Definition 5.9 .

Let V ๐‘‰ V italic_V be a free graded module of finite rank and let ฯ‰ โˆˆ D โข R 2 โข ( ฮฃ โข V ) ๐œ” ๐ท superscript ๐‘… 2 ฮฃ ๐‘‰ \omega\in DR^{2}(\Sigma V) italic_ฯ‰ โˆˆ italic_D italic_R start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( roman_ฮฃ italic_V ) be a constant symplectic form. Let m ๐‘š m italic_m and m โ€ฒ superscript ๐‘š โ€ฒ m^{\prime} italic_m start_POSTSUPERSCRIPT โ€ฒ end_POSTSUPERSCRIPT be two minimal unital symplectic C โˆž subscript ๐ถ C_{\infty} italic_C start_POSTSUBSCRIPT โˆž end_POSTSUBSCRIPT -structures on V ๐‘‰ V italic_V with the same underlying Frobenius algebra. We say that two unital symplectic C โˆž subscript ๐ถ C_{\infty} italic_C start_POSTSUBSCRIPT โˆž end_POSTSUBSCRIPT -morphisms ฯ• italic-ฯ• \phi italic_ฯ• and ฯ• โ€ฒ superscript italic-ฯ• โ€ฒ \phi^{\prime} italic_ฯ• start_POSTSUPERSCRIPT โ€ฒ end_POSTSUPERSCRIPT from m ๐‘š m italic_m to m โ€ฒ superscript ๐‘š โ€ฒ m^{\prime} italic_m start_POSTSUPERSCRIPT โ€ฒ end_POSTSUPERSCRIPT are homotopic if there exists a normalised symplectic vector field ฮท ๐œ‚ \eta italic_ฮท of degree - 1 1 -1 - 1 such that

ฯ• = ฯ• โ€ฒ โˆ˜ exp โก ( [ m , ฮท ] ) . italic-ฯ• superscript italic-ฯ• โ€ฒ ๐‘š ๐œ‚ \phi=\phi^{\prime}\circ\exp([m,\eta]). italic_ฯ• = italic_ฯ• start_POSTSUPERSCRIPT โ€ฒ end_POSTSUPERSCRIPT โˆ˜ roman_exp ( [ italic_m , italic_ฮท ] ) .

We denote the moduli space of unital symplectic C โˆž subscript ๐ถ C_{\infty} italic_C start_POSTSUBSCRIPT โˆž end_POSTSUBSCRIPT -morphisms from m ๐‘š m italic_m to m โ€ฒ superscript ๐‘š โ€ฒ m^{\prime} italic_m start_POSTSUPERSCRIPT โ€ฒ end_POSTSUPERSCRIPT by ๐’ฐ โข ๐’ฎ โข โ„ณ โˆž โข ( m ; m โ€ฒ ) ๐’ฐ ๐’ฎ subscript โ„ณ ๐‘š superscript ๐‘š โ€ฒ \mathcal{USM}_{\infty}(m;m^{\prime}) caligraphic_U caligraphic_S caligraphic_M start_POSTSUBSCRIPT โˆž end_POSTSUBSCRIPT ( italic_m ; italic_m start_POSTSUPERSCRIPT โ€ฒ end_POSTSUPERSCRIPT ) and define it as the quotient of the set

{ ฯ• : L ^ โข ฮฃ โข V * โ†’ L ^ โข ฮฃ โข V * : ฯ• โข is a pointed unital symplectic C โˆž -morphism from m to m โ€ฒ } conditional-set italic-ฯ• : โ†’ ^ ๐ฟ ฮฃ superscript ๐‘‰ ^ ๐ฟ ฮฃ superscript ๐‘‰ italic-ฯ• is a pointed unital symplectic C โˆž -morphism from m to m โ€ฒ \{\phi:\widehat{L}\Sigma V^{*}\to\widehat{L}\Sigma V^{*}:\phi\text{ is a \emph% {pointed unital symplectic} $C_{\infty}$-morphism from $m$ to $m^{\prime}$}\} { italic_ฯ• : ^ start_ARG italic_L end_ARG roman_ฮฃ italic_V start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT โ†’ ^ start_ARG italic_L end_ARG roman_ฮฃ italic_V start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT : italic_ฯ• is a italic_C start_POSTSUBSCRIPT โˆž end_POSTSUBSCRIPT -morphism from italic_m to italic_m start_POSTSUPERSCRIPT โ€ฒ end_POSTSUPERSCRIPT }

by the homotopy equivalence relation defined above.


