Definition 3.1 .

Let ϕ : Σ C : italic-ϕ Σ 𝐶 \phi:\Sigma\to C italic_ϕ : roman_Σ → italic_C be a smooth map and consider the pull-back ϕ * N C superscript italic-ϕ subscript 𝑁 𝐶 \phi^{*}N_{C} italic_ϕ start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT italic_N start_POSTSUBSCRIPT italic_C end_POSTSUBSCRIPT . We define a ϕ italic-ϕ \phi italic_ϕ -section of π : N C : 𝜋 𝑁 𝐶 \pi:N\to C italic_π : italic_N → italic_C by a map s : Σ N : 𝑠 Σ 𝑁 s:\Sigma\to N italic_s : roman_Σ → italic_N such that

π s = ϕ 𝜋 𝑠 italic-ϕ \pi\circ s=\phi italic_π ∘ italic_s = italic_ϕ (3.2)

i.e., a section of the pull-back bundle ϕ * N superscript italic-ϕ 𝑁 \phi^{*}N italic_ϕ start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT italic_N . If ϕ italic-ϕ \phi italic_ϕ is holomorphic and s 𝑠 s italic_s is holomorphic, then we say that s 𝑠 s italic_s is a holomorphic ϕ italic-ϕ \phi italic_ϕ -section of π : N C : 𝜋 𝑁 𝐶 \pi:N\to C italic_π : italic_N → italic_C along ϕ italic-ϕ \phi italic_ϕ , or just a holomorphic multi-section.


Definition 4

We say that the pair of graded vector spaces ( 𝒱 , 𝒲 ) 𝒱 𝒲 ({\cal V},{\cal W}) ( caligraphic_V , caligraphic_W ) is an algebra over the operad 𝐋𝐢𝐞 δ + subscript superscript 𝐋𝐢𝐞 𝛿 {\bf Lie}^{+}_{{\delta}} bold_Lie start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_δ end_POSTSUBSCRIPT if 𝒱 𝒱 {\cal V} caligraphic_V is a Lie algebra, 𝒲 𝒲 {\cal W} caligraphic_W is a module over 𝒱 𝒱 {\cal V} caligraphic_V and 𝒲 𝒲 {\cal W} caligraphic_W is equipped with a degree - 1 1 -1 - 1 unary operation δ 𝛿 {\delta} italic_δ satisfying the equations

δ 2 = 0 , superscript 𝛿 2 0 {\delta}^{2}=0\,, italic_δ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT = 0 , (2.29)

and

[ δ , l a ] = 0 , a 𝒱 , formulae-sequence 𝛿 subscript 𝑙 𝑎 0 for-all 𝑎 𝒱 [\delta,l_{a}]=0\,,\qquad\forall~{}~{}a\in{\cal V}\,, [ italic_δ , italic_l start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT ] = 0 , ∀ italic_a ∈ caligraphic_V , (2.30)

where l 𝑙 l italic_l is the action of 𝒱 𝒱 {\cal V} caligraphic_V on 𝒲 𝒲 {\cal W} caligraphic_W .


Definition 2.1 .

A dialgebra D 𝐷 D italic_D over K 𝐾 K italic_K is a vector space over K 𝐾 K italic_K along with two K 𝐾 K italic_K -linear maps : D D D fragments does-not-prove : D tensor-product D D \dashv:D\otimes D\longrightarrow D ⊣ : italic_D ⊗ italic_D ⟶ italic_D called left and : D D D fragments proves : D tensor-product D D \vdash:D\otimes D\longrightarrow D ⊢ : italic_D ⊗ italic_D ⟶ italic_D called right satisfying the following axioms :

