Definition 2.1 .

Call the forms γ 𝛾 \gamma italic_γ and β 𝛽 \beta italic_β compatible if

(2.1) 2 γ ( u , v , γ ( u , v , ) ) = β ( u , u ) β ( v , v ) - β ( u , v ) 2 2 𝛾 𝑢 𝑣 𝛾 superscript 𝑢 𝑣 𝛽 𝑢 𝑢 𝛽 𝑣 𝑣 𝛽 superscript 𝑢 𝑣 2 \displaystyle 2\,\gamma(u,v,\gamma(u,v,\cdot)^{\dagger})=\beta(u,u)\beta(v,v)-% \beta(u,v)^{2} 2 italic_γ ( italic_u , italic_v , italic_γ ( italic_u , italic_v , ⋅ ) start_POSTSUPERSCRIPT † end_POSTSUPERSCRIPT ) = italic_β ( italic_u , italic_u ) italic_β ( italic_v , italic_v ) - italic_β ( italic_u , italic_v ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT

for all u , v V 𝑢 𝑣 𝑉 u,v\in V italic_u , italic_v ∈ italic_V . An alternating trilinear form γ : 3 V k : 𝛾 superscript 3 𝑉 𝑘 \gamma:\textstyle\bigwedge^{3}V\to k italic_γ : ⋀ start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT italic_V → italic_k is nondegenerate if there exists a compatible nondegenerate symmetric bilinear form on V 𝑉 V italic_V .


Definition 1 .

G L q ( 2 ) 𝐺 subscript 𝐿 𝑞 2 {G\!L_{q}(2)} italic_G italic_L start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ( 2 ) is a unital associative algebra with generators a 𝑎 a italic_a , b 𝑏 b italic_b , c 𝑐 c italic_c , d 𝑑 d italic_d , and defining relations

[ a , d ] = ( q - q - 1 ) b c , 𝑎 𝑑 𝑞 superscript 𝑞 1 𝑏 𝑐 \displaystyle{}[a,d]=({q{-}q^{-1}})\,b\,c\,, [ italic_a , italic_d ] = ( italic_q - italic_q start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ) italic_b italic_c , [ b , c ] = 0 , 𝑏 𝑐 0 \displaystyle\qquad[b,c]=0\,, [ italic_b , italic_c ] = 0 , (5)
a b = q b a , a c = q c a , formulae-sequence 𝑎 𝑏 𝑞 𝑏 𝑎 𝑎 𝑐 𝑞 𝑐 𝑎 \displaystyle{}a\,b=q\,b\,a\,,\quad a\,c=q\,c\,a\,, italic_a italic_b = italic_q italic_b italic_a , italic_a italic_c = italic_q italic_c italic_a , b d = q d b , c d = q d c . formulae-sequence 𝑏 𝑑 𝑞 𝑑 𝑏 𝑐 𝑑 𝑞 𝑑 𝑐 \displaystyle b\,d=q\,d\,b\,,\quad c\,d=q\,d\,c\,. italic_b italic_d = italic_q italic_d italic_b , italic_c italic_d = italic_q italic_d italic_c .

S L q ( 2 ) 𝑆 subscript 𝐿 𝑞 2 {S\!L_{q}(2)} italic_S italic_L start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ( 2 ) is the factor algebra of G L q ( 2 ) 𝐺 subscript 𝐿 𝑞 2 {G\!L_{q}(2)} italic_G italic_L start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ( 2 ) over the ideal generated by the relation a d - q b c = 𝟣 𝑎 𝑑 𝑞 𝑏 𝑐 1 ad-qbc={\sf 1} italic_a italic_d - italic_q italic_b italic_c = sansserif_1 .

Definition 2 .

G L ~ q ( 2 ) subscript ~ 𝐺 𝐿 𝑞 2 \widetilde{G\!L}_{q}(2) ~ start_ARG italic_G italic_L end_ARG start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ( 2 ) is a unital associative algebra with generators a 𝑎 a italic_a , b 𝑏 b italic_b , c 𝑐 c italic_c , d 𝑑 d italic_d , θ 𝜃 \theta italic_θ , and defining relations ( 5 ) and

a θ = q - 1 θ a , θ d = q - 1 d θ , [ b , θ ] = 0 , [ θ , c ] = 0 . formulae-sequence 𝑎 𝜃 superscript 𝑞 1 𝜃 𝑎 formulae-sequence 𝜃 𝑑 superscript 𝑞 1 𝑑 𝜃 formulae-sequence 𝑏 𝜃 0 𝜃 𝑐 0 a\,\theta=q^{-1}\,\theta\,a\,,\quad\theta\,d=q^{-1}\,d\,\theta\,,\quad[b,% \theta]=0\,,\quad[\theta,c]=0\,. italic_a italic_θ = italic_q start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT italic_θ italic_a , italic_θ italic_d = italic_q start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT italic_d italic_θ , [ italic_b , italic_θ ] = 0 , [ italic_θ , italic_c ] = 0 . (16)
Definition 3 .

G L ~ q ( 2 , ) subscript ~ 𝐺 𝐿 𝑞 2 \widetilde{G\!L}\vphantom{L}_{q}(2,\!{\mathbb{R}}) ~ start_ARG italic_G italic_L end_ARG start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ( 2 , blackboard_R ) is a real form of G L ~ q ( 2 ) subscript normal-~ 𝐺 𝐿 𝑞 2 \widetilde{G\!L}_{q}(2) ~ start_ARG italic_G italic_L end_ARG start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ( 2 ) equipped with an anti–involution * defined on generators by

a * = a , b * = b , c * = c , d * = d , θ * = θ . formulae-sequence superscript 𝑎 𝑎 formulae-sequence superscript 𝑏 𝑏 formulae-sequence superscript 𝑐 𝑐 formulae-sequence superscript 𝑑 𝑑 superscript 𝜃 𝜃 a^{*}=a\,,\quad b^{*}=b\,,\quad c^{*}=c\,,\quad d^{*}=d\,,\quad\theta^{*}=% \theta\,. italic_a start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT = italic_a , italic_b start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT = italic_b , italic_c start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT = italic_c , italic_d start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT = italic_d , italic_θ start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT = italic_θ . (28)

G L ~ q ( 2 , ) subscript superscript ~ 𝐺 𝐿 𝑞 2 \widetilde{G\!L}\vphantom{L}^{\prime}_{q}(2,\!{\mathbb{R}}) ~ start_ARG italic_G italic_L end_ARG start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ( 2 , blackboard_R ) and G L ~ q ′′ ( 2 , ) subscript superscript normal-~ 𝐺 𝐿 normal-′′ 𝑞 2 \widetilde{G\!L}\vphantom{L}^{\prime\prime}_{q}(2,\!{\mathbb{R}}) ~ start_ARG italic_G italic_L end_ARG start_POSTSUPERSCRIPT ′ ′ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ( 2 , blackboard_R ) are the factor algebras of G L ~ q ( 2 , ) subscript normal-~ 𝐺 𝐿 𝑞 2 \widetilde{G\!L}\vphantom{L}_{q}(2,\!{\mathbb{R}}) ~ start_ARG italic_G italic_L end_ARG start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ( 2 , blackboard_R ) over the ideals generated, respectively, by the relations η q = 𝟣 subscript superscript 𝜂 normal-′ 𝑞 1 \eta^{\prime}_{q}={\sf 1} italic_η start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT = sansserif_1 and η q ′′ = 𝟣 subscript superscript 𝜂 normal-′′ 𝑞 1 \eta^{\prime\prime}_{q}={\sf 1} italic_η start_POSTSUPERSCRIPT ′ ′ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT = sansserif_1 .

