Definition 2.6 .

Let σ 𝜎 \sigma italic_σ be a 2-complex. Define w ( e ) 𝑤 𝑒 w(e) italic_w ( italic_e ) , weight of an edge e σ 𝑒 𝜎 e\in\sigma italic_e ∈ italic_σ , to be

w ( e ) = { 1 if e σ 2 otherwise 𝑤 𝑒 cases 1 if e σ 2 otherwise w(e)=\left\{\begin{array}[]{ll}1&\mbox{if $e\subset\partial\sigma$}\\ 2&\mbox{otherwise}\end{array}\right. italic_w ( italic_e ) = { start_ARRAY start_ROW start_CELL 1 end_CELL start_CELL if italic_e ⊂ ∂ italic_σ end_CELL end_ROW start_ROW start_CELL 2 end_CELL start_CELL otherwise end_CELL end_ROW end_ARRAY

Define w ( σ ) 𝑤 𝜎 w(\sigma) italic_w ( italic_σ ) , the weight of σ 𝜎 \sigma italic_σ , to be the total weight of all edges of σ 𝜎 \sigma italic_σ .
For ψ 𝜓 \psi italic_ψ a 1-complex. Define w ( ψ ) 𝑤 𝜓 w(\psi) italic_w ( italic_ψ ) to be the total number of edges of ψ 𝜓 \psi italic_ψ .
From the definition, it is clear that w ( σ ) w ( σ ) 𝑤 𝜎 𝑤 𝜎 w(\sigma)\geq w(\partial\sigma) italic_w ( italic_σ ) ≥ italic_w ( ∂ italic_σ ) .


Definition 6.3 .

Suppose that R 𝑅 R italic_R is an algebra, σ 𝜎 \sigma italic_σ an automorphism of R 𝑅 R italic_R and δ 𝛿 \delta italic_δ a σ 𝜎 \sigma italic_σ -derivation of R 𝑅 R italic_R , that is, a linear map δ : R R : 𝛿 𝑅 𝑅 \delta:R\to R italic_δ : italic_R → italic_R such that

δ ( r s ) = δ ( r ) s + σ ( r ) δ ( s ) 𝛿 𝑟 𝑠 𝛿 𝑟 𝑠 𝜎 𝑟 𝛿 𝑠 \delta(rs)=\delta(r)s+\sigma(r)\delta(s) italic_δ ( italic_r italic_s ) = italic_δ ( italic_r ) italic_s + italic_σ ( italic_r ) italic_δ ( italic_s )

for all r , s R 𝑟 𝑠 𝑅 r,s\in R italic_r , italic_s ∈ italic_R . Then the Ore extension R [ t ] 𝑅 delimited-[] 𝑡 R[t] italic_R [ italic_t ] is the free left R 𝑅 R italic_R -module on the set { t n | n 0 } conditional-set superscript 𝑡 𝑛 𝑛 0 \{t^{n}\,|\,n\geq 0\} { italic_t start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT | italic_n ≥ 0 } , with multiplication defined by

t r = σ ( r ) t + δ ( r ) . 𝑡 𝑟 𝜎 𝑟 𝑡 𝛿 𝑟 tr=\sigma(r)t+\delta(r). italic_t italic_r = italic_σ ( italic_r ) italic_t + italic_δ ( italic_r ) .

Definition 4.1 .

Let R 𝑅 R italic_R be a partial E-ring, and M 𝑀 M italic_M an R 𝑅 R italic_R -module. (There is no exponential structure on M 𝑀 M italic_M ; it is just a module in the usual sense.) A derivation from R 𝑅 R italic_R to M 𝑀 M italic_M is a map R M superscript 𝑅 𝑀 R\stackrel{{\scriptstyle\partial}}{{\longrightarrow}}M italic_R start_RELOP SUPERSCRIPTOP start_ARG ⟶ end_ARG start_ARG ∂ end_ARG end_RELOP italic_M such that for each a , b R 𝑎 𝑏 𝑅 a,b\in R italic_a , italic_b ∈ italic_R ,

It is an exponential derivation or E-derivation iff also for each a A ( R ) 𝑎 𝐴 𝑅 a\in A(R) italic_a ∈ italic_A ( italic_R ) we have ( exp ( a ) ) = exp ( a ) a 𝑎 𝑎 𝑎 \partial(\exp(a))=\exp(a)\partial a ∂ ( roman_exp ( italic_a ) ) = roman_exp ( italic_a ) ∂ italic_a .

Write Der ( R , M ) Der 𝑅 𝑀 \operatorname{Der}(R,M) roman_Der ( italic_R , italic_M ) for the set of all derivations from R 𝑅 R italic_R to M 𝑀 M italic_M , and EDer ( R , M ) EDer 𝑅 𝑀 \operatorname{EDer}(R,M) roman_EDer ( italic_R , italic_M ) for the set of all E-derivations from R 𝑅 R italic_R to M 𝑀 M italic_M . For any subset C 𝐶 C italic_C of R 𝑅 R italic_R , we write Der ( R / C , M ) Der 𝑅 𝐶 𝑀 \operatorname{Der}(R/C,M) roman_Der ( italic_R / italic_C , italic_M ) and EDer ( R / C , M ) EDer 𝑅 𝐶 𝑀 \operatorname{EDer}(R/C,M) roman_EDer ( italic_R / italic_C , italic_M ) for the sets of derivations (E-derivations) which vanish on C 𝐶 C italic_C . It is easy to see that these are R 𝑅 R italic_R -modules.


