Definition 2.1

A measurable periodic function ψ : ℝ β†’ β„‚ normal-: πœ“ normal-β†’ ℝ β„‚ \psi:{\mathbb{R}}\to{\mathbb{C}\hskip 0.215pt} italic_ψ : blackboard_R β†’ blackboard_C is called a collisional invariant if for almost every x , y , z ∈ ℝ π‘₯ 𝑦 𝑧 ℝ x,y,z\in{\mathbb{R}} italic_x , italic_y , italic_z ∈ blackboard_R such that Ξ© ⁒ ( x , y , z ) = 0 normal-Ξ© π‘₯ 𝑦 𝑧 0 \Omega(x,y,z)=0 roman_Ξ© ( italic_x , italic_y , italic_z ) = 0 ,

ψ ⁒ ( x ) + ψ ⁒ ( y ) - ψ ⁒ ( z ) - ψ ⁒ ( x + y - z ) = 0 . πœ“ π‘₯ πœ“ 𝑦 πœ“ 𝑧 πœ“ π‘₯ 𝑦 𝑧 0 \displaystyle\psi(x)+\psi(y)-\psi(z)-\psi(x+y-z)=0. italic_ψ ( italic_x ) + italic_ψ ( italic_y ) - italic_ψ ( italic_z ) - italic_ψ ( italic_x + italic_y - italic_z ) = 0 . (2.10)

Definition Definition 7.1

Let k π‘˜ k italic_k be a nonnegative integer. The standard k π‘˜ k italic_k -box , ℬ k subscript ℬ π‘˜ {\Cal{B}}_{k} caligraphic_B start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT , is the set { ( x , y ) ∈ ℝ 2 : 0 ≀ x ≀ k + 1 , 0 ≀ y ≀ 1 } conditional-set π‘₯ 𝑦 superscript ℝ 2 formulae-sequence 0 π‘₯ π‘˜ 1 0 𝑦 1 \{(x,y)\in{\mathbb{R}}^{2}:0\leq x\leq k+1,\ 0\leq y\leq 1\} { ( italic_x , italic_y ) ∈ blackboard_R start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT : 0 ≀ italic_x ≀ italic_k + 1 , 0 ≀ italic_y ≀ 1 } , together with the 2 ⁒ k 2 π‘˜ 2k 2 italic_k marked points

1 = ( 1 , 1 ) , 2 = ( 2 , 1 ) , 3 = ( 3 , 1 ) , … , k = ( k , 1 ) , k + 1 = ( k , 0 ) , k + 2 = ( k - 1 , 0 ) , … , 2 ⁒ k = ( 1 , 0 ) . missing-subexpression formulae-sequence 1 1 1 formulae-sequence 2 2 1 formulae-sequence 3 3 1 … π‘˜ π‘˜ 1 missing-subexpression formulae-sequence π‘˜ 1 π‘˜ 0 formulae-sequence π‘˜ 2 π‘˜ 1 0 … 2 π‘˜ 1 0 \eqalign{&1=(1,1),\ 2=(2,1),\ 3=(3,1),\ \ldots,\ k=(k,1),\cr&k+1=(k,0),\ k+2=(% k-1,0),\ \ldots,\ 2k=(1,0).\cr} start_ROW start_CELL end_CELL start_CELL 1 = ( 1 , 1 ) , 2 = ( 2 , 1 ) , 3 = ( 3 , 1 ) , … , italic_k = ( italic_k , 1 ) , end_CELL end_ROW start_ROW start_CELL end_CELL start_CELL italic_k + 1 = ( italic_k , 0 ) , italic_k + 2 = ( italic_k - 1 , 0 ) , … , 2 italic_k = ( 1 , 0 ) . end_CELL end_ROW

Definition 4.1 .