Definition 5 .

The q–oscillator algebra 𝒜 q subscript 𝒜 𝑞 {\mathcal{A}}_{q} caligraphic_A start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT is a unital associative algebra with generators e 𝑒 e italic_e , f 𝑓 f italic_f , k 𝑘 k italic_k , k - 1 superscript 𝑘 1 k^{-1} italic_k start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT and defining relations k k - 1 = k - 1 k = 𝟣 𝑘 superscript 𝑘 1 superscript 𝑘 1 𝑘 1 k\,k^{-1}=k^{-1}k={\sf 1} italic_k italic_k start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT = italic_k start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT italic_k = sansserif_1 , and

e k = q k e , f k = q - 1 k f , [ e , f ] = ( q - q - 1 ) k 2 , formulae-sequence 𝑒 𝑘 𝑞 𝑘 𝑒 formulae-sequence 𝑓 𝑘 superscript 𝑞 1 𝑘 𝑓 𝑒 𝑓 𝑞 superscript 𝑞 1 superscript 𝑘 2 e\,k=q\,k\,e\,,\qquad f\,k=q^{-1}\,k\,f\,,\qquad[e,f]=({q{-}q^{-1}})\,k^{2}\,, italic_e italic_k = italic_q italic_k italic_e , italic_f italic_k = italic_q start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT italic_k italic_f , [ italic_e , italic_f ] = ( italic_q - italic_q start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ) italic_k start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT , (78)

and equipped with an anti–involution * defined on generators by

e * = e , f * = f , k * = k , ( k - 1 ) * = k - 1 . formulae-sequence superscript 𝑒 𝑒 formulae-sequence superscript 𝑓 𝑓 formulae-sequence superscript 𝑘 𝑘 superscript superscript 𝑘 1 superscript 𝑘 1 e^{*}=e\,,\quad f^{*}=f\,,\quad k^{*}=k\,,\quad(k^{-1})^{*}=k^{-1}\,. italic_e start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT = italic_e , italic_f start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT = italic_f , italic_k start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT = italic_k , ( italic_k start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT = italic_k start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT . (79)
Definition 7 .

The Weyl algebra 𝒲 q subscript 𝒲 𝑞 {\mathcal{W}}_{q} caligraphic_W start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT is a unital associative algebra with generators u 𝑢 u italic_u , u ~ normal-~ 𝑢 \tilde{u} ~ start_ARG italic_u end_ARG , v 𝑣 v italic_v , v - 1 superscript 𝑣 1 v^{-1} italic_v start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT and defining relations v v - 1 = v - 1 v = 𝟣 𝑣 superscript 𝑣 1 superscript 𝑣 1 𝑣 1 v\,v^{-1}=v^{-1}v={\sf 1} italic_v italic_v start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT = italic_v start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT italic_v = sansserif_1 and

u u ~ = u ~ u , u v = q v u , u ~ v = q - 1 v u ~ formulae-sequence 𝑢 ~ 𝑢 ~ 𝑢 𝑢 formulae-sequence 𝑢 𝑣 𝑞 𝑣 𝑢 ~ 𝑢 𝑣 superscript 𝑞 1 𝑣 ~ 𝑢 u\,\tilde{u}=\tilde{u}\,u\,,\qquad u\,v=q\,v\,u\,,\qquad\tilde{u}\,v=q^{-1}\,v% \,\tilde{u} italic_u ~ start_ARG italic_u end_ARG = ~ start_ARG italic_u end_ARG italic_u , italic_u italic_v = italic_q italic_v italic_u , ~ start_ARG italic_u end_ARG italic_v = italic_q start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT italic_v ~ start_ARG italic_u end_ARG (102)

and equipped with an anti–involution * defined on generators by

u * = u , u ~ * = u ~ , v * = v , ( v - 1 ) * = v * . formulae-sequence superscript 𝑢 𝑢 formulae-sequence superscript ~ 𝑢 ~ 𝑢 formulae-sequence superscript 𝑣 𝑣 superscript superscript 𝑣 1 superscript 𝑣 u^{*}=u\,,\qquad\tilde{u}^{*}=\tilde{u}\,,\qquad v^{*}=v\,,\qquad(v^{-1})^{*}=% v^{*}\,. italic_u start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT = italic_u , ~ start_ARG italic_u end_ARG start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT = ~ start_ARG italic_u end_ARG , italic_v start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT = italic_v , ( italic_v start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT = italic_v start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT . (103)

Definition 2.1

(Symmetric system) Let T 𝑇 T italic_T be a set with a (not necessarily associative) multiplication

μ : T × T T , ( s , t ) s . t . fragments μ : T T T , fragments ( s , t ) maps-to s . t . \displaystyle\mu:T\times T\to T,~{}(s,t)\mapsto s.t. italic_μ : italic_T × italic_T → italic_T , ( italic_s , italic_t ) ↦ italic_s . italic_t .

Then the pair ( T , μ ) 𝑇 𝜇 (T,\mu) ( italic_T , italic_μ ) is called a symmetric system if the following conditions are satisfied for all s 𝑠 s italic_s , t 𝑡 t italic_t and r T 𝑟 𝑇 r\in T italic_r ∈ italic_T :

  1. (S1)

    s . ( s . t ) = t , fragments s . fragments ( s . t ) t , s.(s.t)=t, italic_s . ( italic_s . italic_t ) = italic_t ,

  2. (S2)

    r . ( s . t ) = ( r . s ) . ( r . t ) . fragments r . fragments ( s . t ) fragments ( r . s ) . fragments ( r . t ) . r.(s.t)=(r.s).(r.t). italic_r . ( italic_s . italic_t ) = ( italic_r . italic_s ) . ( italic_r . italic_t ) .

By abuse of language, we will sometimes say that T 𝑇 T italic_T is a symmetric system instead of saying that ( T , μ ) 𝑇 𝜇 (T,\mu) ( italic_T , italic_μ ) is a symmetric system. If s . t = t formulae-sequence 𝑠 𝑡 𝑡 s.t=t italic_s . italic_t = italic_t for all s 𝑠 s italic_s and t T 𝑡 𝑇 t\in T italic_t ∈ italic_T then we call μ 𝜇 \mu italic_μ the trivial multiplication . If s 𝑠 s italic_s and t T 𝑡 𝑇 t\in T italic_t ∈ italic_T we write s t perpendicular-to 𝑠 𝑡 s\perp t italic_s ⟂ italic_t if s t 𝑠 𝑡 s\neq t italic_s ≠ italic_t , s . t = t formulae-sequence 𝑠 𝑡 𝑡 s.t=t italic_s . italic_t = italic_t and t . s = s formulae-sequence 𝑡 𝑠 𝑠 t.s=s italic_t . italic_s = italic_s . \diamond


Definition 5.1 .