Definition 8.8 .

Let ๐’œ ๐’œ {\mathcal{A}} caligraphic_A be a * * * -algebra and ฯƒ : ๐’œ โ†’ ๐’œ normal-: ๐œŽ normal-โ†’ ๐’œ ๐’œ \sigma:{\mathcal{A}}\to{\mathcal{A}} italic_ฯƒ : caligraphic_A โ†’ caligraphic_A an algebra automorphism such that

ฯƒ โข ( a ) * = ฯƒ - 1 โข ( a * ) . ๐œŽ superscript ๐‘Ž superscript ๐œŽ 1 superscript ๐‘Ž \sigma(a)^{*}=\sigma^{-1}(a^{*}). italic_ฯƒ ( italic_a ) start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT = italic_ฯƒ start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ( italic_a start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT ) .

then we say that ฯƒ ๐œŽ \sigma italic_ฯƒ is a regular automorphism, [ 23 ] .


Definition B.1.1 .

Let ๐’ฅ ๐’ฅ \mathscr{J} script_J be a ring which is not necessarily commutative with respect to multiplication. Then an Abelian (commutative) group S ๐‘† S italic_S is called a left ๐’ฅ ๐’ฅ \mathscr{J} script_J -module or a left module over ๐’ฅ ๐’ฅ \mathscr{J} script_J with respect to a mapping (scalar multiplication on the left which is simply denoted by juxtaposition) ๐’ฅ ร— S โ†’ S โ†’ ๐’ฅ ๐‘† ๐‘† \mathscr{J}\times S\to S script_J ร— italic_S โ†’ italic_S such that for all a , b โˆˆ ๐’ฅ ๐‘Ž ๐‘ ๐’ฅ a,b\in\mathscr{J} italic_a , italic_b โˆˆ script_J and g , h โˆˆ S ๐‘” โ„Ž ๐‘† g,h\in S italic_g , italic_h โˆˆ italic_S ,

  1. 1)

    a โข ( g + h ) = a โข g + a โข h ๐‘Ž ๐‘” โ„Ž ๐‘Ž ๐‘” ๐‘Ž โ„Ž a(g+h)=ag+ah italic_a ( italic_g + italic_h ) = italic_a italic_g + italic_a italic_h ,

  2. 2)

    ( a + b ) โข g = a โข g + b โข g ๐‘Ž ๐‘ ๐‘” ๐‘Ž ๐‘” ๐‘ ๐‘” (a+b)g=ag+bg ( italic_a + italic_b ) italic_g = italic_a italic_g + italic_b italic_g ,

  3. 3)

    ( a โข b ) โข g = a โข ( b โข g ) ๐‘Ž ๐‘ ๐‘” ๐‘Ž ๐‘ ๐‘” (ab)g=a(bg) ( italic_a italic_b ) italic_g = italic_a ( italic_b italic_g ) .


Definition 2.3 .

( [ 12 ] ) Let ๐”ž ๐”ž \mathfrak{a} fraktur_a be a quiver. An A [ 0 , โˆž [ subscript ๐ด fragments normal-[ 0 normal-, normal-[ A_{[0,\infty[} italic_A start_POSTSUBSCRIPT [ 0 , โˆž [ end_POSTSUBSCRIPT -structure on ๐”ž ๐”ž \mathfrak{a} fraktur_a is an element b โˆˆ ๐‚ b โข r 1 โข ( ๐”ž ) ๐‘ superscript subscript ๐‚ ๐‘ ๐‘Ÿ 1 ๐”ž b\in\mathbf{C}_{br}^{1}(\mathfrak{a}) italic_b โˆˆ bold_C start_POSTSUBSCRIPT italic_b italic_r end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT ( fraktur_a ) satisfying

b โข { b } = 0 ๐‘ ๐‘ 0 b\{b\}=0 italic_b { italic_b } = 0 (7)