(median algebra, first definition) A median algebra is a set X 𝑋 X italic_X endowed with a ternary operation ( a , b , c ) ↦ m ⁒ ( a , b , c ) maps-to π‘Ž 𝑏 𝑐 π‘š π‘Ž 𝑏 𝑐 (a,b,c)\mapsto m(a,b,c) ( italic_a , italic_b , italic_c ) ↦ italic_m ( italic_a , italic_b , italic_c ) such that:

Property (3) can be replaced by ( 3 β€² ) superscript 3 β€² (3^{\prime}) ( 3 start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ) m ⁒ ( a , m ⁒ ( a , c , d ) , m ⁒ ( b , c , d ) ) = m ⁒ ( a , c , d ) π‘š π‘Ž π‘š π‘Ž 𝑐 𝑑 π‘š 𝑏 𝑐 𝑑 π‘š π‘Ž 𝑐 𝑑 m(a,m(a,c,d),m(b,c,d))=m(a,c,d) italic_m ( italic_a , italic_m ( italic_a , italic_c , italic_d ) , italic_m ( italic_b , italic_c , italic_d ) ) = italic_m ( italic_a , italic_c , italic_d ) .

The element m ⁒ ( a , b , c ) π‘š π‘Ž 𝑏 𝑐 m(a,b,c) italic_m ( italic_a , italic_b , italic_c ) is the median of the points a , b , c π‘Ž 𝑏 𝑐 a,b,c italic_a , italic_b , italic_c . In a median algebra ( X , m ) 𝑋 π‘š (X,m) ( italic_X , italic_m ) , given any two points a , b π‘Ž 𝑏 a,b italic_a , italic_b the set I ( a , b ) = { x ; x = m ( a , b , x ) } fragments I fragments ( a , b ) fragments { x ; x m fragments ( a , b , x ) } I(a,b)=\{x\;;\;x=m(a,b,x)\} italic_I ( italic_a , italic_b ) = { italic_x ; italic_x = italic_m ( italic_a , italic_b , italic_x ) } is called the interval of endpoints a , b π‘Ž 𝑏 a,b italic_a , italic_b . This defines a map I : X Γ— X β†’ 𝒫 ⁒ ( X ) : 𝐼 β†’ 𝑋 𝑋 𝒫 𝑋 I:X\times X\to{\mathcal{P}}(X) italic_I : italic_X Γ— italic_X β†’ caligraphic_P ( italic_X ) . We say that a point x ∈ I ⁒ ( a , b ) π‘₯ 𝐼 π‘Ž 𝑏 x\in I(a,b) italic_x ∈ italic_I ( italic_a , italic_b ) is between a π‘Ž a italic_a and b 𝑏 b italic_b .

A homomorphism of median algebras is a map f : ( X , m X ) β†’ ( Y , m Y ) : 𝑓 β†’ 𝑋 subscript π‘š 𝑋 π‘Œ subscript π‘š π‘Œ f:(X,m_{X})\to(Y,m_{Y}) italic_f : ( italic_X , italic_m start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT ) β†’ ( italic_Y , italic_m start_POSTSUBSCRIPT italic_Y end_POSTSUBSCRIPT ) such that m Y ⁒ ( f ⁒ ( x ) , f ⁒ ( y ) , f ⁒ ( z ) ) = f ⁒ ( m X ⁒ ( x , y , z ) ) subscript π‘š π‘Œ 𝑓 π‘₯ 𝑓 𝑦 𝑓 𝑧 𝑓 subscript π‘š 𝑋 π‘₯ 𝑦 𝑧 m_{Y}(f(x),f(y),f(z))=f(m_{X}(x,y,z)) italic_m start_POSTSUBSCRIPT italic_Y end_POSTSUBSCRIPT ( italic_f ( italic_x ) , italic_f ( italic_y ) , italic_f ( italic_z ) ) = italic_f ( italic_m start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT ( italic_x , italic_y , italic_z ) ) . Equivalently, f 𝑓 f italic_f is a homomorphism if and only if it preserves the betweenness relation. If moreover f 𝑓 f italic_f is injective (bijective) then f 𝑓 f italic_f is called embedding or monomorphism (respectively isomorphism ) of median algebras.