In a monoidal category C 𝐶 C italic_C with neutral object E , a monoid is a triple ( M , μ , 𝐞 ) 𝑀 𝜇 𝐞 (M,\mu,\textbf{e}) ( italic_M , italic_μ , e ) made of an object M 𝑀 M italic_M , a morphism μ Hom ( M 2 , M ) 𝜇 normal-Hom superscript 𝑀 tensor-product absent 2 𝑀 \mu\in\operatorname{Hom}(M^{\otimes 2},M) italic_μ ∈ roman_Hom ( italic_M start_POSTSUPERSCRIPT ⊗ 2 end_POSTSUPERSCRIPT , italic_M ) called the product and a morphism 𝐞 Hom ( 𝐄 , M ) 𝐞 normal-Hom 𝐄 𝑀 \textbf{e}\in\operatorname{Hom}(\textbf{E},M) e ∈ roman_Hom ( E , italic_M ) called the unit. These morphisms should satisfy the two following relations:

μ ( μ id ) = μ ( id μ ) 𝜇 tensor-product 𝜇 id 𝜇 tensor-product id 𝜇 \displaystyle\mu\circ(\mu\otimes\operatorname{id})=\mu\circ(\operatorname{id}% \otimes\mu) italic_μ ∘ ( italic_μ ⊗ roman_id ) = italic_μ ∘ ( roman_id ⊗ italic_μ ) (14)
μ ( 𝒆 id ) = μ ( id 𝒆 ) = id . 𝜇 tensor-product 𝒆 id 𝜇 tensor-product id 𝒆 id \displaystyle\mu\circ(\textbf{e}\otimes\operatorname{id})=\mu\circ(% \operatorname{id}\otimes\textbf{e})=\operatorname{id}. italic_μ ∘ ( e ⊗ roman_id ) = italic_μ ∘ ( roman_id ⊗ e ) = roman_id . (15)

We call the couple ( μ , 𝐞 ) 𝜇 𝐞 (\mu,\textbf{e}) ( italic_μ , e ) a monoid structure on M 𝑀 M italic_M .


Definition 2.5 .

Let τ = ( τ ( f ) ) f G 𝐑 G 𝜏 subscript 𝜏 𝑓 𝑓 𝐺 superscript 𝐑 𝐺 \tau=(\tau(f))_{f\in G}\in{\bf R}^{G} italic_τ = ( italic_τ ( italic_f ) ) start_POSTSUBSCRIPT italic_f ∈ italic_G end_POSTSUBSCRIPT ∈ bold_R start_POSTSUPERSCRIPT italic_G end_POSTSUPERSCRIPT , and let Γ τ subscript Γ 𝜏 \Gamma_{\tau} roman_Γ start_POSTSUBSCRIPT italic_τ end_POSTSUBSCRIPT be the cone of classes c 𝑐 c italic_c in 𝒦 ¯ ¯ 𝒦 \bar{\mathcal{K}} ¯ start_ARG caligraphic_K end_ARG such that

f ( c ) = exp ( τ ( f ) ) c superscript 𝑓 𝑐 𝜏 𝑓 𝑐 f^{\ast}(c)=\exp(\tau(f))c italic_f start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( italic_c ) = roman_exp ( italic_τ ( italic_f ) ) italic_c

for all f G 𝑓 𝐺 f\in G italic_f ∈ italic_G .


Definition 3.2 .

The circular measure ε 𝜀 \varepsilon italic_ε of a rooted bipartite graph X 𝑋 X italic_X is given by

d ε ( q ) = d μ ( ( q + q - 1 ) 2 ) 𝑑 𝜀 𝑞 𝑑 𝜇 superscript 𝑞 superscript 𝑞 1 2 d\varepsilon(q)=d\mu((q+q^{-1})^{2}) italic_d italic_ε ( italic_q ) = italic_d italic_μ ( ( italic_q + italic_q start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT )

where μ 𝜇 \mu italic_μ is the real measure.


Definition 1.1 .

A Hom-associative algebra over V 𝑉 V italic_V is a triple ( V , μ , α ) 𝑉 𝜇 𝛼 (V,\mu,\alpha) ( italic_V , italic_μ , italic_α ) where μ : V × V V : 𝜇 𝑉 𝑉 𝑉 \mu:V\times V\rightarrow V italic_μ : italic_V × italic_V → italic_V is a bilinear map and α : V V : 𝛼 𝑉 𝑉 \alpha:V\rightarrow V italic_α : italic_V → italic_V is a linear map, satisfying

(1.1) μ ( α ( x ) , μ ( y , z ) ) = μ ( μ ( x , y ) , α ( z ) ) . 𝜇 𝛼 𝑥 𝜇 𝑦 𝑧 𝜇 𝜇 𝑥 𝑦 𝛼 𝑧 \mu(\alpha(x),\mu(y,z))=\mu(\mu(x,y),\alpha(z)). italic_μ ( italic_α ( italic_x ) , italic_μ ( italic_y , italic_z ) ) = italic_μ ( italic_μ ( italic_x , italic_y ) , italic_α ( italic_z ) ) .
Definition 1.3 .

A Hom-Leibniz algebra is a triple ( V , [ , ] , α ) 𝑉 𝛼 (V,[\cdot,\cdot],\alpha) ( italic_V , [ ⋅ , ⋅ ] , italic_α ) consisting of a linear space V 𝑉 V italic_V , bilinear map [ , ] : V × V V : 𝑉 𝑉 𝑉 [\cdot,\cdot]:V\times V\rightarrow V [ ⋅ , ⋅ ] : italic_V × italic_V → italic_V and a homomorphism α : V V : 𝛼 𝑉 𝑉 \alpha:V\rightarrow V italic_α : italic_V → italic_V satisfying

(1.3) [ [ x , y ] , α ( z ) ] = [ [ x , z ] , α ( y ) ] + [ α ( x ) , [ y , z ] ] . 𝑥 𝑦 𝛼 𝑧 𝑥 𝑧 𝛼 𝑦 𝛼 𝑥 𝑦 𝑧 [[x,y],\alpha(z)]=[[x,z],\alpha(y)]+[\alpha(x),[y,z]]. [ [ italic_x , italic_y ] , italic_α ( italic_z ) ] = [ [ italic_x , italic_z ] , italic_α ( italic_y ) ] + [ italic_α ( italic_x ) , [ italic_y , italic_z ] ] .
Definition 5.1 .

A 1 1 1 1 - Hom-cochain is a map f 𝑓 f italic_f , where f 𝒞 1 ( 𝒢 , 𝒢 ) 𝑓 superscript 𝒞 1 𝒢 𝒢 f\in\mathcal{C}^{1}({\mathcal{G},\mathcal{G}}) italic_f ∈ caligraphic_C start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT ( caligraphic_G , caligraphic_G ) satisfying

(5.1) f α = α f 𝑓 𝛼 𝛼 𝑓 f\circ\alpha=\alpha\circ f italic_f ∘ italic_α = italic_α ∘ italic_f

We denote by H o m 𝒞 1 ( 𝒢 , 𝒢 ) 𝐻 𝑜 𝑚 superscript 𝒞 1 𝒢 𝒢 Hom\mathcal{C}^{1}({\mathcal{G},\mathcal{G}}) italic_H italic_o italic_m caligraphic_C start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT ( caligraphic_G , caligraphic_G ) the set of all 1 1 1 1 - Hom-cochain of 𝒢 𝒢 \mathcal{G} caligraphic_G .