The morphisms

b n : ฮฃ โข ๐”ž โŠ— n โŸถ ฮฃ โข ๐”ž : subscript ๐‘ ๐‘› โŸถ ฮฃ superscript ๐”ž tensor-product absent ๐‘› ฮฃ ๐”ž b_{n}:\Sigma\mathfrak{a}^{\otimes n}\longrightarrow\Sigma\mathfrak{a} italic_b start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT : roman_ฮฃ fraktur_a start_POSTSUPERSCRIPT โŠ— italic_n end_POSTSUPERSCRIPT โŸถ roman_ฮฃ fraktur_a

defining b ๐‘ b italic_b are sometimes called (Taylor) coefficients of b ๐‘ b italic_b . The couple ( ๐”ž , b ) ๐”ž ๐‘ (\mathfrak{a},b) ( fraktur_a , italic_b ) is called an A [ 0 , โˆž ] subscript ๐ด 0 A_{[0,\infty]} italic_A start_POSTSUBSCRIPT [ 0 , โˆž ] end_POSTSUBSCRIPT -category . If b 0 = 0 subscript ๐‘ 0 0 b_{0}=0 italic_b start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT = 0 , it is called an A โˆž subscript ๐ด A_{\infty} italic_A start_POSTSUBSCRIPT โˆž end_POSTSUBSCRIPT -category . If b n = 0 subscript ๐‘ ๐‘› 0 b_{n}=0 italic_b start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT = 0 for n โ‰ฅ 3 ๐‘› 3 n\geq 3 italic_n โ‰ฅ 3 , it is called a cdg category . If b 0 = 0 subscript ๐‘ 0 0 b_{0}=0 italic_b start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT = 0 and b n = 0 subscript ๐‘ ๐‘› 0 b_{n}=0 italic_b start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT = 0 for n โ‰ฅ 3 ๐‘› 3 n\geq 3 italic_n โ‰ฅ 3 , it is called a dg category .


Definition 2.1 .

A mapping f : S โ†’ X : ๐‘“ โ†’ ๐‘† ๐‘‹ f:S\to X italic_f : italic_S โ†’ italic_X is said to be a kannappan mapping if it satisfies equation

(2.1) f โข ( x โข y โข z ) + f โข ( x ) + f โข ( y ) + f โข ( z ) - f โข ( x โข y ) - f โข ( x โข z ) - f โข ( y โข z ) = 0 . ๐‘“ ๐‘ฅ ๐‘ฆ ๐‘ง ๐‘“ ๐‘ฅ ๐‘“ ๐‘ฆ ๐‘“ ๐‘ง ๐‘“ ๐‘ฅ ๐‘ฆ ๐‘“ ๐‘ฅ ๐‘ง ๐‘“ ๐‘ฆ ๐‘ง 0 f(xyz)+f(x)+f(y)+f(z)-f(xy)-f(xz)-f(yz)=0. italic_f ( italic_x italic_y italic_z ) + italic_f ( italic_x ) + italic_f ( italic_y ) + italic_f ( italic_z ) - italic_f ( italic_x italic_y ) - italic_f ( italic_x italic_z ) - italic_f ( italic_y italic_z ) = 0 .

Definition 1 .