Definition 3.3 .

We can turn a one-component chord diagram with a base point into an arrow diagram according to the following rule. Starting from the base point we travel along the diagram with doubled chords. During this journey we pass both copies of each chord in opposite directions. Choose an arrow on each chord which corresponds to the direction of the first passage of the copies of the chord. Here is an example.

. \raisebox{-9.0pt}[20.0pt][15.0pt]{\begin{picture}(25.0,15.0)(0.0,0.0)\put(0.0,% 0.0){\includegraphics[width=25.0pt]{cd22ch4.eps}} \end{picture}}\quad\raisebox{2.0pt}[15.0pt][15.0pt]{\begin{picture}(25.0,15.0)% (0.0,0.0)\put(0.0,0.0){\includegraphics[width=25.0pt]{totor.eps}} \end{picture}}\quad\raisebox{-9.0pt}[20.0pt][15.0pt]{\begin{picture}(25.0,15.0% )(0.0,0.0)\put(0.0,0.0){\includegraphics[width=25.0pt]{cd22par.eps}} \end{picture}}\quad\raisebox{2.0pt}[0.0pt][0.0pt]{\begin{picture}(25.0,15.0)(0% .0,0.0)\put(0.0,0.0){\includegraphics[width=25.0pt]{totor.eps}} \end{picture}}\quad\raisebox{-9.0pt}[20.0pt][15.0pt]{\begin{picture}(25.0,15.0% )(0.0,0.0)\put(0.0,0.0){\includegraphics[width=25.0pt]{cd22arw.eps}} \end{picture}}\ . .

Definition 5.12 .

Assume that M , M 𝑀 superscript 𝑀 M,M^{\prime} italic_M , italic_M start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT are monoids acting on sets X 𝑋 X italic_X and X superscript 𝑋 X^{\prime} italic_X start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT , respectively. A morphism φ : M M : 𝜑 𝑀 superscript 𝑀 \varphi{:}\,M{\to}M^{\prime} italic_φ : italic_M → italic_M start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT and a map ψ : X X : 𝜓 𝑋 superscript 𝑋 \psi{:}\,X{\to}X^{\prime} italic_ψ : italic_X → italic_X start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT are called compatible if

(5.6) ψ ( x a ) = ψ ( x ) φ ( a ) 𝜓 𝑥 𝑎 𝜓 𝑥 𝜑 𝑎 \psi(x\mathbin{\scriptscriptstyle\bullet}a)=\psi(x)\mathbin{\scriptscriptstyle% \bullet}\varphi(a) italic_ψ ( italic_x ∙ italic_a ) = italic_ψ ( italic_x ) ∙ italic_φ ( italic_a )

holds whenever x  a 𝑥  𝑎 x\mathbin{\scriptscriptstyle\bullet}a italic_x ∙  italic_a is defined. Then, we denote by [ φ , ψ ] 𝜑 𝜓 [\varphi,\psi] [ italic_φ , italic_ψ ] the functor of 𝒞 ( M , X ) 𝒞 𝑀 𝑋 \mathcal{C}(M,X) caligraphic_C ( italic_M , italic_X ) to 𝒞 ( M , X ) 𝒞 superscript 𝑀 superscript 𝑋 \mathcal{C}(M^{\prime},X^{\prime}) caligraphic_C ( italic_M start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT , italic_X start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) that coincides with ψ 𝜓 \psi italic_ψ on objects and maps ( x , a , y ) 𝑥 𝑎 𝑦 (x,a,y) ( italic_x , italic_a , italic_y ) to ( ψ ( x ) , φ ( a ) , ψ ( y ) ) 𝜓 𝑥 𝜑 𝑎 𝜓 𝑦 (\psi(x),\varphi(a),\psi(y)) ( italic_ψ ( italic_x ) , italic_φ ( italic_a ) , italic_ψ ( italic_y ) ) .


Definition 6 .

An affine connection normal-∇ \nabla is compatible with ( , , ) normal-⋅ normal-⋅ \left(\mathcal{H},\left<\cdot,\cdot\right>\right) ( caligraphic_H , ⟨ ⋅ , ⋅ ⟩ ) , and thus its associated co-metric g 𝑔 g italic_g , if

(16) g = 0 𝑔 0 \nabla g=0 ∇ italic_g = 0

Definition 6 (Skew k 𝑘 k italic_k -linear succession) .