x ( y z ) = 1 ( x y ) z = 2 x ( y z ) ( x y ) z = 3 x ( y z ) ( x y ) z = 4 x ( y z ) = 5 ( x y ) z fragments x does-not-prove fragments ( y does-not-prove z ) superscript 1 fragments fragments ( x does-not-prove y ) does-not-prove z superscript 2 x does-not-prove fragments ( y proves z ) fragments fragments ( x proves y ) does-not-prove z superscript 3 fragments x proves fragments ( y does-not-prove z ) fragments fragments ( x does-not-prove y ) proves z superscript 4 fragments x proves fragments ( y proves z ) superscript 5 fragments ( x proves y ) proves z \begin{array}[]{rcl}x\dashv(y\dashv z)&\stackrel{{\scriptstyle 1}}{{=}}&(x% \dashv y)\dashv z\stackrel{{\scriptstyle 2}}{{=}}x\dashv(y\vdash z)\\ (x\vdash y)\dashv z&\stackrel{{\scriptstyle 3}}{{=}}&x\vdash(y\dashv z)\\ (x\dashv y)\vdash z&\stackrel{{\scriptstyle 4}}{{=}}&x\vdash(y\vdash z)% \stackrel{{\scriptstyle 5}}{{=}}(x\vdash y)\vdash z\end{array} start_ARRAY start_ROW start_CELL italic_x ⊣ ( italic_y ⊣ italic_z ) end_CELL start_CELL start_RELOP SUPERSCRIPTOP start_ARG = end_ARG start_ARG 1 end_ARG end_RELOP end_CELL start_CELL ( italic_x ⊣ italic_y ) ⊣ italic_z start_RELOP SUPERSCRIPTOP start_ARG = end_ARG start_ARG 2 end_ARG end_RELOP italic_x ⊣ ( italic_y ⊢ italic_z ) end_CELL end_ROW start_ROW start_CELL ( italic_x ⊢ italic_y ) ⊣ italic_z end_CELL start_CELL start_RELOP SUPERSCRIPTOP start_ARG = end_ARG start_ARG 3 end_ARG end_RELOP end_CELL start_CELL italic_x ⊢ ( italic_y ⊣ italic_z ) end_CELL end_ROW start_ROW start_CELL ( italic_x ⊣ italic_y ) ⊢ italic_z end_CELL start_CELL start_RELOP SUPERSCRIPTOP start_ARG = end_ARG start_ARG 4 end_ARG end_RELOP end_CELL start_CELL italic_x ⊢ ( italic_y ⊢ italic_z ) start_RELOP SUPERSCRIPTOP start_ARG = end_ARG start_ARG 5 end_ARG end_RELOP ( italic_x ⊢ italic_y ) ⊢ italic_z end_CELL end_ROW end_ARRAY (2.1.1)

for all x , y , z D 𝑥 𝑦 𝑧 𝐷 x,y,z\in D italic_x , italic_y , italic_z ∈ italic_D .


Definition 2.1

Suppose Δ 0 subscript normal-Δ 0 \Delta_{0} roman_Δ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT and Δ normal-Δ \Delta roman_Δ are root systems. Then ι 𝜄 \iota italic_ι is an “embedding” if (a) it is a 1-1 function from Δ 0 subscript normal-Δ 0 \Delta_{0} roman_Δ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT to Δ normal-Δ \Delta roman_Δ , and (b)

ι ( γ ) = ι ( α ) + ι ( β ) 𝜄 𝛾 𝜄 𝛼 𝜄 𝛽 \iota(\gamma)=\iota(\alpha)+\iota(\beta) italic_ι ( italic_γ ) = italic_ι ( italic_α ) + italic_ι ( italic_β )

for all α , β , γ Δ 0 𝛼 𝛽 𝛾 subscript normal-Δ 0 \alpha,\beta,\gamma\in\Delta_{0} italic_α , italic_β , italic_γ ∈ roman_Δ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT such that γ = α + β 𝛾 𝛼 𝛽 \gamma=\alpha+\beta italic_γ = italic_α + italic_β .


(1.1) Definition (algebra) .

An algebra is a complex vector space A 𝐴 A italic_A equipped with an associative multiplication ( a , b ) a b maps-to 𝑎 𝑏 𝑎 𝑏 (a,b)\mapsto ab ( italic_a , italic_b ) ↦ italic_a italic_b satisfying the following laws:

