Definition 5

A multilagrangian fiber bundle is a fiber bundle P 𝑃 P italic_P over an n 𝑛 n italic_n -dimensional manifold M 𝑀 M italic_M equipped with a ( k + 1 - r ) 𝑘 1 𝑟 (k+1-r) ( italic_k + 1 - italic_r ) -horizontal ( k + 1 ) 𝑘 1 (k+1) ( italic_k + 1 ) -form ω 𝜔 \,\omega italic_ω of constant rank on the total space P 𝑃 P italic_P , where 1 r k + 1 1 𝑟 𝑘 1 \,1\leqslant r\leqslant k+1\, 1 ⩽ italic_r ⩽ italic_k + 1 and k + 1 - r n 𝑘 1 𝑟 𝑛 \,k+1-r\leqslant n italic_k + 1 - italic_r ⩽ italic_n , called the multilagrangian form and said to be of rank N 𝑁 N italic_N and horizontality degree k + 1 - r 𝑘 1 𝑟 k+1-r italic_k + 1 - italic_r , such that ω 𝜔 \,\omega italic_ω is closed,

d ω = 0 , 𝑑 𝜔 0 d\omega~{}=~{}0~{}, italic_d italic_ω = 0 , (87)

and such that at every point p 𝑝 p italic_p of P 𝑃 P italic_P , ω p subscript 𝜔 𝑝 \omega_{p} italic_ω start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT is a multilagrangian form of rank N 𝑁 N italic_N on the tangent space T p P subscript 𝑇 𝑝 𝑃 T_{p}P italic_T start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT italic_P . If the multilagrangian subspaces at the different points of P 𝑃 P italic_P fit together into a distribution L 𝐿 L italic_L on P 𝑃 P italic_P (which is contained in the vertical bundle V P 𝑉 𝑃 VP italic_V italic_P of P 𝑃 P italic_P ), we call it the multilagrangian distribution of ω 𝜔 \,\omega italic_ω .

When k = n 𝑘 𝑛 \,k=n italic_k = italic_n , r = 2 𝑟 2 r=2\, italic_r = 2 and ω 𝜔 \,\omega italic_ω is non-degenerate, we say that P 𝑃 P italic_P is a multisymplectic fiber bundle and ω 𝜔 \,\omega italic_ω is a multisymplectic form . If the condition of non-degeneracy is dropped, we call P 𝑃 P italic_P a multipresymplectic fiber bundle and ω 𝜔 \,\omega italic_ω a multipresymplectic form .
If M 𝑀 M italic_M reduces to a point, we speak of a multilagrangian manifold .


Definition 3.4 .

A Young diagram represents a way to write a natural number r 𝑟 r italic_r as the sum of k 𝑘 k italic_k naturals l 1 l 2 l k > 0 subscript 𝑙 1 subscript 𝑙 2 normal-⋯ subscript 𝑙 𝑘 0 l_{1}\geq l_{2}\geq\cdots\geq l_{k}>0 italic_l start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ≥ italic_l start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ≥ ⋯ ≥ italic_l start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT > 0 . It is pictured as r 𝑟 r italic_r boxes arranged in k 𝑘 k italic_k rows as in the following example:

7
= 4 + 2 + 1
.

7
4 2 1
\hbox{}\hskip 0.0pt\vbox{\vbox{\offinterlineskip\vbox{\hrule height 0.3pt widt% h 100%\hbox{\vrule height 8.959863pt width 0.3pt depth 2.239966pt\hbox to 11.1% 99829pt{\hfil}\vrule height 8.959863pt width 0.3pt depth 2.239966pt\hbox to 11% .199829pt{\hfil}\vrule height 8.959863pt width 0.3pt depth 2.239966pt\hbox to % 11.199829pt{\hfil}\vrule height 8.959863pt width 0.3pt depth 2.239966pt\hbox t% o 11.199829pt{\hfil}\vrule height 8.959863pt width 0.3pt depth 2.239966pt} \hrule height 0.3pt width 100%}\vspace{-\y@linethick} \vbox{\hrule height 0.3pt width 100%\hbox{\vrule height 8.959863pt width 0.3pt% depth 2.239966pt\hbox to 11.199829pt{\hfil}\vrule height 8.959863pt width 0.3% pt depth 2.239966pt\hbox to 11.199829pt{\hfil}\vrule height 8.959863pt width 0% .3pt depth 2.239966pt} \hrule height 0.3pt width 100%}\vspace{-\y@linethick} \vbox{\hrule height 0.3pt width 100%\hbox{\vrule height 8.959863pt width 0.3pt% depth 2.239966pt\hbox to 11.199829pt{\hfil}\vrule height 8.959863pt width 0.3% pt depth 2.239966pt} \hrule height 0.3pt width 100%}\vspace{-\y@linethick} }}\hskip 0.0pt\qquad 7=4+2+1. 7 = 4 + 2 + 1 .