Definition 3.2

A connection βˆ‡ normal-βˆ‡ \nabla βˆ‡ on a lightlike hypersurface ( M , g ) 𝑀 𝑔 (M,g) ( italic_M , italic_g ) is said to be conformal if covariant derivative of g 𝑔 g italic_g is proportional to g 𝑔 g italic_g in the following precise sense that there exists a 1 1 1 1 -form ΞΈ πœƒ \theta italic_ΞΈ such that the following,

βˆ‡ ⁑ g = ΞΈ βŠ— g . βˆ‡ 𝑔 tensor-product πœƒ 𝑔 \nabla g=\theta\otimes g. βˆ‡ italic_g = italic_ΞΈ βŠ— italic_g . (29)

holds. If in addition, βˆ‡ normal-βˆ‡ \nabla βˆ‡ is torsion-free, it is said to be a Weyl connection .


Definition 5.1 .

We say that ψ ∈ G πœ“ 𝐺 \psi\in G italic_ψ ∈ italic_G is reflection-invariant if

ψ ΞΈ = ψ , superscript πœ“ πœƒ πœ“ \psi^{\theta}=\psi, italic_ψ start_POSTSUPERSCRIPT italic_ΞΈ end_POSTSUPERSCRIPT = italic_ψ ,

and that ψ πœ“ \psi italic_ψ is reflected if

ψ ΞΈ = ψ - 1 . superscript πœ“ πœƒ superscript πœ“ 1 \psi^{\theta}=\psi^{-1}. italic_ψ start_POSTSUPERSCRIPT italic_ΞΈ end_POSTSUPERSCRIPT = italic_ψ start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT .

Let G R ⁒ I subscript 𝐺 𝑅 𝐼 G_{RI} italic_G start_POSTSUBSCRIPT italic_R italic_I end_POSTSUBSCRIPT denote the subgroup of G 𝐺 G italic_G consisting of reflection-invariant elements, and let G R subscript 𝐺 𝑅 G_{R} italic_G start_POSTSUBSCRIPT italic_R end_POSTSUBSCRIPT denote the subset of reflected elements.


Definition 5.3 .

Let ( K , ΞΌ ) 𝐾 πœ‡ (K,\mu) ( italic_K , italic_ΞΌ ) be as above, and let Ξ± ^ ∈ Aut ⁑ ( K ) ^ 𝛼 Aut 𝐾 \hat{\alpha}\in{\operatorname*{Aut}}(K) ^ start_ARG italic_Ξ± end_ARG ∈ roman_Aut ( italic_K ) be given. We say that Ξ± ^ ^ 𝛼 \hat{\alpha} ^ start_ARG italic_Ξ± end_ARG is ergodic if the only functions in L ∞ ⁒ ( K ) superscript 𝐿 𝐾 L^{\infty}(K) italic_L start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT ( italic_K ) satisfying

(5.5) f ∘ Ξ± ^ = f 𝑓 ^ 𝛼 𝑓 f\circ\hat{\alpha}=f italic_f ∘ ^ start_ARG italic_Ξ± end_ARG = italic_f

are the constants, a.e., with respect to ΞΌ πœ‡ \mu italic_ΞΌ .


Definition 1 (Invariance of ( P )) .

The integral functional ( P ) it said to be invariant under the Ξ΅ πœ€ \varepsilon italic_Ξ΅ -parameter infinitesimal transformations