λ ( a b ) = ( λ a ) b = a ( λ b ) 𝜆 𝑎 𝑏 𝜆 𝑎 𝑏 𝑎 𝜆 𝑏 \displaystyle\lambda(ab)=(\lambda a)b=a(\lambda b) italic_λ ( italic_a italic_b ) = ( italic_λ italic_a ) italic_b = italic_a ( italic_λ italic_b )
c ( a + b ) = c a + c b 𝑐 𝑎 𝑏 𝑐 𝑎 𝑐 𝑏 \displaystyle c(a+b)=ca+cb italic_c ( italic_a + italic_b ) = italic_c italic_a + italic_c italic_b
( a + b ) c = a c + b c 𝑎 𝑏 𝑐 𝑎 𝑐 𝑏 𝑐 \displaystyle(a+b)c=ac+bc ( italic_a + italic_b ) italic_c = italic_a italic_c + italic_b italic_c

for all λ 𝜆 \lambda italic_λ in \mathds{C} blackboard_C and all a , b , c 𝑎 𝑏 𝑐 a,b,c italic_a , italic_b , italic_c in A 𝐴 A italic_A .

(1.11) Definition (unit, unital algebra) .

Let A 𝐴 A italic_A be an algebra. A unit in A 𝐴 A italic_A is a non-zero element e 𝑒 e italic_e of A 𝐴 A italic_A such that

e a = a e = a 𝑒 𝑎 𝑎 𝑒 𝑎 ea=ae=a italic_e italic_a = italic_a italic_e = italic_a

for all a 𝑎 a italic_a in A 𝐴 A italic_A . One says that A 𝐴 A italic_A is a unital algebra if A 𝐴 A italic_A has a unit.


Definition 4.1 .

Let W 𝑊 W italic_W be a vector space with a symmetric nondegenerate odd bilinear form - , - \langle-,-\rangle ⟨ - , - ⟩ , so that V := Π W assign 𝑉 Π 𝑊 V:=\Pi W italic_V := roman_Π italic_W is a symplectic vector space. A cyclic A subscript 𝐴 A_{\infty} italic_A start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT -structure on W 𝑊 W italic_W is an element h 𝒞 ( 𝔥 2 [ V ] ) 𝒞 subscript 𝔥 absent 2 delimited-[] 𝑉 h\in\mathcal{MC}(\mathfrak{h}_{\geq 2}[V]) italic_h ∈ caligraphic_M caligraphic_C ( fraktur_h start_POSTSUBSCRIPT ≥ 2 end_POSTSUBSCRIPT [ italic_V ] ) , that is an element satisfying the classical master equation

{ h , h } = 0 . 0 \{h,h\}=0. { italic_h , italic_h } = 0 .

We shall denote the corresponding cyclic A subscript 𝐴 A_{\infty} italic_A start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT -algebra by A := ( W , - , - , h ) assign 𝐴 𝑊 A:=(W,\langle-,-\rangle,h) italic_A := ( italic_W , ⟨ - , - ⟩ , italic_h ) .


Definition 4.1 .

Let K 𝐾 K italic_K be a field, and let ϕ K [ z ] italic-ϕ 𝐾 delimited-[] 𝑧 \phi\in K[z] italic_ϕ ∈ italic_K [ italic_z ] be a cubic polynomial. We will say that ϕ italic-ϕ \phi italic_ϕ is in normal form if either

(4.1) ϕ ( z ) = a z 3 + b z + 1 italic-ϕ 𝑧 𝑎 superscript 𝑧 3 𝑏 𝑧 1 \phi(z)=az^{3}+bz+1 italic_ϕ ( italic_z ) = italic_a italic_z start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT + italic_b italic_z + 1

or

(4.2) ϕ ( z ) = a z 3 + b z . italic-ϕ 𝑧 𝑎 superscript 𝑧 3 𝑏 𝑧 \phi(z)=az^{3}+bz. italic_ϕ ( italic_z ) = italic_a italic_z start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT + italic_b italic_z .

Definition 2.0.1 .

A Bol algebra is a vector space 𝔅 𝔅 \mathfrak{B} fraktur_B over a field K 𝐾 K italic_K of which is closed with respect a trilinear operation ( x ; y , z ) 𝑥 𝑦 𝑧 (x;y,z) ( italic_x ; italic_y , italic_z ) and with additional bilinear skew-symetric operation x y normal-⋅ 𝑥 𝑦 x\cdot y italic_x ⋅ italic_y satisfying:

  1. (i)

    ( x ; x , y ) = 0 𝑥 𝑥 𝑦 0 (x;x,y)=0 ( italic_x ; italic_x , italic_y ) = 0

  2. (ii)

    ( x ; y , z ) + ( z ; x , y ) + ( y ; z , x ) = 0 . 𝑥 𝑦 𝑧 𝑧 𝑥 𝑦 𝑦 𝑧 𝑥 0 (x;y,z)+(z;x,y)+(y;z,x)=0. ( italic_x ; italic_y , italic_z ) + ( italic_z ; italic_x , italic_y ) + ( italic_y ; italic_z , italic_x ) = 0 .