For π = ( ε , σ ) G , n 𝜋 𝜀 𝜎 subscript 𝐺 normal-ℓ 𝑛 \pi=(\varepsilon,\sigma)\in G_{\ell,n} italic_π = ( italic_ε , italic_σ ) ∈ italic_G start_POSTSUBSCRIPT roman_ℓ , italic_n end_POSTSUBSCRIPT , the value σ ( i ) 𝜎 𝑖 \sigma(i) italic_σ ( italic_i ) ( 1 i n ) 1 𝑖 𝑛 (1\leq i\leq n) ( 1 ≤ italic_i ≤ italic_n ) is a skew k 𝑘 k italic_k -linear succession ( k 1 ) 𝑘 1 (k\geq 1) ( italic_k ≥ 1 ) of π 𝜋 \pi italic_π at position i 𝑖 i italic_i if

π ( i ) = π ( i - 1 ) + k , 𝜋 𝑖 𝜋 𝑖 1 𝑘 \pi(i)=\pi(i-1)+k, italic_π ( italic_i ) = italic_π ( italic_i - 1 ) + italic_k ,

where, by convention, σ ( 0 ) = 0 𝜎 0 0 \sigma(0)=0 italic_σ ( 0 ) = 0 and ε ( 0 ) = 1 𝜀 0 1 \varepsilon(0)=1 italic_ε ( 0 ) = 1 .


Definition 1.1

A quandle ( Q , ) 𝑄 normal-∗ (Q,\ast) ( italic_Q , ∗ ) is a set Q 𝑄 Q italic_Q with a binary operation : Q × Q Q fragments normal-∗ normal-: Q Q normal-⟶ Q \ast:Q\times Q\longrightarrow Q ∗ : italic_Q × italic_Q ⟶ italic_Q that satisfies the following axioms : normal-: : :

( 𝐢 ) 𝐢 \mathbf{(i)} ( bold_i ) For all q Q , 𝑞 𝑄 q\in\ Q, italic_q ∈ italic_Q , q q = q normal-∗ 𝑞 𝑞 𝑞 q\ast\ q=q italic_q ∗ italic_q = italic_q

( 𝐢𝐢 ) 𝐢𝐢 \mathbf{(ii)} ( bold_ii ) Q 𝑄 Q italic_Q is a self distributive set with normal-∗ \ast as an operation, i.e. for all p , q , r Q , 𝑝 𝑞 𝑟 𝑄 p,q,r\in\ Q, italic_p , italic_q , italic_r ∈ italic_Q ,

( p q ) r = ( p r ) ( q r ) 𝑝 𝑞 𝑟 𝑝 𝑟 𝑞 𝑟 (p\ast q)\ast r=(p\ast r)\ast(q\ast r) ( italic_p ∗ italic_q ) ∗ italic_r = ( italic_p ∗ italic_r ) ∗ ( italic_q ∗ italic_r )

and finally,

( 𝐢𝐢𝐢 ) 𝐢𝐢𝐢 \mathbf{(iii)} ( bold_iii ) For each p , q Q 𝑝 𝑞 𝑄 p,q\in\ Q italic_p , italic_q ∈ italic_Q there is a unique r Q 𝑟 𝑄 r\in\ Q italic_r ∈ italic_Q such that p = r q 𝑝 normal-∗ 𝑟 𝑞 p=r\ast q italic_p = italic_r ∗ italic_q


Definition 1.1 .

A (left) Leibniz algebra is an algebra A 𝐴 A italic_A for which all the left multiplications are derivations, that is,

a ( b c ) = ( a b ) c + b ( a c ) 𝑎 𝑏 𝑐 𝑎 𝑏 𝑐 𝑏 𝑎 𝑐 a(bc)=(ab)c+b(ac) italic_a ( italic_b italic_c ) = ( italic_a italic_b ) italic_c + italic_b ( italic_a italic_c )

for all a , b , c A 𝑎 𝑏 𝑐 𝐴 a,b,c\in A italic_a , italic_b , italic_c ∈ italic_A .

Definition 1.7 .

A bimodule of a Leibniz algebra A 𝐴 A italic_A is a vector space M 𝑀 M italic_M with two bilinear compositions a m , m a 𝑎 𝑚 𝑚 𝑎 am,ma italic_a italic_m , italic_m italic_a for a A 𝑎 𝐴 a\in A italic_a ∈ italic_A and m M 𝑚 𝑀 m\in M italic_m ∈ italic_M such that

a ( b m ) = ( a b ) m + b ( a m ) a ( m b ) = ( a m ) b + m ( a b ) m ( a b ) = ( m a ) b + a ( m b ) 𝑎 𝑏 𝑚 𝑎 𝑏 𝑚 𝑏 𝑎 𝑚 𝑎 𝑚 𝑏 𝑎 𝑚 𝑏 𝑚 𝑎 𝑏 𝑚 𝑎 𝑏 𝑚 𝑎 𝑏 𝑎 𝑚 𝑏 \begin{split}\displaystyle a(bm)&\displaystyle=(ab)m+b(am)\\ \displaystyle a(mb)&\displaystyle=(am)b+m(ab)\\ \displaystyle m(ab)&\displaystyle=(ma)b+a(mb)\\ \end{split} start_ROW start_CELL italic_a ( italic_b italic_m ) end_CELL start_CELL = ( italic_a italic_b ) italic_m + italic_b ( italic_a italic_m ) end_CELL end_ROW start_ROW start_CELL italic_a ( italic_m italic_b ) end_CELL start_CELL = ( italic_a italic_m ) italic_b + italic_m ( italic_a italic_b ) end_CELL end_ROW start_ROW start_CELL italic_m ( italic_a italic_b ) end_CELL start_CELL = ( italic_m italic_a ) italic_b + italic_a ( italic_m italic_b ) end_CELL end_ROW

for all a , b A 𝑎 𝑏 𝐴 a,b\in A italic_a , italic_b ∈ italic_A and m M 𝑚 𝑀 m\in M italic_m ∈ italic_M .