Definition 3.5 .

Let u 𝑢 u italic_u be a harmonic function in B 𝐵 B italic_B . We denote by u ~ ~ 𝑢 \tilde{u} ~ start_ARG italic_u end_ARG its conjugate harmonic function and we set

f = u + i u ~ . 𝑓 𝑢 𝑖 ~ 𝑢 f=u+i\tilde{u}. italic_f = italic_u + italic_i ~ start_ARG italic_u end_ARG .

Definition 2.11 .

Let M = 𝐤 𝑀 𝐤 M=\mathbf{k} italic_M = bold_k and define a S P 𝑆 𝑃 SP italic_S italic_P -module structure by

p v = π ( p ) α , 𝑝 𝑣 𝜋 𝑝 𝛼 p\cdot v=\pi(p)\alpha, italic_p ⋅ italic_v = italic_π ( italic_p ) italic_α ,

where π : S P 𝐤 : 𝜋 𝑆 𝑃 𝐤 \pi:SP\rightarrow\mathbf{k} italic_π : italic_S italic_P → bold_k is the augmentation map.


Definition 4.9 .

Let p : R κ , N R κ 2 , n : 𝑝 subscript 𝑅 𝜅 𝑁 subscript 𝑅 superscript 𝜅 2 𝑛 p:R_{\kappa,N}\to R_{\kappa^{2},n} italic_p : italic_R start_POSTSUBSCRIPT italic_κ , italic_N end_POSTSUBSCRIPT → italic_R start_POSTSUBSCRIPT italic_κ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT , italic_n end_POSTSUBSCRIPT be defined by p ( ρ ) = ρ 2 m 𝑝 𝜌 superscript 𝜌 2 𝑚 p(\rho)=\rho^{2m} italic_p ( italic_ρ ) = italic_ρ start_POSTSUPERSCRIPT 2 italic_m end_POSTSUPERSCRIPT . We call ρ R κ , N 𝜌 subscript 𝑅 𝜅 𝑁 \rho\in R_{\kappa,N} italic_ρ ∈ italic_R start_POSTSUBSCRIPT italic_κ , italic_N end_POSTSUBSCRIPT exceptional if ρ 2 m = q n - 1 superscript 𝜌 2 𝑚 superscript 𝑞 𝑛 1 \rho^{2m}=q^{n-1} italic_ρ start_POSTSUPERSCRIPT 2 italic_m end_POSTSUPERSCRIPT = italic_q start_POSTSUPERSCRIPT italic_n - 1 end_POSTSUPERSCRIPT . For every ρ R κ , N 𝜌 subscript 𝑅 𝜅 𝑁 \rho\in R_{\kappa,N} italic_ρ ∈ italic_R start_POSTSUBSCRIPT italic_κ , italic_N end_POSTSUBSCRIPT we define integers e ( ρ ) 𝑒 𝜌 e(\rho) italic_e ( italic_ρ ) and e ( ρ ) superscript 𝑒 𝜌 e^{\prime}(\rho) italic_e start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( italic_ρ ) by the rule

p ( ρ ) = q e ( ρ ) = q - e ( ρ ) . 𝑝 𝜌 superscript 𝑞 𝑒 𝜌 superscript 𝑞 superscript 𝑒 𝜌 p(\rho)=q^{e(\rho)}=q^{-e^{\prime}(\rho)}. italic_p ( italic_ρ ) = italic_q start_POSTSUPERSCRIPT italic_e ( italic_ρ ) end_POSTSUPERSCRIPT = italic_q start_POSTSUPERSCRIPT - italic_e start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( italic_ρ ) end_POSTSUPERSCRIPT .

Definition A.1 .

(Supporting mountains) Fix c : cl ( M × M ¯ ) 𝐑 { + } normal-: 𝑐 normal-⟶ normal-cl 𝑀 normal-¯ 𝑀 𝐑 c:\mathop{\rm cl}(M\times\bar{M})\longrightarrow\mathbf{R}\cup\{+\infty\} italic_c : roman_cl ( italic_M × ¯ start_ARG italic_M end_ARG ) ⟶ bold_R ∪ { + ∞ } . A mountain refers to any function f 𝑓 f italic_f on cl M normal-cl 𝑀 \mathop{\rm cl}M roman_cl italic_M of the form

f ( ) = - c ( , x ¯ ) + λ 𝑓 𝑐 ¯ 𝑥 𝜆 f(\cdot)=-c(\cdot,\bar{x})+\lambda italic_f ( ⋅ ) = - italic_c ( ⋅ , ¯ start_ARG italic_x end_ARG ) + italic_λ

with ( λ , x ¯ ) 𝐑 × cl M ¯ 𝜆 normal-¯ 𝑥 𝐑 normal-cl normal-¯ 𝑀 (\lambda,\bar{x})\in\mathbf{R}\times\mathop{\rm cl}\bar{M} ( italic_λ , ¯ start_ARG italic_x end_ARG ) ∈ bold_R × roman_cl ¯ start_ARG italic_M end_ARG . The mountain is said to be focused at x ¯ normal-¯ 𝑥 \bar{x} ¯ start_ARG italic_x end_ARG . The mountain f 𝑓 f italic_f is said to support u : cl M 𝐑 { + } normal-: 𝑢 normal-⟶ normal-cl 𝑀 𝐑 u:\mathop{\rm cl}M\longrightarrow\mathbf{R}\cup\{+\infty\} italic_u : roman_cl italic_M ⟶ bold_R ∪ { + ∞ } at x cl M 𝑥 normal-cl 𝑀 x\in\mathop{\rm cl}M italic_x ∈ roman_cl italic_M if u ( x ) = f ( x ) < + 𝑢 𝑥 𝑓 𝑥 u(x)=f(x)<+\infty italic_u ( italic_x ) = italic_f ( italic_x ) < + ∞ and

u ( y ) f ( y ) 𝑢 𝑦 𝑓 𝑦 u(y)\geq f(y) italic_u ( italic_y ) ≥ italic_f ( italic_y )

for all y cl M 𝑦 normal-cl 𝑀 y\in\mathop{\rm cl}M italic_y ∈ roman_cl italic_M . The mountain is said to support u 𝑢 u italic_u to first order at x M 𝑥 𝑀 x\in M italic_x ∈ italic_M if u ( x ) = f ( x ) < + 𝑢 𝑥 𝑓 𝑥 u(x)=f(x)<+\infty italic_u ( italic_x ) = italic_f ( italic_x ) < + ∞ , and M 𝑀 M italic_M has a manifold structure near x 𝑥 x italic_x with

(A.1) u ( y ) f ( y ) + o ( | y - x | ) as y x . formulae-sequence 𝑢 𝑦 𝑓 𝑦 𝑜 𝑦 𝑥 as 𝑦 𝑥 \displaystyle u(y)\geq f(y)+o(|y-x|)\qquad{\rm as}\ y\to x. italic_u ( italic_y ) ≥ italic_f ( italic_y ) + italic_o ( | italic_y - italic_x | ) roman_as italic_y → italic_x .

Definition 6 .