  3. (iii)
    ( ( x ; y , z ) ; α , β ) = ( ( x ; α , β ) ; y , z ) + ( x ; y ; α , β , z ) + ( x ; y , ( α , β , z ) ) 𝑥 𝑦 𝑧 𝛼 𝛽 𝑥 𝛼 𝛽 𝑦 𝑧 𝑥 𝑦 𝛼 𝛽 𝑧 𝑥 𝑦 𝛼 𝛽 𝑧 ((x;y,z);\alpha,\beta)=((x;\alpha,\beta);y,z)+(x;{y;\alpha,\beta},z)+(x;y,(% \alpha,\beta,z)) ( ( italic_x ; italic_y , italic_z ) ; italic_α , italic_β ) = ( ( italic_x ; italic_α , italic_β ) ; italic_y , italic_z ) + ( italic_x ; italic_y ; italic_α , italic_β , italic_z ) + ( italic_x ; italic_y , ( italic_α , italic_β , italic_z ) )
  4. (iv)
    ( x y ; α , β ) = ( x ; α , β ) y + x ( y ; α , β ) + ( α β ; x , y ) + ( x y ) ( α β ) 𝑥 𝑦 𝛼 𝛽 𝑥 𝛼 𝛽 𝑦 𝑥 𝑦 𝛼 𝛽 𝛼 𝛽 𝑥 𝑦 𝑥 𝑦 𝛼 𝛽 (x\cdot y;\alpha,\beta)=(x;\alpha,\beta)\cdot y+x\cdot(y;\alpha,\beta)+(\alpha% \cdot\beta;x,y)+(x\cdot y)\cdot(\alpha\cdot\beta) ( italic_x ⋅ italic_y ; italic_α , italic_β ) = ( italic_x ; italic_α , italic_β ) ⋅ italic_y + italic_x ⋅ ( italic_y ; italic_α , italic_β ) + ( italic_α ⋅ italic_β ; italic_x , italic_y ) + ( italic_x ⋅ italic_y ) ⋅ ( italic_α ⋅ italic_β )

for all x 𝑥 x italic_x , y 𝑦 y italic_y , z 𝑧 z italic_z , α 𝛼 \alpha italic_α ,and β 𝛽 \beta italic_β in 𝔅 𝔅 \mathfrak{B} fraktur_B .

Definition 3.0.1 .

A vector space V 𝑉 V italic_V is a Bol module if for all α , β , γ , τ 𝛼 𝛽 𝛾 𝜏 \alpha,\beta,\gamma,\tau italic_α , italic_β , italic_γ , italic_τ in 𝔅 𝔅 \mathfrak{B} fraktur_B and v 𝑣 v italic_v in V 𝑉 V italic_V , the following properties are true:

  1. (1)

    α v = - v α 𝛼 𝑣 𝑣 𝛼 \alpha\cdot v=-v\cdot\alpha italic_α ⋅ italic_v = - italic_v ⋅ italic_α

  2. (2)

    [ v ; α , β ] + [ v ; β , α ] = 0 𝑣 𝛼 𝛽 𝑣 𝛽 𝛼 0 [v;\alpha,\beta]+[v;\beta,\alpha]=0 [ italic_v ; italic_α , italic_β ] + [ italic_v ; italic_β , italic_α ] = 0

  3. (3)

    [ v ; α , β ] + [ α ; v , β ] + [ α ; β , v ] = 0 𝑣 𝛼 𝛽 𝛼 𝑣 𝛽 𝛼 𝛽 𝑣 0 [v;\alpha,\beta]+[\alpha;v,\beta]+[\alpha;\beta,v]=0 [ italic_v ; italic_α , italic_β ] + [ italic_α ; italic_v , italic_β ] + [ italic_α ; italic_β , italic_v ] = 0

  4. (4)