Definition 3.4 .

(a) A Lie bialgebra ( 𝔤 , [ , ] , δ ) 𝔤 𝛿 (\mathfrak{g},[\cdot,\cdot],\delta) ( fraktur_g , [ ⋅ , ⋅ ] , italic_δ ) is called quasitriangular if there exists a classical r 𝑟 r italic_r -matrix r 𝔤 𝔤 𝑟 tensor-product 𝔤 𝔤 r\in\mathfrak{g}\otimes\mathfrak{g} italic_r ∈ fraktur_g ⊗ fraktur_g such that for all g 𝔤 𝑔 𝔤 g\in\mathfrak{g} italic_g ∈ fraktur_g

δ ( g ) = [ r , 1 g + g 1 ] . 𝛿 𝑔 𝑟 tensor-product 1 𝑔 tensor-product 𝑔 1 \delta(g)=[r,1\otimes g+g\otimes 1]\ . italic_δ ( italic_g ) = [ italic_r , 1 ⊗ italic_g + italic_g ⊗ 1 ] .

(b) ( 𝔤 , [ , ] , δ ) 𝔤 𝛿 (\mathfrak{g},[\cdot,\cdot],\delta) ( fraktur_g , [ ⋅ , ⋅ ] , italic_δ ) is called triangular if there exists a skew-symmetric classical r 𝑟 r italic_r -matrix r Λ 2 𝔤 𝑟 superscript Λ 2 𝔤 r\in\Lambda^{2}\mathfrak{g} italic_r ∈ roman_Λ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT fraktur_g such that for all g 𝔤 𝑔 𝔤 g\in\mathfrak{g} italic_g ∈ fraktur_g

δ ( g ) = [ r , 1 g + g 1 ] . 𝛿 𝑔 𝑟 tensor-product 1 𝑔 tensor-product 𝑔 1 \delta(g)=[r,1\otimes g+g\otimes 1]\ . italic_δ ( italic_g ) = [ italic_r , 1 ⊗ italic_g + italic_g ⊗ 1 ] .

(c) A Lie bialgebra ( 𝔤 , [ ] , δ ) fragments ( g , fragments [ ] , δ ) (\mathfrak{g},[\cdot\cdot],\delta) ( fraktur_g , [ ⋅ ⋅ ] , italic_δ ) is called coboundary, if there exists r Λ 2 𝔤 𝑟 superscript Λ 2 𝔤 r\in\Lambda^{2}\mathfrak{g} italic_r ∈ roman_Λ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT fraktur_g such that for all g 𝔤 𝑔 𝔤 g\in\mathfrak{g} italic_g ∈ fraktur_g

δ ( g ) = [ r , 1 g + g 1 ] . 𝛿 𝑔 𝑟 tensor-product 1 𝑔 tensor-product 𝑔 1 \delta(g)=[r,1\otimes g+g\otimes 1]\ . italic_δ ( italic_g ) = [ italic_r , 1 ⊗ italic_g + italic_g ⊗ 1 ] .

Definition 1 .

The Schroedinger algebra is the six–dimensional * * * –Lie algebra generated by b 𝑏 b italic_b , b superscript 𝑏 normal-† b^{\dagger} italic_b start_POSTSUPERSCRIPT † end_POSTSUPERSCRIPT , b 2 superscript 𝑏 2 b^{2} italic_b start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT , b 2 superscript superscript 𝑏 normal-† 2 {b^{\dagger}}^{2} italic_b start_POSTSUPERSCRIPT † end_POSTSUPERSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT , b b superscript 𝑏 normal-† 𝑏 b^{\dagger}\,b italic_b start_POSTSUPERSCRIPT † end_POSTSUPERSCRIPT italic_b and 1 1 1 1 where b superscript 𝑏 normal-† b^{\dagger} italic_b start_POSTSUPERSCRIPT † end_POSTSUPERSCRIPT , b 𝑏 b italic_b and 1 1 1 1 are the generators of a Boson Heisenberg algebra with

(2.1) [ b , b ] = 1 ; ( b ) * = b fragments fragments [ b , superscript 𝑏 ] 1 italic- ; superscript fragments ( superscript 𝑏 ) b [b,b^{\dagger}]=1\qquad;\qquad{(b^{\dagger})}^{*}=b [ italic_b , italic_b start_POSTSUPERSCRIPT † end_POSTSUPERSCRIPT ] = 1 ; ( italic_b start_POSTSUPERSCRIPT † end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT = italic_b
Definition 2 .