Given a valued field ( L , w ) 𝐿 𝑤 (L,w) ( italic_L , italic_w ) , define a w 𝑤 w italic_w -restricted exponential exp \exp roman_exp to be an isomorphism of groups between the valuation ideal of L 𝐿 L italic_L and the 1 1 1 1 -units of L 𝐿 L italic_L (with respect to w 𝑤 w italic_w ) which is w 𝑤 w italic_w -compatible ; that is,

w a = w ( 1 - exp ( a ) ) . 𝑤 𝑎 𝑤 1 𝑎 wa=w(1-\exp(a))\,. italic_w italic_a = italic_w ( 1 - roman_exp ( italic_a ) ) .

Definition 1.1 .

Let A 𝐴 A italic_A be an algebra with automorphism σ 𝜎 \sigma italic_σ . Let δ 𝛿 \delta italic_δ be a σ 𝜎 \sigma italic_σ -derivation that satisfies

δ ( a b ) = σ ( a ) δ ( b ) + δ ( a ) b 𝛿 𝑎 𝑏 𝜎 𝑎 𝛿 𝑏 𝛿 𝑎 𝑏 \delta(ab)=\sigma(a)\delta(b)+\delta(a)b italic_δ ( italic_a italic_b ) = italic_σ ( italic_a ) italic_δ ( italic_b ) + italic_δ ( italic_a ) italic_b

for all a , b A 𝑎 𝑏 𝐴 a,b\in A italic_a , italic_b ∈ italic_A . The Ore extension of A 𝐴 A italic_A associated with data { σ , δ } 𝜎 𝛿 \{\sigma,\delta\} { italic_σ , italic_δ } is a ring B 𝐵 B italic_B , containing A 𝐴 A italic_A as a subring, generated by elements in A 𝐴 A italic_A and a new variable y 𝑦 y italic_y and subject to the relation

(E1.1.1) y a = σ ( a ) y + δ ( a ) 𝑦 𝑎 𝜎 𝑎 𝑦 𝛿 𝑎 ya=\sigma(a)y+\delta(a) italic_y italic_a = italic_σ ( italic_a ) italic_y + italic_δ ( italic_a )

for all a A 𝑎 𝐴 a\in A italic_a ∈ italic_A . The Ore extension ring B 𝐵 B italic_B is denoted by A [ y ; σ , δ ] 𝐴 𝑦 𝜎 𝛿 A[y;\sigma,\delta] italic_A [ italic_y ; italic_σ , italic_δ ] .


Definition 3.9 (Invariance of ( P C subscript 𝑃 𝐶 P_{C} italic_P start_POSTSUBSCRIPT italic_C end_POSTSUBSCRIPT ) without transformation of time) .

We say that functional ( P C subscript 𝑃 𝐶 P_{C} italic_P start_POSTSUBSCRIPT italic_C end_POSTSUBSCRIPT ) is invariant under the one-parameter family of infinitesimal transformations

{ q ¯ ( t ) = q ( t ) + ε ξ ( t , q , u , p ) + o ( ε ) , u ¯ ( t ) = u ( t ) + ε ς ( t , q , u , p ) + o ( ε ) , p ¯ ( t ) = p ( t ) + ε ϱ ( t , q , u , p ) + o ( ε ) , cases ¯ 𝑞 𝑡 𝑞 𝑡 𝜀 𝜉 𝑡 𝑞 𝑢 𝑝 𝑜 𝜀 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 ¯ 𝑢 𝑡 𝑢 𝑡 𝜀 𝜍 𝑡 𝑞 𝑢 𝑝 𝑜 𝜀 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 ¯ 𝑝 𝑡 𝑝 𝑡 𝜀 italic-ϱ 𝑡 𝑞 𝑢 𝑝 𝑜 𝜀 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 \begin{cases}\bar{q}(t)=q(t)+\varepsilon\xi(t,q,u,p)+o(\varepsilon)\,,\\ \bar{u}(t)=u(t)+\varepsilon\varsigma(t,q,u,p)+o(\varepsilon)\,,\\ \bar{p}(t)=p(t)+\varepsilon\varrho(t,q,u,p)+o(\varepsilon)\,,\\ \end{cases} { start_ROW start_CELL ¯ start_ARG italic_q end_ARG ( italic_t ) = italic_q ( italic_t ) + italic_ε italic_ξ ( italic_t , italic_q , italic_u , italic_p ) + italic_o ( italic_ε ) , end_CELL start_CELL end_CELL end_ROW start_ROW start_CELL ¯ start_ARG italic_u end_ARG ( italic_t ) = italic_u ( italic_t ) + italic_ε italic_ς ( italic_t , italic_q , italic_u , italic_p ) + italic_o ( italic_ε ) , end_CELL start_CELL end_CELL end_ROW start_ROW start_CELL ¯ start_ARG italic_p end_ARG ( italic_t ) = italic_p ( italic_t ) + italic_ε italic_ϱ ( italic_t , italic_q , italic_u , italic_p ) + italic_o ( italic_ε ) , end_CELL start_CELL end_CELL end_ROW

if and only if

t a t b [ ( t , q ( t ) , u ( t ) , p ( t ) ) - p ( t ) a C D t α q ( t ) ] 𝑑 t = t a t b [ ( t , q ¯ ( t ) , u ¯ ( t ) , p ¯ ( t ) ) - p ¯ ( t ) a C D t α q ¯ ( t ) ] 𝑑 t superscript subscript subscript 𝑡 𝑎 subscript 𝑡 𝑏 delimited-[] 𝑡 𝑞 𝑡 𝑢 𝑡 𝑝 𝑡 superscript subscript 𝑎 𝐶 𝑝 𝑡 superscript subscript 𝐷 𝑡 𝛼 𝑞 𝑡 differential-d 𝑡 superscript subscript subscript 𝑡 𝑎 subscript 𝑡 𝑏 delimited-[] 𝑡 ¯ 𝑞 𝑡 ¯ 𝑢 𝑡 ¯ 𝑝 𝑡 superscript subscript 𝑎 𝐶 ¯ 𝑝 𝑡 superscript subscript 𝐷 𝑡 𝛼 ¯ 𝑞 𝑡 differential-d 𝑡 \displaystyle\int_{t_{a}}^{t_{b}}\left[{\mathcal{H}}\left(t,q(t),u(t),p(t)% \right)-p(t)\cdot\,_{a}^{C}D_{t}^{\alpha}q(t)\right]dt\\ \displaystyle=\int_{t_{a}}^{t_{b}}\left[{\mathcal{H}}\left(t,\bar{q}(t),\bar{u% }(t),\bar{p}(t)\right)-\bar{p}(t)\cdot\,_{a}^{C}D_{t}^{\alpha}\bar{q}(t)\right% ]dt start_ROW start_CELL ∫ start_POSTSUBSCRIPT italic_t start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT end_POSTSUPERSCRIPT [ caligraphic_H ( italic_t , italic_q ( italic_t ) , italic_u ( italic_t ) , italic_p ( italic_t ) ) - italic_p ( italic_t ) ⋅ start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_C end_POSTSUPERSCRIPT italic_D start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_α end_POSTSUPERSCRIPT italic_q ( italic_t ) ] italic_d italic_t end_CELL end_ROW start_ROW start_CELL = ∫ start_POSTSUBSCRIPT italic_t start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT end_POSTSUPERSCRIPT [ caligraphic_H ( italic_t , ¯ start_ARG italic_q end_ARG ( italic_t ) , ¯ start_ARG italic_u end_ARG ( italic_t ) , ¯ start_ARG italic_p end_ARG ( italic_t ) ) - ¯ start_ARG italic_p end_ARG ( italic_t ) ⋅ start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_C end_POSTSUPERSCRIPT italic_D start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_α end_POSTSUPERSCRIPT ¯ start_ARG italic_q end_ARG ( italic_t ) ] italic_d italic_t end_CELL end_ROW (12)

for any subinterval [ t a , t b ] [ a , b ] subscript 𝑡 𝑎 subscript 𝑡 𝑏 𝑎 𝑏 [{t_{a}},{t_{b}}]\subseteq[a,b] [ italic_t start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT , italic_t start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT ] ⊆ [ italic_a , italic_b ] .