{ t Β― = t + Ξ΅ ⁒ Ο„ ⁒ ( t , q ) + o ⁒ ( Ξ΅ ) , q Β― ⁒ ( t ) = q ⁒ ( t ) + Ξ΅ ⁒ ΞΎ ⁒ ( t , q ) + o ⁒ ( Ξ΅ ) , cases Β― 𝑑 𝑑 πœ€ 𝜏 𝑑 π‘ž π‘œ πœ€ π‘œπ‘‘β„Žπ‘’π‘Ÿπ‘€π‘–π‘ π‘’ Β― π‘ž 𝑑 π‘ž 𝑑 πœ€ πœ‰ 𝑑 π‘ž π‘œ πœ€ π‘œπ‘‘β„Žπ‘’π‘Ÿπ‘€π‘–π‘ π‘’ \begin{cases}\bar{t}=t+\varepsilon\tau(t,q)+o(\varepsilon)\,,\\ \bar{q}(t)=q(t)+\varepsilon\xi(t,q)+o(\varepsilon)\,,\\ \end{cases} { start_ROW start_CELL Β― start_ARG italic_t end_ARG = italic_t + italic_Ξ΅ italic_Ο„ ( italic_t , italic_q ) + italic_o ( italic_Ξ΅ ) , end_CELL start_CELL end_CELL end_ROW start_ROW start_CELL Β― start_ARG italic_q end_ARG ( italic_t ) = italic_q ( italic_t ) + italic_Ξ΅ italic_ΞΎ ( italic_t , italic_q ) + italic_o ( italic_Ξ΅ ) , end_CELL start_CELL end_CELL end_ROW (3)

where Ο„ 𝜏 \tau italic_Ο„ and ΞΎ πœ‰ \xi italic_ΞΎ are piecewise-smooth, if

∫ t a t b L ⁒ ( t , q ⁒ ( t ) , q Λ™ ⁒ ( t ) ) ⁒ 𝑑 t = ∫ t Β― ⁒ ( t a ) t Β― ⁒ ( t b ) L ⁒ ( t Β― , q Β― ⁒ ( t Β― ) , q Β― Λ™ ⁒ ( t Β― ) ) ⁒ 𝑑 t Β― superscript subscript subscript 𝑑 π‘Ž subscript 𝑑 𝑏 𝐿 𝑑 π‘ž 𝑑 Λ™ π‘ž 𝑑 differential-d 𝑑 superscript subscript Β― 𝑑 subscript 𝑑 π‘Ž Β― 𝑑 subscript 𝑑 𝑏 𝐿 Β― 𝑑 Β― π‘ž Β― 𝑑 Λ™ Β― π‘ž Β― 𝑑 differential-d Β― 𝑑 \int_{t_{a}}^{t_{b}}L\left(t,q(t),\dot{q}(t)\right)dt=\int_{\bar{t}(t_{a})}^{% \bar{t}(t_{b})}L\left(\bar{t},\bar{q}(\bar{t}),\dot{\bar{q}}(\bar{t})\right)d% \bar{t} ∫ start_POSTSUBSCRIPT italic_t start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT end_POSTSUPERSCRIPT italic_L ( italic_t , italic_q ( italic_t ) , Λ™ start_ARG italic_q end_ARG ( italic_t ) ) italic_d italic_t = ∫ start_POSTSUBSCRIPT Β― start_ARG italic_t end_ARG ( italic_t start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT ) end_POSTSUBSCRIPT start_POSTSUPERSCRIPT Β― start_ARG italic_t end_ARG ( italic_t start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT ) end_POSTSUPERSCRIPT italic_L ( Β― start_ARG italic_t end_ARG , Β― start_ARG italic_q end_ARG ( Β― start_ARG italic_t end_ARG ) , Λ™ start_ARG Β― start_ARG italic_q end_ARG end_ARG ( Β― start_ARG italic_t end_ARG ) ) italic_d Β― start_ARG italic_t end_ARG (4)

for any subinterval [ t a , t b ] βŠ† [ a , b ] subscript 𝑑 π‘Ž subscript 𝑑 𝑏 π‘Ž 𝑏 [{t_{a}},{t_{b}}]\subseteq[a,b] [ italic_t start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT , italic_t start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT ] βŠ† [ italic_a , italic_b ] .


Definition 1

The shape derivative y β€² = y β€² ⁒ ( Ξ© ; 𝐑 ) superscript 𝑦 normal-β€² superscript 𝑦 normal-β€² normal-Ξ© 𝐑 y^{\prime}=y^{\prime}(\Omega;{\bf{h}}) italic_y start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT = italic_y start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ( roman_Ξ© ; bold_h ) of a functional y ⁒ ( Ξ© ) 𝑦 normal-Ξ© y(\Omega) italic_y ( roman_Ξ© ) at Ξ© normal-Ξ© \Omega roman_Ξ© in the direction of a vector field 𝐑 𝐑 {\bf{h}} bold_h is given by

y β€² = y Λ™ - 𝐑 . βˆ‡ ⁑ y . formulae-sequence superscript 𝑦 β€² Λ™ 𝑦 𝐑 βˆ‡ 𝑦 y^{\prime}=\dot{y}-{\bf{h}}.\nabla y. italic_y start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT = Λ™ start_ARG italic_y end_ARG - bold_h . βˆ‡ italic_y . (13)

Definition 2.3 .