    [ ( α ; β , γ ) ; v , τ ] = [ α ; β , [ γ ; v , τ ] ] + [ α ; [ β , v , τ ] , γ ] + [ [ α ; v , τ ] ; β , γ ] 𝛼 𝛽 𝛾 𝑣 𝜏 𝛼 𝛽 𝛾 𝑣 𝜏 𝛼 𝛽 𝑣 𝜏 𝛾 𝛼 𝑣 𝜏 𝛽 𝛾 [(\alpha;\beta,\gamma);v,\tau]=[\alpha;\beta,[\gamma;v,\tau]]+[\alpha;[\beta,v% ,\tau],\gamma]+[[\alpha;v,\tau];\beta,\gamma] [ ( italic_α ; italic_β , italic_γ ) ; italic_v , italic_τ ] = [ italic_α ; italic_β , [ italic_γ ; italic_v , italic_τ ] ] + [ italic_α ; [ italic_β , italic_v , italic_τ ] , italic_γ ] + [ [ italic_α ; italic_v , italic_τ ] ; italic_β , italic_γ ]

  5. (5)

    [ ( α ; β , γ ) , v τ ] = v ( α ; β , τ ) + [ v ; α , β ] τ + [ ( β ; α ) ; τ , v ] + ( v τ ) ( β ; α ) 𝛼 𝛽 𝛾 𝑣 𝜏 𝑣 𝛼 𝛽 𝜏 𝑣 𝛼 𝛽 𝜏 𝛽 𝛼 𝜏 𝑣 𝑣 𝜏 𝛽 𝛼 [(\alpha;\beta,\gamma),v\cdot\tau]=v\cdot(\alpha;\beta,\tau)+[v;\alpha,\beta]% \cdot\tau+[(\beta;\alpha);\tau,v]+(v\cdot\tau)\cdot(\beta;\alpha) [ ( italic_α ; italic_β , italic_γ ) , italic_v ⋅ italic_τ ] = italic_v ⋅ ( italic_α ; italic_β , italic_τ ) + [ italic_v ; italic_α , italic_β ] ⋅ italic_τ + [ ( italic_β ; italic_α ) ; italic_τ , italic_v ] + ( italic_v ⋅ italic_τ ) ⋅ ( italic_β ; italic_α )


Definition 2.1

Let S 𝑆 S italic_S be a semigroup. An element t S 𝑡 𝑆 t\in S italic_t ∈ italic_S is said to be an inverse of s S 𝑠 𝑆 s\in S italic_s ∈ italic_S if

s t s = s and t s t = t . formulae-sequence 𝑠 𝑡 𝑠 𝑠 and 𝑡 𝑠 𝑡 𝑡 sts=s\qquad\mbox{ and }\qquad tst=t. italic_s italic_t italic_s = italic_s and italic_t italic_s italic_t = italic_t .

An inverse semigroup S 𝑆 S italic_S is a semigroup such that for all s S 𝑠 𝑆 s\in S italic_s ∈ italic_S there is a unique inverse of s 𝑠 s italic_s , which we shall denote by s * superscript 𝑠 s^{*} italic_s start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT . Equivalently, an inverse semigroup is a semigroup for which each element has an inverse and for which any two idempotents commute (see [ 4 ] ). The set of idempotents is denoted by E ( S ) 𝐸 𝑆 E(S) italic_E ( italic_S ) . An inverse monoid is an inverse semigroup that has a multiplicative unit, which we shall denote by e 𝑒 e italic_e .


Definition III.1

Let a , b F × 𝑎 𝑏 superscript 𝐹 a,b\in F^{\times} italic_a , italic_b ∈ italic_F start_POSTSUPERSCRIPT × end_POSTSUPERSCRIPT . A (generalized) quaternion algebra over F 𝐹 F italic_F is a 4 4 4 4 -dimensional F 𝐹 F italic_F -vector space with F 𝐹 F italic_F -basis = { 1 , 𝐢 , 𝐣 , 𝐤 } 1 𝐢 𝐣 𝐤 \mathscr{B}=\{1,\mathbf{i},\mathbf{j},\mathbf{k}\} script_B = { 1 , bold_i , bold_j , bold_k } , whose ring structure is determined by