Definition 3.16 (Invariance of ( P C subscript 𝑃 𝐶 P_{C} italic_P start_POSTSUBSCRIPT italic_C end_POSTSUBSCRIPT )) .

Functional ( P C subscript 𝑃 𝐶 P_{C} italic_P start_POSTSUBSCRIPT italic_C end_POSTSUBSCRIPT ) is said to be invariant under the one-parameter infinitesimal transformations

{ t ¯ = t + ε τ ( t , q , u , p ) + o ( ε ) , q ¯ ( t ) = q ( t ) + ε ξ ( t , q , u , p ) + o ( ε ) , u ¯ ( t ) = u ( t ) + ε ς ( t , q , u , p ) + o ( ε ) , p ¯ ( t ) = p ( t ) + ε ϱ ( t , q , u , p ) + o ( ε ) , cases ¯ 𝑡 𝑡 𝜀 𝜏 𝑡 𝑞 𝑢 𝑝 𝑜 𝜀 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 ¯ 𝑞 𝑡 𝑞 𝑡 𝜀 𝜉 𝑡 𝑞 𝑢 𝑝 𝑜 𝜀 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 ¯ 𝑢 𝑡 𝑢 𝑡 𝜀 𝜍 𝑡 𝑞 𝑢 𝑝 𝑜 𝜀 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 ¯ 𝑝 𝑡 𝑝 𝑡 𝜀 italic-ϱ 𝑡 𝑞 𝑢 𝑝 𝑜 𝜀 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 \begin{cases}\bar{t}=t+\varepsilon\tau(t,q,u,p)+o(\varepsilon)\,,\\ \bar{q}(t)=q(t)+\varepsilon\xi(t,q,u,p)+o(\varepsilon)\,,\\ \bar{u}(t)=u(t)+\varepsilon\varsigma(t,q,u,p)+o(\varepsilon)\,,\\ \bar{p}(t)=p(t)+\varepsilon\varrho(t,q,u,p)+o(\varepsilon)\,,\\ \end{cases} { start_ROW start_CELL ¯ start_ARG italic_t end_ARG = italic_t + italic_ε italic_τ ( italic_t , italic_q , italic_u , italic_p ) + italic_o ( italic_ε ) , end_CELL start_CELL end_CELL end_ROW start_ROW start_CELL ¯ start_ARG italic_q end_ARG ( italic_t ) = italic_q ( italic_t ) + italic_ε italic_ξ ( italic_t , italic_q , italic_u , italic_p ) + italic_o ( italic_ε ) , end_CELL start_CELL end_CELL end_ROW start_ROW start_CELL ¯ start_ARG italic_u end_ARG ( italic_t ) = italic_u ( italic_t ) + italic_ε italic_ς ( italic_t , italic_q , italic_u , italic_p ) + italic_o ( italic_ε ) , end_CELL start_CELL end_CELL end_ROW start_ROW start_CELL ¯ start_ARG italic_p end_ARG ( italic_t ) = italic_p ( italic_t ) + italic_ε italic_ϱ ( italic_t , italic_q , italic_u , italic_p ) + italic_o ( italic_ε ) , end_CELL start_CELL end_CELL end_ROW (19)

if and only if

t a t b [ ( t , q ( t ) , u ( t ) , p ( t ) ) - p ( t ) D t α a C q ( t ) ] 𝑑 t = t ¯ ( t a ) t ¯ ( t b ) [ ( t ¯ , q ¯ ( t ¯ ) , u ¯ ( t ¯ ) , p ¯ ( t ¯ ) ) - p ¯ ( t ¯ ) D t ¯ α a C q ¯ ( t ¯ ) ] 𝑑 t ¯ superscript subscript subscript 𝑡 𝑎 subscript 𝑡 𝑏 delimited-[] 𝑡 𝑞 𝑡 𝑢 𝑡 𝑝 𝑡 𝑝 𝑡 subscript superscript superscript subscript 𝐷 𝑡 𝛼 𝐶 𝑎 𝑞 𝑡 differential-d 𝑡 superscript subscript ¯ 𝑡 subscript 𝑡 𝑎 ¯ 𝑡 subscript 𝑡 𝑏 delimited-[] ¯ 𝑡 ¯ 𝑞 ¯ 𝑡 ¯ 𝑢 ¯ 𝑡 ¯ 𝑝 ¯ 𝑡 ¯ 𝑝 ¯ 𝑡 subscript superscript superscript subscript 𝐷 ¯ 𝑡 𝛼 𝐶 𝑎 ¯ 𝑞 ¯ 𝑡 differential-d ¯ 𝑡 \displaystyle\int_{t_{a}}^{t_{b}}\left[{\mathcal{H}}\left(t,q(t),u(t),p(t)% \right)-p(t)\cdot{{}_{a}^{C}D_{t}^{\alpha}q(t)}\right]dt\\ \displaystyle=\int_{\bar{t}(t_{a})}^{\bar{t}(t_{b})}\left[{\mathcal{H}}\left(% \bar{t},\bar{q}(\bar{t}),\bar{u}(\bar{t}),\bar{p}(\bar{t})\right)-\bar{p}(\bar% {t})\cdot{{}_{a}^{C}D_{\bar{t}}^{\alpha}\bar{q}}(\bar{t})\right]d\bar{t} start_ROW start_CELL ∫ start_POSTSUBSCRIPT italic_t start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT end_POSTSUPERSCRIPT [ caligraphic_H ( italic_t , italic_q ( italic_t ) , italic_u ( italic_t ) , italic_p ( italic_t ) ) - italic_p ( italic_t ) ⋅ start_FLOATSUBSCRIPT italic_a end_FLOATSUBSCRIPT start_POSTSUPERSCRIPT italic_C end_POSTSUPERSCRIPT italic_D start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_α end_POSTSUPERSCRIPT italic_q ( italic_t ) ] italic_d italic_t end_CELL end_ROW start_ROW start_CELL = ∫ start_POSTSUBSCRIPT ¯ start_ARG italic_t end_ARG ( italic_t start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT ) end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ¯ start_ARG italic_t end_ARG ( italic_t start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT ) end_POSTSUPERSCRIPT [ caligraphic_H ( ¯ start_ARG italic_t end_ARG , ¯ start_ARG italic_q end_ARG ( ¯ start_ARG italic_t end_ARG ) , ¯ start_ARG italic_u end_ARG ( ¯ start_ARG italic_t end_ARG ) , ¯ start_ARG italic_p end_ARG ( ¯ start_ARG italic_t end_ARG ) ) - ¯ start_ARG italic_p end_ARG ( ¯ start_ARG italic_t end_ARG ) ⋅ start_FLOATSUBSCRIPT italic_a end_FLOATSUBSCRIPT start_POSTSUPERSCRIPT italic_C end_POSTSUPERSCRIPT italic_D start_POSTSUBSCRIPT ¯ start_ARG italic_t end_ARG end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_α end_POSTSUPERSCRIPT ¯ start_ARG italic_q end_ARG ( ¯ start_ARG italic_t end_ARG ) ] italic_d ¯ start_ARG italic_t end_ARG end_CELL end_ROW (20)