The parameters ( a , Ξ± , b , Ξ² , c , Ξ³ , m , ΞΌ ) π‘Ž 𝛼 𝑏 𝛽 𝑐 𝛾 π‘š πœ‡ (a,\alpha,b,\beta,c,\gamma,m,\mu) ( italic_a , italic_Ξ± , italic_b , italic_Ξ² , italic_c , italic_Ξ³ , italic_m , italic_ΞΌ ) are called admissible for a process with state space ℝ β©Ύ 0 subscript ℝ absent 0 \mathbb{R}_{\geqslant 0} blackboard_R start_POSTSUBSCRIPT β©Ύ 0 end_POSTSUBSCRIPT if

a = 0 , π‘Ž 0 \displaystyle a=0, italic_a = 0 ,
Ξ± , b , c , Ξ³ ∈ ℝ β©Ύ 0 , 𝛼 𝑏 𝑐 𝛾 subscript ℝ absent 0 \displaystyle\alpha,b,c,\gamma\in\mathbb{R}_{\geqslant 0}\,, italic_Ξ± , italic_b , italic_c , italic_Ξ³ ∈ blackboard_R start_POSTSUBSCRIPT β©Ύ 0 end_POSTSUBSCRIPT ,
Ξ² ∈ ℝ , 𝛽 ℝ \displaystyle\beta\in\mathbb{R}\,, italic_Ξ² ∈ blackboard_R ,
m , ΞΌ are LΓ©vy measures on ( 0 , ∞ ) , where m satisfies ∫ ( 0 , ∞ ) ( ΞΎ ∧ 1 ) ⁒ m ⁒ ( d ⁒ ΞΎ ) < ∞ , π‘š πœ‡ are LΓ©vy measures on ( 0 , ∞ ) , where m satisfies subscript 0 πœ‰ 1 π‘š 𝑑 πœ‰ \displaystyle\begin{split}\displaystyle m,\mu&\displaystyle\text{are L\'{e}vy % measures on $(0,\infty)$, where $m$ satisfies}\\ &\displaystyle\int_{(0,\infty)}{(\xi\land 1)\,m(d\xi)}<\infty\;,\end{split} start_ROW start_CELL italic_m , italic_ΞΌ end_CELL start_CELL are LΓ©vy measures on ( 0 , ∞ ) , where italic_m satisfies end_CELL end_ROW start_ROW start_CELL end_CELL start_CELL ∫ start_POSTSUBSCRIPT ( 0 , ∞ ) end_POSTSUBSCRIPT ( italic_ΞΎ ∧ 1 ) italic_m ( italic_d italic_ΞΎ ) < ∞ , end_CELL end_ROW

and admissible for a process with state space ℝ ℝ \mathbb{R} blackboard_R if

a , c ∈ ℝ β©Ύ 0 , π‘Ž 𝑐 subscript ℝ absent 0 \displaystyle a,c\in\mathbb{R}_{\geqslant 0}\,, italic_a , italic_c ∈ blackboard_R start_POSTSUBSCRIPT β©Ύ 0 end_POSTSUBSCRIPT ,
b , Ξ² ∈ ℝ , 𝑏 𝛽 ℝ \displaystyle b,\beta\in\mathbb{R}\,, italic_b , italic_Ξ² ∈ blackboard_R ,
m ⁒ is a LΓ©vy measure on ⁒ ℝ βˆ– { 0 } , π‘š is a LΓ©vy measure on ℝ 0 \displaystyle m\;\text{is a L\'{e}vy measure on}\;\mathbb{R}\setminus\left\{0% \right\}\;, italic_m is a LΓ©vy measure on blackboard_R βˆ– { 0 } ,
Ξ± = 0 , Ξ³ = 0 , ΞΌ ≑ 0 . formulae-sequence 𝛼 0 formulae-sequence 𝛾 0 πœ‡ 0 \displaystyle\alpha=0,\gamma=0,\mu\equiv 0\;. italic_Ξ± = 0 , italic_Ξ³ = 0 , italic_ΞΌ ≑ 0 .