𝐢 2 = a , 𝐣 2 = b 𝑎𝑛𝑑 𝐢𝐣 = - 𝐣𝐢 = 𝐤 . formulae-sequence superscript 𝐢 2 𝑎 formulae-sequence superscript 𝐣 2 𝑏 𝑎𝑛𝑑 𝐢𝐣 𝐣𝐢 𝐤 \mathbf{i}^{2}=a,\ \mathbf{j}^{2}=b\quad\text{and}\quad\mathbf{ij}=-\mathbf{ji% }=\mathbf{k}. bold_i start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT = italic_a , bold_j start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT = italic_b and bold_ij = - bold_ji = bold_k . (2)

We denote this algebra by ( a , b ) F subscript 𝑎 𝑏 𝐹 ({a},{b})_{F} ( italic_a , italic_b ) start_POSTSUBSCRIPT italic_F end_POSTSUBSCRIPT . Its elements are called quaternions .

Definition IV.2

Let B := ( a , b ) F F ( c , d ) F assign 𝐵 subscript tensor-product 𝐹 subscript 𝑎 𝑏 𝐹 subscript 𝑐 𝑑 𝐹 B:=({a},{b})_{F}\otimes_{F}({c},{d})_{F} italic_B := ( italic_a , italic_b ) start_POSTSUBSCRIPT italic_F end_POSTSUBSCRIPT ⊗ start_POSTSUBSCRIPT italic_F end_POSTSUBSCRIPT ( italic_c , italic_d ) start_POSTSUBSCRIPT italic_F end_POSTSUBSCRIPT . The six-dimensional quadratic form

φ = a , b , - a b - c , - d , c d 𝜑 𝑎 𝑏 𝑎 𝑏 𝑐 𝑑 𝑐 𝑑 \varphi=\langle a,b,-ab-c,-d,cd\rangle italic_φ = ⟨ italic_a , italic_b , - italic_a italic_b - italic_c , - italic_d , italic_c italic_d ⟩

over F 𝐹 F italic_F is called the Albert form of B 𝐵 B italic_B .


Definition 6.5

Let X 𝑋 X italic_X be a supported Q 𝑄 Q italic_Q -module. The support is called stable , and the module is said to be stably supported , if in addition the support is B 𝐵 B italic_B -equivariant; that is, the following condition holds for all b B 𝑏 𝐵 b\in B italic_b ∈ italic_B and x X 𝑥 𝑋 x\in X italic_x ∈ italic_X :

ς ( b x ) = b ς ( x ) . 𝜍 𝑏 𝑥 𝑏 𝜍 𝑥 \varsigma(bx)=b\land\varsigma(x)\;. italic_ς ( italic_b italic_x ) = italic_b ∧ italic_ς ( italic_x ) .

Definition 2.2 .

Let n subscript 𝑛 \mathbb{C}_{n} blackboard_C start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT , n 𝑛 n\in\mathbb{Z} italic_n ∈ blackboard_Z , be a filtration of partitions of Ω Ω \Omega roman_Ω .

(i) Let τ = τ ( x ) 𝜏 𝜏 𝑥 \tau=\tau(x) italic_τ = italic_τ ( italic_x ) be a function on Ω Ω \Omega roman_Ω with values in { , 0 , ± 1 , ± 2 , } 0 plus-or-minus 1 plus-or-minus 2 \{\infty,0,\pm 1,\pm 2,...\} { ∞ , 0 , ± 1 , ± 2 , … } . The function τ 𝜏 \tau italic_τ is called a stopping time (relative to the filtration) if, for each n = 0 , ± 1 , ± 2 , 𝑛 0 plus-or-minus 1 plus-or-minus 2 n=0,\pm 1,\pm 2,... italic_n = 0 , ± 1 , ± 2 , … , the set

{ x : τ ( x ) = n } conditional-set 𝑥 𝜏 𝑥 𝑛 \{x:\tau(x)=n\} { italic_x : italic_τ ( italic_x ) = italic_n }

is either empty or else is the union of some elements of n subscript 𝑛 \mathbb{C}_{n} blackboard_C start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT .

(ii) For a function f 1 ( Ω ) 𝑓 subscript 1 Ω f\in\mathcal{L}_{1}(\Omega) italic_f ∈ caligraphic_L start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( roman_Ω ) and n 𝑛 n\in\mathbb{Z} italic_n ∈ blackboard_Z , we denote

f | n ( x ) = C n ( x ) f ( y ) μ ( d y ) . subscript 𝑓 fragments | n 𝑥 subscript subscript 𝐶 𝑛 𝑥 𝑓 𝑦 𝜇 𝑑 𝑦 f_{|n}(x)=\,\,\hbox{\rm\bf--}\kern-9.8pt\int_{C_{n}(x)}f(y)\,\mu(dy). italic_f start_POSTSUBSCRIPT | italic_n end_POSTSUBSCRIPT ( italic_x ) = – ∫ start_POSTSUBSCRIPT italic_C start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( italic_x ) end_POSTSUBSCRIPT italic_f ( italic_y ) italic_μ ( italic_d italic_y ) .

We read f | n subscript 𝑓 fragments | n f_{|n} italic_f start_POSTSUBSCRIPT | italic_n end_POSTSUBSCRIPT as “ f 𝑓 f italic_f given n subscript 𝑛 \mathbb{C}_{n} blackboard_C start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ”, continuing to borrow the terminology from probability theory. If we are also given a stopping time τ 𝜏 \tau italic_τ , we let

f | τ ( x ) = f | τ ( x ) ( x ) subscript 𝑓 fragments | τ 𝑥 subscript 𝑓 fragments | τ fragments ( x ) 𝑥 f_{|\tau}(x)=f_{|\tau(x)}(x) italic_f start_POSTSUBSCRIPT | italic_τ end_POSTSUBSCRIPT ( italic_x ) = italic_f start_POSTSUBSCRIPT | italic_τ ( italic_x ) end_POSTSUBSCRIPT ( italic_x )

for those x 𝑥 x italic_x for which τ ( x ) < 𝜏 𝑥 \tau(x)<\infty italic_τ ( italic_x ) < ∞ and f | τ ( x ) = f ( x ) subscript 𝑓 fragments | τ 𝑥 𝑓 𝑥 f_{|\tau}(x)=f(x) italic_f start_POSTSUBSCRIPT | italic_τ end_POSTSUBSCRIPT ( italic_x ) = italic_f ( italic_x ) otherwise.


Definition 11

Given two hyperreal numbers ξ 𝜉 \xi italic_ξ and ζ \ { 0 } , 𝜁 normal-\ superscript normal-∗ 0 \zeta\in{\mathbb{R}}^{\ast}\backslash\left\{0\right\}, italic_ζ ∈ blackboard_R start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT \ { 0 } , we say that they have the same order if ξ / ζ 𝜉 𝜁 \xi/\zeta italic_ξ / italic_ζ and ζ / ξ 𝜁 𝜉 \zeta/\xi italic_ζ / italic_ξ are bounded numbers and we will write

ξ ζ 𝜉 𝜁 \xi\approx\zeta italic_ξ ≈ italic_ζ

(notice the difference between " " similar-to normal-" normal-" "\sim" " ∼ " and " " normal-" normal-" "\approx" " ≈ " since these symbols will be largely used in the rest of this paper). We say that ξ 𝜉 \xi italic_ξ has a larger order than ζ 𝜁 \zeta italic_ζ if ξ / ζ 𝜉 𝜁 \xi/\zeta italic_ξ / italic_ζ is an infinite number and we will write

ξ ζ much-greater-than 𝜉 𝜁 \xi\gg\zeta italic_ξ ≫ italic_ζ

We say that ξ 𝜉 \xi italic_ξ has a smaller order than ζ 𝜁 \zeta italic_ζ if ξ / ζ 𝜉 𝜁 \xi/\zeta italic_ξ / italic_ζ is an infinitesimal number and we will write

ξ ζ much-less-than 𝜉 𝜁 \xi\ll\zeta italic_ξ ≪ italic_ζ

Definition 16 .

the Type I relation:

= \begin{minipage}{166.221pt}\includegraphics[]{slide1l}\end{minipage}=% \begin{minipage}{166.221pt}\includegraphics[]{slide1r}\end{minipage} =
Definition 17 .

the Type II relation:

= \begin{minipage}{166.221pt}\includegraphics[]{slide2l}\end{minipage}=% \begin{minipage}{166.221pt}\includegraphics[]{slide2r}\end{minipage} =