for any subinterval [ t a , t b ] [ a , b ] subscript 𝑡 𝑎 subscript 𝑡 𝑏 𝑎 𝑏 [{t_{a}},{t_{b}}]\subseteq[a,b] [ italic_t start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT , italic_t start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT ] ⊆ [ italic_a , italic_b ] .

Definition 3.19 (variational invariance for ( 6 )) .

Functional ( 6 ) is said to be invariant under the one-parameter family of infinitesimal transformations

{ t ¯ = t + ε τ ( t , q ) + o ( ε ) , q ¯ ( t ) = q ( t ) + ε ξ ( t , q ) + o ( ε ) , cases ¯ 𝑡 𝑡 𝜀 𝜏 𝑡 𝑞 𝑜 𝜀 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 ¯ 𝑞 𝑡 𝑞 𝑡 𝜀 𝜉 𝑡 𝑞 𝑜 𝜀 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 \begin{cases}\bar{t}=t+\varepsilon\tau(t,q)+o(\varepsilon)\,,\\ \bar{q}(t)=q(t)+\varepsilon\xi(t,q)+o(\varepsilon)\,,\\ \end{cases} { start_ROW start_CELL ¯ start_ARG italic_t end_ARG = italic_t + italic_ε italic_τ ( italic_t , italic_q ) + italic_o ( italic_ε ) , end_CELL start_CELL end_CELL end_ROW start_ROW start_CELL ¯ start_ARG italic_q end_ARG ( italic_t ) = italic_q ( italic_t ) + italic_ε italic_ξ ( italic_t , italic_q ) + italic_o ( italic_ε ) , end_CELL start_CELL end_CELL end_ROW (25)

if and only if

t a t b L ( t , q ( t ) , D t α a C q ( t ) ) d t = t ¯ ( t a ) t ¯ ( t b ) L ( t ¯ , q ¯ ( t ¯ ) , D t ¯ α a C q ¯ ( t ¯ ) , ) d t ¯ fragments superscript subscript subscript 𝑡 𝑎 subscript 𝑡 𝑏 L fragments ( t , q fragments ( t ) , subscript superscript superscript subscript 𝐷 𝑡 𝛼 𝐶 𝑎 q fragments ( t ) ) d t superscript subscript ¯ 𝑡 subscript 𝑡 𝑎 ¯ 𝑡 subscript 𝑡 𝑏 L fragments ( ¯ 𝑡 , ¯ 𝑞 fragments ( ¯ 𝑡 ) , subscript superscript superscript subscript 𝐷 ¯ 𝑡 𝛼 𝐶 𝑎 ¯ 𝑞 fragments ( ¯ 𝑡 ) , ) d ¯ 𝑡 \int_{t_{a}}^{t_{b}}L\left(t,q(t),{{}_{a}^{C}D_{t}^{\alpha}q(t)}\right)dt=\int% _{\bar{t}(t_{a})}^{\bar{t}(t_{b})}L\left(\bar{t},\bar{q}(\bar{t}),{{}_{a}^{C}D% _{\bar{t}}^{\alpha}\bar{q}(\bar{t})},\right)d\bar{t} ∫ start_POSTSUBSCRIPT italic_t start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT end_POSTSUPERSCRIPT italic_L ( italic_t , italic_q ( italic_t ) , start_FLOATSUBSCRIPT italic_a end_FLOATSUBSCRIPT start_POSTSUPERSCRIPT italic_C end_POSTSUPERSCRIPT italic_D start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_α end_POSTSUPERSCRIPT italic_q ( italic_t ) ) italic_d italic_t = ∫ start_POSTSUBSCRIPT ¯ start_ARG italic_t end_ARG ( italic_t start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT ) end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ¯ start_ARG italic_t end_ARG ( italic_t start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT ) end_POSTSUPERSCRIPT italic_L ( ¯ start_ARG italic_t end_ARG , ¯ start_ARG italic_q end_ARG ( ¯ start_ARG italic_t end_ARG ) , start_FLOATSUBSCRIPT italic_a end_FLOATSUBSCRIPT start_POSTSUPERSCRIPT italic_C end_POSTSUPERSCRIPT italic_D start_POSTSUBSCRIPT ¯ start_ARG italic_t end_ARG end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_α end_POSTSUPERSCRIPT ¯ start_ARG italic_q end_ARG ( ¯ start_ARG italic_t end_ARG ) , ) italic_d ¯ start_ARG italic_t end_ARG

for any subinterval [ t a , t b ] [ a , b ] subscript 𝑡 𝑎 subscript 𝑡 𝑏 𝑎 𝑏 [{t_{a}},{t_{b}}]\subseteq[a,b] [ italic_t start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT , italic_t start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT ] ⊆ [ italic_a , italic_b ] .


Definition 3.1

The extended nil Hecke ring 𝔸 ~ Aff subscript ~ 𝔸 Aff {\widetilde{\mathbb{A}}_{\rm Aff}} ~ start_ARG blackboard_A end_ARG start_POSTSUBSCRIPT roman_Aff end_POSTSUBSCRIPT is the smashed product Z 𝔸 Aff left-normal-factor-semidirect-product 𝑍 subscript 𝔸 Aff Z\ltimes{\mathbb{A}_{\rm Aff}} italic_Z ⋉ blackboard_A start_POSTSUBSCRIPT roman_Aff end_POSTSUBSCRIPT of 𝔸 Aff subscript 𝔸 Aff {\mathbb{A}_{\rm Aff}} blackboard_A start_POSTSUBSCRIPT roman_Aff end_POSTSUBSCRIPT by Z 𝑍 Z italic_Z . As a \mathbb{Z} blackboard_Z -module, it is just the tensor product Z 𝔸 Aff tensor-product 𝑍 subscript 𝔸 Aff Z\otimes{\mathbb{A}_{\rm Aff}} italic_Z ⊗ blackboard_A start_POSTSUBSCRIPT roman_Aff end_POSTSUBSCRIPT . The multiplication is defined by

( τ a ) ( σ b ) = τ σ σ - 1 ( a ) b . tensor-product 𝜏 𝑎 tensor-product 𝜎 𝑏 tensor-product 𝜏 𝜎 superscript 𝜎 1 𝑎 𝑏 (\tau\otimes a)(\sigma\otimes b)=\tau\sigma\otimes\sigma^{-1}(a)b. ( italic_τ ⊗ italic_a ) ( italic_σ ⊗ italic_b ) = italic_τ italic_σ ⊗ italic_σ start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ( italic_a ) italic_b .