For λ 𝜆 \lambda\in\mathbb{C} italic_λ ∈ blackboard_C let y ( λ ) = e λ b 𝑦 𝜆 superscript 𝑒 𝜆 𝑏 y(\lambda)=e^{\lambda\,b} italic_y ( italic_λ ) = italic_e start_POSTSUPERSCRIPT italic_λ italic_b end_POSTSUPERSCRIPT . The Heisenberg Fock space \mathcal{F} caligraphic_F is the Hilbert space completion of the linear span of the exponential vectors { y ( λ ) ; λ } 𝑦 𝜆 𝜆 \{y(\lambda)\,;\,\lambda\in\mathbb{C}\} { italic_y ( italic_λ ) ; italic_λ ∈ blackboard_C } with respect to the inner product

(2.8) y ( λ ) , y ( μ ) = e λ ¯ μ 𝑦 𝜆 𝑦 𝜇 superscript 𝑒 ¯ 𝜆 𝜇 \langle y(\lambda),y(\mu)\rangle=e^{\bar{\lambda}\,\mu} ⟨ italic_y ( italic_λ ) , italic_y ( italic_μ ) ⟩ = italic_e start_POSTSUPERSCRIPT ¯ start_ARG italic_λ end_ARG italic_μ end_POSTSUPERSCRIPT

Definition .

Let y G j 𝑦 subscript 𝐺 𝑗 y\in G_{j} italic_y ∈ italic_G start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT for some j 𝑗 j italic_j and let ζ 𝜁 \zeta italic_ζ be the unique point in C ~ j + superscript subscript ~ 𝐶 𝑗 \tilde{C}_{j}^{+} ~ start_ARG italic_C end_ARG start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT with

𝐱 ( ζ ) = y superscript 𝐱 𝜁 𝑦 {\mathbf{x}}^{\sharp}(\zeta)=y bold_x start_POSTSUPERSCRIPT ♯ end_POSTSUPERSCRIPT ( italic_ζ ) = italic_y (5.13)

We define Θ ( ; y ) Θ 𝑦 \Theta(\,\cdot\,;y) roman_Θ ( ⋅ ; italic_y ) to be the character automorphic function

Θ ( z ; y ) = [ ( 𝐱 ( z ) - 𝐱 ( ζ ) 𝐱 ( z ) - 𝐱 ( ζ j ) ) η ( z ) η ( 0 ) - 1 ] 1 / 2 Θ 𝑧 𝑦 superscript delimited-[] 𝐱 𝑧 𝐱 𝜁 𝐱 𝑧 𝐱 subscript 𝜁 𝑗 𝜂 𝑧 𝜂 superscript 0 1 1 2 \Theta(z;y)=\biggl{[}\biggl{(}\frac{{\mathbf{x}}(z)-{\mathbf{x}}(\zeta)}{{% \mathbf{x}}(z)-{\mathbf{x}}(\zeta_{j})}\biggr{)}\,\eta(z)\eta(0)^{-1}\biggr{]}% ^{1/2} roman_Θ ( italic_z ; italic_y ) = [ ( divide start_ARG bold_x ( italic_z ) - bold_x ( italic_ζ ) end_ARG start_ARG bold_x ( italic_z ) - bold_x ( italic_ζ start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT ) end_ARG ) italic_η ( italic_z ) italic_η ( 0 ) start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ] start_POSTSUPERSCRIPT 1 / 2 end_POSTSUPERSCRIPT (5.14)

and denote by 𝔄 ( y ) Γ * 𝔄 𝑦 superscript Γ {\mathfrak{A}}(y)\in\Gamma^{*} fraktur_A ( italic_y ) ∈ roman_Γ start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT its character. Moreover, we define 𝔄 ( ) 𝔄 {\mathfrak{A}}(\infty) fraktur_A ( ∞ ) to be the character of B ( z ) 𝐵 𝑧 B(z) italic_B ( italic_z ) .


Definition 2.11 .

We say that two multimodal maps f , g : I I normal-: 𝑓 𝑔 normal-→ 𝐼 𝐼 f,g:I\rightarrow I italic_f , italic_g : italic_I → italic_I are topologically conjugate or simply conjugate if there is a homeomorphism h : I I normal-: normal-→ 𝐼 𝐼 h:I\rightarrow I italic_h : italic_I → italic_I such that

h f = g h . 𝑓 𝑔 h\circ f=g\circ h. italic_h ∘ italic_f = italic_g ∘ italic_h .

Definition 1.6 .