Moreover define the truncation functions

h F ⁒ ( ΞΎ ) = { 0 if D = ℝ β©Ύ 0 ΞΎ 1 + ΞΎ 2 if D = ℝ and h R ⁒ ( ΞΎ ) = { ΞΎ 1 + ΞΎ 2 if D = ℝ β©Ύ 0 0 if D = ℝ , formulae-sequence subscript β„Ž 𝐹 πœ‰ cases 0 if 𝐷 subscript ℝ absent 0 πœ‰ 1 superscript πœ‰ 2 if 𝐷 ℝ and subscript β„Ž 𝑅 πœ‰ cases πœ‰ 1 superscript πœ‰ 2 if 𝐷 subscript ℝ absent 0 0 if 𝐷 ℝ h_{F}(\xi)=\begin{cases}0&\text{if}\quad D=\mathbb{R}_{\geqslant 0}\\ \frac{\xi}{1+\xi^{2}}&\text{if}\quad D=\mathbb{R}\end{cases}\qquad\text{and}% \qquad h_{R}(\xi)=\begin{cases}\frac{\xi}{1+\xi^{2}}&\text{if}\quad D=\mathbb{% R}_{\geqslant 0}\\ 0&\text{if}\quad D=\mathbb{R}\end{cases}, italic_h start_POSTSUBSCRIPT italic_F end_POSTSUBSCRIPT ( italic_ΞΎ ) = { start_ROW start_CELL 0 end_CELL start_CELL if italic_D = blackboard_R start_POSTSUBSCRIPT β©Ύ 0 end_POSTSUBSCRIPT end_CELL end_ROW start_ROW start_CELL divide start_ARG italic_ΞΎ end_ARG start_ARG 1 + italic_ΞΎ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG end_CELL start_CELL if italic_D = blackboard_R end_CELL end_ROW and italic_h start_POSTSUBSCRIPT italic_R end_POSTSUBSCRIPT ( italic_ΞΎ ) = { start_ROW start_CELL divide start_ARG italic_ΞΎ end_ARG start_ARG 1 + italic_ΞΎ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG end_CELL start_CELL if italic_D = blackboard_R start_POSTSUBSCRIPT β©Ύ 0 end_POSTSUBSCRIPT end_CELL end_ROW start_ROW start_CELL 0 end_CELL start_CELL if italic_D = blackboard_R end_CELL end_ROW ,

and finally the functions F ⁒ ( u ) 𝐹 𝑒 F(u) italic_F ( italic_u ) , R ⁒ ( u ) 𝑅 𝑒 R(u) italic_R ( italic_u ) for u ∈ β„‚ 𝑒 β„‚ u\in\mathbb{C} italic_u ∈ blackboard_C as