Definition 3.7 (Weak Near-Unanimity Function)

An operation f : D n D normal-: 𝑓 normal-→ superscript 𝐷 𝑛 𝐷 f:D^{n}\rightarrow D italic_f : italic_D start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT → italic_D , where n 2 𝑛 2 n\geq 2 italic_n ≥ 2 , is a weak near-unanimity function if f 𝑓 f italic_f is idempotent and

f ( x , y , y , , y ) = f ( y , x , y , y , , y ) = = f ( y , , y , x ) 𝑓 𝑥 𝑦 𝑦 𝑦 𝑓 𝑦 𝑥 𝑦 𝑦 𝑦 𝑓 𝑦 𝑦 𝑥 f(x,y,y,\ldots,y)=f(y,x,y,y,\ldots,y)=\ldots=f(y,\ldots,y,x) italic_f ( italic_x , italic_y , italic_y , … , italic_y ) = italic_f ( italic_y , italic_x , italic_y , italic_y , … , italic_y ) = … = italic_f ( italic_y , … , italic_y , italic_x )

for all x , y D 𝑥 𝑦 𝐷 x,y\in D italic_x , italic_y ∈ italic_D .


Definition 1.17

Let X 𝑋 X italic_X be a complex manifold with a holomorphic 2 2 2 2 -vector β 𝛽 \beta italic_β . If the Schouten bracket vanishes, i.e., [ β , β ] S c h = 0 subscript 𝛽 𝛽 𝑆 𝑐 0 [\beta,\beta]_{Sch}=0 [ italic_β , italic_β ] start_POSTSUBSCRIPT italic_S italic_c italic_h end_POSTSUBSCRIPT = 0 , we call β 𝛽 \beta italic_β a (holomorphic) Poisson structure on X 𝑋 X italic_X and the Poisson bracket is defined by

{ f , g } = β ( d f d g ) . 𝑓 𝑔 𝛽 𝑑 𝑓 𝑑 𝑔 \{f,g\}=\beta(df\wedge dg). { italic_f , italic_g } = italic_β ( italic_d italic_f ∧ italic_d italic_g ) .

Definition 5 .
:

[Monodromy around a boundary circle:] Let ( π : Σ ~ Σ , { p a ~ } ) : 𝜋 ~ Σ Σ ~ subscript 𝑝 𝑎 (\pi:\tilde{\Sigma}\longrightarrow\Sigma,\{\tilde{p_{a}}\}) ( italic_π : ~ start_ARG roman_Σ end_ARG ⟶ roman_Σ , { ~ start_ARG italic_p start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT end_ARG } ) be a G 𝐺 G italic_G -cover of ( Σ , { p a } a A ( Σ ) ) Σ subscript subscript 𝑝 𝑎 𝑎 𝐴 Σ (\Sigma,\{p_{a}\}_{a\in A(\Sigma)}) ( roman_Σ , { italic_p start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT } start_POSTSUBSCRIPT italic_a ∈ italic_A ( roman_Σ ) end_POSTSUBSCRIPT ) . Consider the a 𝑎 a italic_a th boundary circle, S 𝑆 S italic_S , where the base point on S 𝑆 S italic_S is p a subscript 𝑝 𝑎 p_{a} italic_p start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT and the point on the fiber above is p a ~ ~ subscript 𝑝 𝑎 \tilde{p_{a}} ~ start_ARG italic_p start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT end_ARG . This S 𝑆 S italic_S has an orientation which comes from the orientation of the surface. Let α : [ 0 , 1 ] S : 𝛼 0 1 𝑆 \alpha:[0,1]\rightarrow S italic_α : [ 0 , 1 ] → italic_S be a parameterization of the boundary circle S 𝑆 S italic_S which also preserves the orientation of S 𝑆 S italic_S . We also assume that α ( 0 ) = α ( 1 ) = p a 𝛼 0 𝛼 1 subscript 𝑝 𝑎 \alpha(0)=\alpha(1)=p_{a} italic_α ( 0 ) = italic_α ( 1 ) = italic_p start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT . Then there is a unique lifting of α 𝛼 \alpha italic_α to the G 𝐺 G italic_G -cover, say α ~ : [ 0 , 1 ] Σ ~ : ~ 𝛼 0 1 ~ Σ \tilde{\alpha}:[0,1]\rightarrow\tilde{\Sigma} ~ start_ARG italic_α end_ARG : [ 0 , 1 ] → ~ start_ARG roman_Σ end_ARG such that α ~ ( 0 ) = p a ~ ~ 𝛼 0 ~ subscript 𝑝 𝑎 \tilde{\alpha}(0)=\tilde{p_{a}} ~ start_ARG italic_α end_ARG ( 0 ) = ~ start_ARG italic_p start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT end_ARG . We define the monodromy, m G 𝑚 𝐺 m\in G italic_m ∈ italic_G , of this a 𝑎 a italic_a th boundary circle to be that unique element of G 𝐺 G italic_G such that

(1) m α ~ ( 0 ) = α ~ ( 1 ) 𝑚 ~ 𝛼 0 ~ 𝛼 1 m\tilde{\alpha}(0)=\tilde{\alpha}(1) italic_m ~ start_ARG italic_α end_ARG ( 0 ) = ~ start_ARG italic_α end_ARG ( 1 )

Definition 3.1 (Projective representation) .

representation!projective A projective representation of G 𝐺 G italic_G on \mathcal{H} caligraphic_H is a function η : G U ( ) : 𝜂 𝐺 𝑈 \eta:G\to U(\mathcal{H}) italic_η : italic_G → italic_U ( caligraphic_H ) such that for every g , h G 𝑔 𝐺 g,h\in G italic_g , italic_h ∈ italic_G , there exists a constant c ( g , h ) U ( 1 ) 𝑐 𝑔 𝑈 1 c(g,h)\in U(1) italic_c ( italic_g , italic_h ) ∈ italic_U ( 1 ) such that

(3.1) c o c y c l e ! o f a p r o j e c t i v e r e p r e s e n t a t i o n η ( g h ) = c ( g , h ) η ( g ) η ( h ) . 𝑐 𝑜 𝑐 𝑦 𝑐 𝑙 𝑒 𝑜 𝑓 𝑎 𝑝 𝑟 𝑜 𝑗 𝑒 𝑐 𝑡 𝑖 𝑣 𝑒 𝑟 𝑒 𝑝 𝑟 𝑒 𝑠 𝑒 𝑛 𝑡 𝑎 𝑡 𝑖 𝑜 𝑛 𝜂 𝑔 𝑐 𝑔 𝜂 𝑔 𝜂 {}{cocycle!ofaprojectiverepresentation}\eta(gh)=c(g,h)\eta(g)\eta(h). italic_c italic_o italic_c italic_y italic_c italic_l italic_e ! italic_o italic_f italic_a italic_p italic_r italic_o italic_j italic_e italic_c italic_t italic_i italic_v italic_e italic_r italic_e italic_p italic_r italic_e italic_s italic_e italic_n italic_t italic_a italic_t italic_i italic_o italic_n italic_η ( italic_g italic_h ) = italic_c ( italic_g , italic_h ) italic_η ( italic_g ) italic_η ( italic_h ) .