Let m 2 𝑚 2 m\geq 2 italic_m ≥ 2 be an integer and ε > 0 𝜀 0 \varepsilon>0 italic_ε > 0 . The germ of a continuous map u : 𝒪 ( S , z ) Q : 𝑢 𝒪 𝑆 𝑧 𝑄 u:{\mathcal{O}}(S,z)\rightarrow Q italic_u : caligraphic_O ( italic_S , italic_z ) → italic_Q is called of class ( m , ε ) 𝑚 𝜀 (m,\varepsilon) ( italic_m , italic_ε ) at the point z 𝑧 z italic_z if for a smooth chart φ : U ( u ( 0 ) ) 2 n : 𝜑 𝑈 𝑢 0 superscript 2 𝑛 \varphi:U(u(0))\rightarrow{\mathbb{R}}^{2n} italic_φ : italic_U ( italic_u ( 0 ) ) → blackboard_R start_POSTSUPERSCRIPT 2 italic_n end_POSTSUPERSCRIPT of Q 𝑄 Q italic_Q mapping u ( 0 ) 𝑢 0 u(0) italic_u ( 0 ) to 0 0 and for holomorphic polar coordinates σ : [ 0 , ) × S 1 S { z } : 𝜎 0 superscript 𝑆 1 𝑆 𝑧 \sigma:[0,\infty)\times S^{1}\rightarrow S\setminus\{z\} italic_σ : [ 0 , ∞ ) × italic_S start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT → italic_S ∖ { italic_z } around z 𝑧 z italic_z , the map

v ( s , t ) = φ u σ ( s , t ) , 𝑣 𝑠 𝑡 𝜑 𝑢 𝜎 𝑠 𝑡 v(s,t)=\varphi\circ u\circ\sigma(s,t), italic_v ( italic_s , italic_t ) = italic_φ ∘ italic_u ∘ italic_σ ( italic_s , italic_t ) ,

which is defined for s 𝑠 s italic_s large, has partial derivatives up to order m 𝑚 m italic_m , which if weighted by e ε s superscript 𝑒 𝜀 𝑠 e^{\varepsilon s} italic_e start_POSTSUPERSCRIPT italic_ε italic_s end_POSTSUPERSCRIPT , belong to L 2 ( [ R , ) × S 1 , 2 n ) superscript 𝐿 2 𝑅 superscript 𝑆 1 superscript 2 𝑛 L^{2}([R,\infty)\times S^{1},{\mathbb{R}}^{2n}) italic_L start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( [ italic_R , ∞ ) × italic_S start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT , blackboard_R start_POSTSUPERSCRIPT 2 italic_n end_POSTSUPERSCRIPT ) if R 𝑅 R italic_R is sufficiently large. The germ is of called of class m 𝑚 m italic_m around the point z S 𝑧 𝑆 z\in S italic_z ∈ italic_S , if u 𝑢 u italic_u belongs to the class H loc m subscript superscript 𝐻 𝑚 loc H^{m}_{\text{loc}} italic_H start_POSTSUPERSCRIPT italic_m end_POSTSUPERSCRIPT start_POSTSUBSCRIPT loc end_POSTSUBSCRIPT near z 𝑧 z italic_z .


Definition 1 .

A faithful self-similar action ( G , 𝖷 ) 𝐺 𝖷 (G,\mathsf{X}) ( italic_G , sansserif_X ) is a faithful action of a group G 𝐺 G italic_G on the set 𝖷 * superscript 𝖷 \mathsf{X}^{*} sansserif_X start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT such that for every g G 𝑔 𝐺 g\in G italic_g ∈ italic_G and x 𝖷 𝑥 𝖷 x\in\mathsf{X} italic_x ∈ sansserif_X there exist h G 𝐺 h\in G italic_h ∈ italic_G such that

g ( x w ) = g ( x ) h ( w ) 𝑔 𝑥 𝑤 𝑔 𝑥 𝑤 g(xw)=g(x)h(w) italic_g ( italic_x italic_w ) = italic_g ( italic_x ) italic_h ( italic_w )

for all w 𝖷 * 𝑤 superscript 𝖷 w\in\mathsf{X}^{*} italic_w ∈ sansserif_X start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT .


Definition 2.3.1 .

A semilinear (or semivector ) space on + subscript {\mathbb{R}}_{+} blackboard_R start_POSTSUBSCRIPT + end_POSTSUBSCRIPT is a triple ( X , + , ) 𝑋 (X,+,\cdot) ( italic_X , + , ⋅ ) such that ( X , + ) 𝑋 (X,+) ( italic_X , + ) is an Abelian semigroup with neutral element 0 X 0 𝑋 0\in X 0 ∈ italic_X and \cdot is a function + × X X subscript 𝑋 𝑋 {\mathbb{R}}_{+}\times X\to X blackboard_R start_POSTSUBSCRIPT + end_POSTSUBSCRIPT × italic_X → italic_X which satisfies for all x , y X 𝑥 𝑦 𝑋 x,y\in X italic_x , italic_y ∈ italic_X and a , b + 𝑎 𝑏 subscript a,b\in{\mathbb{R}}_{+} italic_a , italic_b ∈ blackboard_R start_POSTSUBSCRIPT + end_POSTSUBSCRIPT :

  1. (i)

    a ( b x ) = ( a b ) x 𝑎 𝑏 𝑥 𝑎 𝑏 𝑥 a\cdot(b\cdot x)=(ab)\cdot x italic_a ⋅ ( italic_b ⋅ italic_x ) = ( italic_a italic_b ) ⋅ italic_x ,

  2. (ii)

    ( a + b ) x = ( a x ) + ( b x ) 𝑎 𝑏 𝑥 𝑎 𝑥 𝑏 𝑥 (a+b)\cdot x=(a\cdot x)+(b\cdot x) ( italic_a + italic_b ) ⋅ italic_x = ( italic_a ⋅ italic_x ) + ( italic_b ⋅ italic_x ) ,

  3. (iii)

    a ( x + y ) = ( a x ) + ( a y ) 𝑎 𝑥 𝑦 𝑎 𝑥 𝑎 𝑦 a\cdot(x+y)=(a\cdot x)+(a\cdot y) italic_a ⋅ ( italic_x + italic_y ) = ( italic_a ⋅ italic_x ) + ( italic_a ⋅ italic_y ) , and

  4. (iv)

    1 x = x 1 𝑥 𝑥 1\cdot x=x 1 ⋅ italic_x = italic_x .