Definition 8.3

Define β = q 2 + q - 2 𝛽 superscript 𝑞 2 superscript 𝑞 2 \beta=q^{2}+q^{-2} italic_β = italic_q start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_q start_POSTSUPERSCRIPT - 2 end_POSTSUPERSCRIPT and

γ = - a ( q - q - 1 ) 2 , ϱ = a 2 ( q - q - 1 ) 2 - b c ( q 2 - q - 2 ) 2 , formulae-sequence 𝛾 𝑎 superscript 𝑞 superscript 𝑞 1 2 italic-ϱ superscript 𝑎 2 superscript 𝑞 superscript 𝑞 1 2 𝑏 𝑐 superscript superscript 𝑞 2 superscript 𝑞 2 2 \displaystyle\gamma\;=\;-a(q-q^{-1})^{2},\qquad\qquad\varrho\;=\;a^{2}(q-q^{-1% })^{2}-bc(q^{2}-q^{-2})^{2}, italic_γ = - italic_a ( italic_q - italic_q start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT , italic_ϱ = italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_q - italic_q start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - italic_b italic_c ( italic_q start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - italic_q start_POSTSUPERSCRIPT - 2 end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT , (66)
γ * = - a * ( q - q - 1 ) 2 , ϱ * = a * 2 ( q - q - 1 ) 2 - b * c * ( q 2 - q - 2 ) 2 . formulae-sequence superscript 𝛾 superscript 𝑎 superscript 𝑞 superscript 𝑞 1 2 superscript italic-ϱ superscript 𝑎 absent 2 superscript 𝑞 superscript 𝑞 1 2 superscript 𝑏 superscript 𝑐 superscript superscript 𝑞 2 superscript 𝑞 2 2 \displaystyle\gamma^{*}\;=\;-a^{*}(q-q^{-1})^{2},\quad\qquad\varrho^{*}=a^{*2}% (q-q^{-1})^{2}-b^{*}c^{*}(q^{2}-q^{-2})^{2}. italic_γ start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT = - italic_a start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT ( italic_q - italic_q start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT , italic_ϱ start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT = italic_a start_POSTSUPERSCRIPT * 2 end_POSTSUPERSCRIPT ( italic_q - italic_q start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - italic_b start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT italic_c start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT ( italic_q start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - italic_q start_POSTSUPERSCRIPT - 2 end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT . (67)

Definition 7.1 .

Let M 𝑀 M italic_M be a smooth manifold. A Poisson structure on M 𝑀 M italic_M is a Lie bracket { , } \{\cdot,\cdot\} { ⋅ , ⋅ } on C ( M ) superscript 𝐶 𝑀 C^{\infty}(M) italic_C start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT ( italic_M ) such that each operator { , h } \{\cdot,h\} { ⋅ , italic_h } is a derivation on functions, i.e.

{ f g , h } = { f , h } g + { g , h } f . 𝑓 𝑔 𝑓 𝑔 𝑔 𝑓 \{fg,h\}=\{f,h\}g+\{g,h\}f. { italic_f italic_g , italic_h } = { italic_f , italic_h } italic_g + { italic_g , italic_h } italic_f .

A Poisson manifold is a manifold endowed with a Poisson structure.


Definition 1 .

A 2-Hilbert space is an abelian Hilb-category H 𝐻 H italic_H , equipped with antilinear maps * : hom ( x , y ) hom ( y , x ) fragments : hom fragments ( x , y ) hom fragments ( y , x ) *\colon\text{hom}(x,y)\rightarrow\text{hom}(y,x) * : hom ( italic_x , italic_y ) → hom ( italic_y , italic_x ) for all x , y H 𝑥 𝑦 𝐻 x,y\in H italic_x , italic_y ∈ italic_H , such that

whenever both sides of the equation are defined.


Definition 1 .

We call odd composite number n 𝑛 n italic_n overpseudoprime to base 2 ( n 𝕊 2 ) 𝑛 subscript 𝕊 2 (n\in\mathbb{S}_{2}) ( italic_n ∈ blackboard_S start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) if

(5) n = r ( n ) h ( n ) + 1 . 𝑛 𝑟 𝑛 𝑛 1 n=r(n)h(n)+1. italic_n = italic_r ( italic_n ) italic_h ( italic_n ) + 1 .