A (generalized) Young tableau is a Young diagram in which we fill the boxes with numbers from 1 to r 𝑟 r italic_r according to the rule that numbers on the same row are increasing from left to right and numbers on the first column of rows of equal length are increasing from top to bottom, for example:

1 5

3 4

2

is OK
, but

3 4

1 5

2

is not
.

1 5

3 4

2

is OK
but

3 4

1 5

2

is not
\hbox{}\hskip 0.0pt\vbox{\vbox{\offinterlineskip \vbox{ \hrule height 0.3pt width 100%\hbox{\vrule height 8.959863pt width 0.3pt depth% 2.239966pt\hbox to 11.199829pt{\hfil$1$\hfil}\vrule height 8.959863pt width 0% .3pt depth 2.239966pt\hbox to 11.199829pt{\hfil$5$\hfil}\vrule height 8.959863% pt width 0.3pt depth 2.239966pt}\hrule height 0.3pt width 100%}\vspace{-% \y@linethick} \vbox{ \hrule height 0.3pt width 100%\hbox{\vrule height 8.959863pt width 0.3pt depth% 2.239966pt\hbox to 11.199829pt{\hfil$3$\hfil}\vrule height 8.959863pt width 0% .3pt depth 2.239966pt\hbox to 11.199829pt{\hfil$4$\hfil}\vrule height 8.959863% pt width 0.3pt depth 2.239966pt}\hrule height 0.3pt width 100%}\vspace{-% \y@linethick} \vbox{ \hrule height 0.3pt width 100%\hbox{\vrule height 8.959863pt width 0.3pt depth% 2.239966pt\hbox to 11.199829pt{\hfil$2$\hfil}\vrule height 8.959863pt width 0% .3pt depth 2.239966pt} \hrule height 0.3pt width 100%}\vspace{-\y@linethick} }}\hskip 0.0pt\ \mathrm{is\ OK,\ but}\ \hbox{}\hskip 0.0pt\vbox{\vbox{% \offinterlineskip \vbox{ \hrule height 0.3pt width 100%\hbox{\vrule height 8.959863pt width 0.3pt depth% 2.239966pt\hbox to 11.199829pt{\hfil$3$\hfil}\vrule height 8.959863pt width 0% .3pt depth 2.239966pt\hbox to 11.199829pt{\hfil$4$\hfil}\vrule height 8.959863% pt width 0.3pt depth 2.239966pt}\hrule height 0.3pt width 100%}\vspace{-% \y@linethick} \vbox{ \hrule height 0.3pt width 100%\hbox{\vrule height 8.959863pt width 0.3pt depth% 2.239966pt\hbox to 11.199829pt{\hfil$1$\hfil}\vrule height 8.959863pt width 0% .3pt depth 2.239966pt\hbox to 11.199829pt{\hfil$5$\hfil}\vrule height 8.959863% pt width 0.3pt depth 2.239966pt}\hrule height 0.3pt width 100%}\vspace{-% \y@linethick} \vbox{ \hrule height 0.3pt width 100%\hbox{\vrule height 8.959863pt width 0.3pt depth% 2.239966pt\hbox to 11.199829pt{\hfil$2$\hfil}\vrule height 8.959863pt width 0% .3pt depth 2.239966pt} \hrule height 0.3pt width 100%}\vspace{-\y@linethick} }}\hskip 0.0pt\ \mathrm{is\ not.} italic_1 italic_5 italic_3 italic_4 italic_2 roman_is roman_OK , roman_but italic_3 italic_4 italic_1 italic_5 italic_2 roman_is roman_not .

Definition 1.6.5 .

Let G 𝐺 G italic_G be a group. An endomorphism φ 𝜑 \varphi italic_φ of G 𝐺 G italic_G is conjugacy idempotent if there exists a c G 𝑐 𝐺 c\in G italic_c ∈ italic_G such that:

φ 2 ( g ) = c - 1 φ ( g ) c superscript 𝜑 2 𝑔 superscript 𝑐 1 𝜑 𝑔 𝑐 \varphi^{2}(g)=c^{-1}\varphi(g)c italic_φ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_g ) = italic_c start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT italic_φ ( italic_g ) italic_c

for every g G 𝑔 𝐺 g\in G italic_g ∈ italic_G .


Definition 3.1 .

Let A 𝐴 A italic_A be an infinite matrix whose element a ( i , j ) 𝑎 𝑖 𝑗 a\left(i,j\right) italic_a ( italic_i , italic_j ) 1 1 1 Coordinates are in the Cartesian sense. is

(4) a ( i , j ) = i + j ( 6 i + 1 ) 𝑎 𝑖 𝑗 𝑖 𝑗 6 𝑖 1 a\left(i,j\right)=i+j\left(6i+1\right) italic_a ( italic_i , italic_j ) = italic_i + italic_j ( 6 italic_i + 1 )

where i , j 𝑖 𝑗 i,j\,\in\mathbb{Z} italic_i , italic_j ∈ blackboard_Z .