Whenever an element x X 𝑥 𝑋 x\in X italic_x ∈ italic_X admits an inverse it can be shown to be unique and is denoted - x 𝑥 -x - italic_x . If we replace in the above definition + subscript {\mathbb{R}}_{+} blackboard_R start_POSTSUBSCRIPT + end_POSTSUBSCRIPT with {\mathbb{R}} blackboard_R and “semigroup” with “group” we obtain an ordinary vector (or linear) space. \blacktriangle

Definition 2.6.1 ( [ KuVa94 , Vi99 ] ) .

Let ( X , d ) 𝑋 𝑑 (X,d) ( italic_X , italic_d ) be a quasi-metric space. The quasi-metric d 𝑑 d italic_d is called a weightable quasi-metric if there exists a function w : X + : 𝑤 𝑋 subscript w:X\to{\mathbb{R}}_{+} italic_w : italic_X → blackboard_R start_POSTSUBSCRIPT + end_POSTSUBSCRIPT , called the weight function or simply the weight , satisfying for every x , y X 𝑥 𝑦 𝑋 x,y\in X italic_x , italic_y ∈ italic_X

d ( x , y ) + w ( x ) = d ( y , x ) + w ( y ) . 𝑑 𝑥 𝑦 𝑤 𝑥 𝑑 𝑦 𝑥 𝑤 𝑦 d(x,y)+w(x)=d(y,x)+w(y). italic_d ( italic_x , italic_y ) + italic_w ( italic_x ) = italic_d ( italic_y , italic_x ) + italic_w ( italic_y ) .

In this case we call d 𝑑 d italic_d weightable by w 𝑤 w italic_w .

A quasi-metric d 𝑑 d italic_d is co-weightable if its conjugate quasi-metric d superscript 𝑑 {d}^{\ast} italic_d start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT is weightable. The weight function w 𝑤 w italic_w by which d superscript 𝑑 {d}^{\ast} italic_d start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT is weightable is called the co-weight of d 𝑑 d italic_d and d 𝑑 d italic_d is co-weightable by w 𝑤 w italic_w .

A triple ( X , d , w ) 𝑋 𝑑 𝑤 (X,d,w) ( italic_X , italic_d , italic_w ) where ( X , d ) 𝑋 𝑑 (X,d) ( italic_X , italic_d ) is a quasi-metric space and w 𝑤 w italic_w a function X + 𝑋 subscript X\to{\mathbb{R}}_{+} italic_X → blackboard_R start_POSTSUBSCRIPT + end_POSTSUBSCRIPT is called a weighted quasi-metric space if ( X , d ) 𝑋 𝑑 (X,d) ( italic_X , italic_d ) is weightable by w 𝑤 w italic_w and a co-weighted quasi-metric space if ( X , d ) 𝑋 𝑑 (X,d) ( italic_X , italic_d ) is co-weightable by w 𝑤 w italic_w .

In all the above, if the weight function w 𝑤 w italic_w takes values in {\mathbb{R}} blackboard_R instead of + subscript {\mathbb{R}}_{+} blackboard_R start_POSTSUBSCRIPT + end_POSTSUBSCRIPT , the prefix generalised is added to the definitions. \blacktriangle

Definition 2.6.9 .

Let ( X , ρ ) 𝑋 𝜌 (X,\rho) ( italic_X , italic_ρ ) be a metric space. A bundle over ( X , ρ ) 𝑋 𝜌 (X,\rho) ( italic_X , italic_ρ ) [ Vi99 ] is the weighted quasi-metric space ( X × + , d , w ) 𝑋 subscript 𝑑 𝑤 (X\times{\mathbb{R}}_{+},d,w) ( italic_X × blackboard_R start_POSTSUBSCRIPT + end_POSTSUBSCRIPT , italic_d , italic_w ) where

d ( ( x , ξ ) , ( y , η ) ) = ρ ( x , y ) + ξ - η 𝑑 𝑥 𝜉 𝑦 𝜂 𝜌 𝑥 𝑦 𝜉 𝜂 d((x,\xi),(y,\eta))=\rho(x,y)+\xi-\eta italic_d ( ( italic_x , italic_ξ ) , ( italic_y , italic_η ) ) = italic_ρ ( italic_x , italic_y ) + italic_ξ - italic_η

and

w ( ( x , ξ ) ) = 2 ξ . 𝑤 𝑥 𝜉 2 𝜉 w((x,\xi))=2\xi. italic_w ( ( italic_x , italic_ξ ) ) = 2 italic_ξ .