Consider a curve ฮณ โข ( t ) : [ a , b ] โ†’ Q normal-: ๐›พ ๐‘ก normal-โ†’ ๐‘Ž ๐‘ ๐‘„ \gamma(t):[a,b]\rightarrow Q italic_ฮณ ( italic_t ) : [ italic_a , italic_b ] โ†’ italic_Q . A proper variation of ฮณ โข ( t ) ๐›พ ๐‘ก \gamma(t) italic_ฮณ ( italic_t ) is a differentiable function q โข ( s , t ) : [ - ฮต , ฮต ] ร— [ a , b ] โ†’ Q normal-: ๐‘ž ๐‘  ๐‘ก normal-โ†’ ๐œ€ ๐œ€ ๐‘Ž ๐‘ ๐‘„ q(s,t):[-\varepsilon,\varepsilon]\times[a,b]\rightarrow Q italic_q ( italic_s , italic_t ) : [ - italic_ฮต , italic_ฮต ] ร— [ italic_a , italic_b ] โ†’ italic_Q that satisfies the following conditions:


Definition 3 .

A lattice is a poset L ๐ฟ L italic_L such that any elements x ๐‘ฅ x italic_x , y ๐‘ฆ y italic_y โˆˆ \in โˆˆ L ๐ฟ L italic_L have a unique greatest lower bound, denoted x โˆง y ๐‘ฅ ๐‘ฆ x\wedge y italic_x โˆง italic_y , and a unique least upper bound x โˆจ y ๐‘ฅ ๐‘ฆ x\vee y italic_x โˆจ italic_y , i.e.,

x โˆง y = inf โก { x , y } , x โˆจ y = sup โก { x , y } . formulae-sequence ๐‘ฅ ๐‘ฆ infimum ๐‘ฅ ๐‘ฆ ๐‘ฅ ๐‘ฆ supremum ๐‘ฅ ๐‘ฆ x\wedge y=\inf\{x,y\},\qquad x\vee y=\sup\{x,y\}. italic_x โˆง italic_y = roman_inf { italic_x , italic_y } , italic_x โˆจ italic_y = roman_sup { italic_x , italic_y } . (4)

The operation โˆง \wedge โˆง is also called meet , and the operation โˆจ \vee โˆจ is called join . A lattice L ๐ฟ L italic_L is complete , when for any set D โŠ† L ๐ท ๐ฟ D\subseteq L italic_D โŠ† italic_L the bounds sup โก D supremum ๐ท \sup D roman_sup italic_D and inf โก D infimum ๐ท \inf D roman_inf italic_D exist; it is ฯƒ ๐œŽ \sigma italic_ฯƒ -complete , when for any countable set D โŠ† L ๐ท ๐ฟ D\subseteq L italic_D โŠ† italic_L the bounds sup โก D supremum ๐ท \sup D roman_sup italic_D and inf โก D infimum ๐ท \inf D roman_inf italic_D exist. A lattice is atomic if every element is a join of atoms. โ—† normal-โ—† \lozenge โ—†

Definition 30 .

[ 26 , 30 , 25 ] A t-norm (โ€œtriangular normโ€) is a binary operation * : [ 0 , 1 ] 2 โ†’ [ 0 , 1 ] fragments normal-: superscript fragments normal-[ 0 normal-, 1 normal-] 2 normal-โ†’ fragments normal-[ 0 normal-, 1 normal-] *:[0,1]^{2}\to[0,1] * : [ 0 , 1 ] start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT โ†’ [ 0 , 1 ] satisfying the following conditions for all x ๐‘ฅ x italic_x , y ๐‘ฆ y italic_y , z โˆˆ [ 0 , 1 ] ๐‘ง 0 1 z\in[0,1] italic_z โˆˆ [ 0 , 1 ] :

(commutativity) x * y = y * x ๐‘ฅ ๐‘ฆ ๐‘ฆ ๐‘ฅ \displaystyle x*y=y*x italic_x * italic_y = italic_y * italic_x (41)
(associativity) ( x * y ) * z = x * ( y * z ) ๐‘ฅ ๐‘ฆ ๐‘ง ๐‘ฅ ๐‘ฆ ๐‘ง \displaystyle(x*y)*z=x*(y*z) ( italic_x * italic_y ) * italic_z = italic_x * ( italic_y * italic_z ) (42)
(monotony) x * z โ‰ฆ y * z โข if โข x โ‰ฆ y ๐‘ฅ ๐‘ง ๐‘ฆ ๐‘ง if ๐‘ฅ ๐‘ฆ \displaystyle x*z\leqq y*z\ \mbox{ if }x\leqq y italic_x * italic_z โ‰ฆ italic_y * italic_z if italic_x โ‰ฆ italic_y (43)
(boundary condition) 1 * x = x , 1 ๐‘ฅ ๐‘ฅ \displaystyle 1*x=x, 1 * italic_x = italic_x , (44)

โ—† โ—† \lozenge โ—†


Definition 3.1 .