(2.2) F ⁒ ( u ) = a ⁒ u 2 + b ⁒ u - c + ∫ D βˆ– { 0 } ( e u ⁒ ΞΎ - 1 - u ⁒ h F ⁒ ( ΞΎ ) ) ⁒ m ⁒ ( d ⁒ ΞΎ ) , 𝐹 𝑒 π‘Ž superscript 𝑒 2 𝑏 𝑒 𝑐 subscript 𝐷 0 superscript 𝑒 𝑒 πœ‰ 1 𝑒 subscript β„Ž 𝐹 πœ‰ π‘š 𝑑 πœ‰ \displaystyle F(u)=au^{2}+bu-c+\int_{D\setminus\left\{0\right\}}{\left(e^{u\xi% }-1-uh_{F}(\xi)\right)\,m(d\xi)}\;, italic_F ( italic_u ) = italic_a italic_u start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_b italic_u - italic_c + ∫ start_POSTSUBSCRIPT italic_D βˆ– { 0 } end_POSTSUBSCRIPT ( italic_e start_POSTSUPERSCRIPT italic_u italic_ΞΎ end_POSTSUPERSCRIPT - 1 - italic_u italic_h start_POSTSUBSCRIPT italic_F end_POSTSUBSCRIPT ( italic_ΞΎ ) ) italic_m ( italic_d italic_ΞΎ ) ,
(2.3) R ⁒ ( u ) = Ξ± ⁒ u 2 + Ξ² ⁒ u - Ξ³ + ∫ D βˆ– { 0 } ( e u ⁒ ΞΎ - 1 - u ⁒ h R ⁒ ( ΞΎ ) ) ⁒ ΞΌ ⁒ ( d ⁒ ΞΎ ) . 𝑅 𝑒 𝛼 superscript 𝑒 2 𝛽 𝑒 𝛾 subscript 𝐷 0 superscript 𝑒 𝑒 πœ‰ 1 𝑒 subscript β„Ž 𝑅 πœ‰ πœ‡ 𝑑 πœ‰ \displaystyle R(u)=\alpha u^{2}+\beta u-\gamma+\int_{D\setminus\left\{0\right% \}}{\left(e^{u\xi}-1-uh_{R}(\xi)\right)\,\mu(d\xi)}\;. italic_R ( italic_u ) = italic_Ξ± italic_u start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_Ξ² italic_u - italic_Ξ³ + ∫ start_POSTSUBSCRIPT italic_D βˆ– { 0 } end_POSTSUBSCRIPT ( italic_e start_POSTSUPERSCRIPT italic_u italic_ΞΎ end_POSTSUPERSCRIPT - 1 - italic_u italic_h start_POSTSUBSCRIPT italic_R end_POSTSUBSCRIPT ( italic_ΞΎ ) ) italic_ΞΌ ( italic_d italic_ΞΎ ) .

Definition 5.8

Let j Ο‚ subscript 𝑗 𝜍 j_{\varsigma} italic_j start_POSTSUBSCRIPT italic_Ο‚ end_POSTSUBSCRIPT be the least nucleus j 𝑗 j italic_j on 𝔗 ⁑ ( L ) 𝔗 𝐿 \operatorname{\mathfrak{T}}(L) fraktur_T ( italic_L ) such that

j ⁒ ( a ) = j ⁒ ( Ο‚ ⁒ a ⁒ a ) . 𝑗 π‘Ž 𝑗 𝜍 π‘Ž π‘Ž j(a)=j(\varsigma aa)\;. italic_j ( italic_a ) = italic_j ( italic_Ο‚ italic_a italic_a ) .

We define 𝔗 Ο‚ ⁑ ( L , β—† , β—† ) subscript 𝔗 𝜍 𝐿 normal-β—† normal-β—† \operatorname{\mathfrak{T}}_{\varsigma}(L,\lozenge,\blacklozenge) fraktur_T start_POSTSUBSCRIPT italic_Ο‚ end_POSTSUBSCRIPT ( italic_L , β—† , β—† ) to be 𝔗 ( L ) j Ο‚ fragments 𝔗 subscript fragments normal-( L normal-) subscript 𝑗 𝜍 \operatorname{\mathfrak{T}}(L)_{j_{\varsigma}} fraktur_T ( italic_L ) start_POSTSUBSCRIPT italic_j start_POSTSUBSCRIPT italic_Ο‚ end_POSTSUBSCRIPT end_POSTSUBSCRIPT . We also write 𝔗 Ο‚ ⁑ ( L ) subscript 𝔗 𝜍 𝐿 \operatorname{\mathfrak{T}}_{\varsigma}(L) fraktur_T start_POSTSUBSCRIPT italic_Ο‚ end_POSTSUBSCRIPT ( italic_L ) if β—† normal-β—† \lozenge β—† and β—† normal-β—† \blacklozenge β—† are clear from the context.