\blacktriangle


Definition Definition 4.2

The Dynkin diagram G ( D 6 ) 𝐺 subscript 𝐷 6 G(D_{6}) italic_G ( italic_D start_POSTSUBSCRIPT 6 end_POSTSUBSCRIPT ) of type D 6 subscript 𝐷 6 D_{6} italic_D start_POSTSUBSCRIPT 6 end_POSTSUBSCRIPT is a graph with vertex set V ( D 6 ) = { 1 , 1 , 2 , 3 , 4 , 5 } 𝑉 subscript 𝐷 6 superscript 1 1 2 3 4 5 V(D_{6})=\{1^{\prime},1,2,3,4,5\} italic_V ( italic_D start_POSTSUBSCRIPT 6 end_POSTSUBSCRIPT ) = { 1 start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT , 1 , 2 , 3 , 4 , 5 } . Two vertices i 𝑖 i italic_i and j 𝑗 j italic_j in the subset { 1 , 2 , 3 , 4 , 5 } 1 2 3 4 5 \{1,2,3,4,5\} { 1 , 2 , 3 , 4 , 5 } are adjacent (connected by an edge) if and only if | i - j | = 1 𝑖 𝑗 1 |i-j|=1 | italic_i - italic_j | = 1 , and the vertex 1 superscript 1 1^{\prime} 1 start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT is adjacent only to 2 2 2 2 .

If i 𝑖 i italic_i and j 𝑗 j italic_j are any two vertices of V ( D 6 ) 𝑉 subscript 𝐷 6 V(D_{6}) italic_V ( italic_D start_POSTSUBSCRIPT 6 end_POSTSUBSCRIPT ) , we define the integer

m ( i , j ) = { 1 if i = j , 2 if i is not adjacent to j , and 3 if i is adjacent to j . 𝑚 𝑖 𝑗 cases 1 if i = j , 2 if i is not adjacent to j , and 3 if i is adjacent to j . m(i,j)=\begin{cases}1&\text{ if $i=j$,}\cr 2&\text{ if $i$ is not adjacent to % $j$, and}\cr 3&\text{ if $i$ is adjacent to $j$.}\cr\end{cases} italic_m ( italic_i , italic_j ) = { start_ROW start_CELL 1 end_CELL start_CELL if italic_i = italic_j , end_CELL end_ROW start_ROW start_CELL 2 end_CELL start_CELL if italic_i is not adjacent to italic_j , and end_CELL end_ROW start_ROW start_CELL 3 end_CELL start_CELL if italic_i is adjacent to italic_j . end_CELL end_ROW

The Coxeter group W = W ( D 6 ) 𝑊 𝑊 subscript 𝐷 6 W=W(D_{6}) italic_W = italic_W ( italic_D start_POSTSUBSCRIPT 6 end_POSTSUBSCRIPT ) of type D 6 subscript 𝐷 6 D_{6} italic_D start_POSTSUBSCRIPT 6 end_POSTSUBSCRIPT is the group given by the presentation

s 1 , s 1 , s 2 , s 3 , s 4 , s 5 | ( s i s j ) m ( i , j ) = 1 . inner-product subscript 𝑠 superscript 1 subscript 𝑠 1 subscript 𝑠 2 subscript 𝑠 3 subscript 𝑠 4 subscript 𝑠 5 superscript subscript 𝑠 𝑖 subscript 𝑠 𝑗 𝑚 𝑖 𝑗 1 \langle s_{1^{\prime}},s_{1},s_{2},s_{3},s_{4},s_{5}\ |\ (s_{i}s_{j})^{m(i,j)}% =1\rangle. ⟨ italic_s start_POSTSUBSCRIPT 1 start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT end_POSTSUBSCRIPT , italic_s start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_s start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , italic_s start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT , italic_s start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT , italic_s start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT | ( italic_s start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT italic_s start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT italic_m ( italic_i , italic_j ) end_POSTSUPERSCRIPT = 1 ⟩ .

Definition 1.3.1 .

If u , v 𝐄 1 3 𝑢 𝑣 superscript subscript 𝐄 1 3 u,v\in\hbox{\bf E}_{1}^{3} italic_u , italic_v ∈ E start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT , we call the (Lorentzian) vector product of u 𝑢 u italic_u and v 𝑣 v italic_v to the unique vector denoted by u × v 𝑢 𝑣 u\times v italic_u × italic_v that satisfies

u × v , w = det ( u , v , w ) , 𝑢 𝑣 𝑤 det 𝑢 𝑣 𝑤 \langle u\times v,w\rangle=\mbox{det }(u,v,w), ⟨ italic_u × italic_v , italic_w ⟩ = det ( italic_u , italic_v , italic_w ) , (1.2)

where 𝑑𝑒𝑡 ( u , v , w ) 𝑑𝑒𝑡 𝑢 𝑣 𝑤 \mbox{det}(u,v,w) det ( italic_u , italic_v , italic_w ) is the determinant of the matrix obtained by putting by columns the coordinates of the three vectors u 𝑢 u italic_u , v 𝑣 v italic_v and w 𝑤 w italic_w .