 superscript 𝑒 𝑛 (\operatorname{res}(\gamma[1]),\dots,\operatorname{res}(\gamma[n]))\in({% \mathbb{Z}}/e{\mathbb{Z}})^{n} ( roman_res ( italic_γ [ 1 ] ) , … , roman_res ( italic_γ [ italic_n ] ) ) ∈ ( blackboard_Z / italic_e blackboard_Z ) start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT

where γ [ k ] = 𝝀 [ k ] / 𝝀 [ k - 1 ] 𝛾 delimited-[] 𝑘 𝝀 delimited-[] 𝑘 𝝀 delimited-[] 𝑘 1 \gamma[k]={\boldsymbol{\lambda}}[k]/{\boldsymbol{\lambda}}[k-1] italic_γ [ italic_k ] = bold_italic_λ [ italic_k ] / bold_italic_λ [ italic_k - 1 ] , for 1 k n 1 𝑘 𝑛 1\leqslant k\leqslant n 1 ⩽ italic_k ⩽ italic_n .


Definition 3

Given any states x , y X 𝑥 𝑦 𝑋 x,y\in X italic_x , italic_y ∈ italic_X , we shall define their similarity p ( x , y ) 𝑝 𝑥 𝑦 p(x,y) italic_p ( italic_x , italic_y ) by

p ( x , y ) = a 2 ( x , y ) . 𝑝 𝑥 𝑦 superscript 𝑎 2 𝑥 𝑦 p(x,y)=a^{2}(x,y). italic_p ( italic_x , italic_y ) = italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_x , italic_y ) .