A perversity p ๐‘ p italic_p is said to be standard if

(5) p โข ( x ) = p - โข ( x ) = p + โข ( x ) = 0 if codim โก x ยฏ = 0 . formulae-sequence ๐‘ ๐‘ฅ superscript ๐‘ ๐‘ฅ superscript ๐‘ ๐‘ฅ 0 if codim โก x ยฏ = 0 . p(x)=p^{-}(x)=p^{+}(x)=0\qquad\text{if $\operatorname{codim}\bar{x}=0$.} italic_p ( italic_x ) = italic_p start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT ( italic_x ) = italic_p start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT ( italic_x ) = 0 if roman_codim ยฏ start_ARG italic_x end_ARG = 0 .

Definition 3.1 .

A random variable Y ๐‘Œ Y italic_Y is called a GGC variable if it is infinitely divisible with Lรฉvy measure ฮฝ ๐œˆ \nu italic_ฮฝ of the form:

ฮฝ โข ( d โข x ) = d โข x x โข โˆซ ฮผ โข ( d โข ฮพ ) โข exp โก ( - ฮพ โข x ) , ๐œˆ d ๐‘ฅ d ๐‘ฅ ๐‘ฅ ๐œ‡ d ๐œ‰ ๐œ‰ ๐‘ฅ \nu\left({\mathrm{d}}x\right)=\dfrac{{\mathrm{d}}x}{x}\int\mu\left({\mathrm{d}% }\xi\right)\exp\left(-\xi x\right), italic_ฮฝ ( roman_d italic_x ) = divide start_ARG roman_d italic_x end_ARG start_ARG italic_x end_ARG โˆซ italic_ฮผ ( roman_d italic_ฮพ ) roman_exp ( - italic_ฮพ italic_x ) , (3.1)

where ฮผ โข ( d โข ฮพ ) ๐œ‡ d ๐œ‰ \mu\left({\mathrm{d}}\xi\right) italic_ฮผ ( roman_d italic_ฮพ ) is a Radon measure on โ„ + subscript โ„ \mathbb{R}_{+} blackboard_R start_POSTSUBSCRIPT + end_POSTSUBSCRIPT , called the Thorin measure of Y ๐‘Œ Y italic_Y .


Definition 7 .

A property P ๐‘ƒ P italic_P of colorings on a graph G ๐บ G italic_G is a frame property just in case

F r a m e ( C ) = F r a m e ( C โ€ฒ ) โ‡’ [ C โˆˆ P โ‡’ C โ€ฒ โˆˆ P ] , fragments F r a m e fragments ( C ) F r a m e fragments ( superscript ๐ถ โ€ฒ ) โ‡’ fragments [ C P โ‡’ superscript ๐ถ โ€ฒ P ] , Frame(C)=Frame(C^{\prime})\Rightarrow[C\in P\Rightarrow C^{\prime}\in P], italic_F italic_r italic_a italic_m italic_e ( italic_C ) = italic_F italic_r italic_a italic_m italic_e ( italic_C start_POSTSUPERSCRIPT โ€ฒ end_POSTSUPERSCRIPT ) โ‡’ [ italic_C โˆˆ italic_P โ‡’ italic_C start_POSTSUPERSCRIPT โ€ฒ end_POSTSUPERSCRIPT โˆˆ italic_P ] ,

for any colorings C ๐ถ C italic_C , C โ€ฒ superscript ๐ถ โ€ฒ C^{\prime} italic_C start_POSTSUPERSCRIPT โ€ฒ end_POSTSUPERSCRIPT of G ๐บ G italic_G .