Definition 1 (Exact Volume Preserving) .

A diffeomorphism f : M β†’ M normal-: 𝑓 normal-β†’ 𝑀 𝑀 f:M\to M italic_f : italic_M β†’ italic_M is exact -volume preserving if there exists an ( n - 1 ) 𝑛 1 (n-1) ( italic_n - 1 ) -form Ξ± 𝛼 \alpha italic_Ξ± such that d ⁒ Ξ± = Ξ© 𝑑 𝛼 normal-Ξ© d\alpha=\Omega italic_d italic_Ξ± = roman_Ξ© and a generating ( n - 2 ) 𝑛 2 (n-2) ( italic_n - 2 ) -form Ξ» πœ† \lambda italic_Ξ» such that

f * ⁒ Ξ± - Ξ± = d ⁒ Ξ» . superscript 𝑓 𝛼 𝛼 𝑑 πœ† f^{*}\alpha-\alpha=d\lambda. italic_f start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT italic_Ξ± - italic_Ξ± = italic_d italic_Ξ» . (2)

Definition 2.15 .

Fix a stream X 𝑋 X italic_X . Let T 1 ⁒ X subscript T 1 𝑋 \mathrm{T}_{1}X roman_T start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_X be the category having the points of X 𝑋 X italic_X as objects, equivalence classes [ Ξ± ] delimited-[] 𝛼 [\alpha] [ italic_Ξ± ] of dipaths homotopic relative { 0 , 1 } 0 1 \{0,1\} { 0 , 1 } through dipaths as the morphisms, and the functions

s : [ Ξ± ] ↦ Ξ± ( 0 ) , t : [ Ξ± ] ↦ Ξ± ( 1 ) , id : x ↦ [ t ↦ x ] , [ Ξ² ] ∘ [ Ξ± ] = [ Ξ± * Ξ² ] , fragments s : fragments [ Ξ± ] maps-to Ξ± fragments ( 0 ) , t : fragments [ Ξ± ] maps-to Ξ± fragments ( 1 ) , id : x maps-to fragments [ t maps-to x ] , fragments [ Ξ² ] fragments [ Ξ± ] fragments [ Ξ± Ξ² ] , s:[\alpha]\mapsto\alpha(0),\quad t:[\alpha]\mapsto\alpha(1),\quad{\mathrm{id}}% :x\mapsto[t\mapsto x],\quad[\beta]\circ[\alpha]=[\alpha*\beta], italic_s : [ italic_Ξ± ] ↦ italic_Ξ± ( 0 ) , italic_t : [ italic_Ξ± ] ↦ italic_Ξ± ( 1 ) , roman_id : italic_x ↦ [ italic_t ↦ italic_x ] , [ italic_Ξ² ] ∘ [ italic_Ξ± ] = [ italic_Ξ± * italic_Ξ² ] ,

as source s 𝑠 s italic_s , target t 𝑑 t italic_t , identity id id {\mathrm{id}} roman_id , and composition ∘ \circ ∘ functions, respectively, where Ξ± * Ξ² 𝛼 𝛽 \alpha*\beta italic_Ξ± * italic_Ξ² denotes a concatenation of Ξ± 𝛼 \alpha italic_Ξ± with Ξ² 𝛽 \beta italic_Ξ² . We call T 1 ⁒ X subscript T 1 𝑋 \mathrm{T}_{1}X roman_T start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_X the fundamental category of X 𝑋 X italic_X .


Definition 5.5 .

Let S 𝑆 S italic_S be a locally compact group acting on a topological space M 𝑀 M italic_M preserving an ergodic probability measure ΞΌ πœ‡ \mu italic_ΞΌ . Let L 𝐿 L italic_L be a topological group. An L 𝐿 L italic_L -valued measurable cocycle for the S 𝑆 S italic_S -action on M 𝑀 M italic_M is a measurable map Ξ± : S Γ— M β†’ L normal-: 𝛼 normal-β†’ 𝑆 𝑀 𝐿 \alpha:S\times M\rightarrow L italic_Ξ± : italic_S Γ— italic_M β†’ italic_L satisfying

Ξ± ⁒ ( g ⁒ h , x ) = Ξ± ⁒ ( g , h ⁒ x ) ⁒ Ξ± ⁒ ( h , x ) 𝛼 𝑔 β„Ž π‘₯ 𝛼 𝑔 β„Ž π‘₯ 𝛼 β„Ž π‘₯ \alpha(gh,x)=\alpha(g,hx)\alpha(h,x) italic_Ξ± ( italic_g italic_h , italic_x ) = italic_Ξ± ( italic_g , italic_h italic_x ) italic_Ξ± ( italic_h , italic_x )

for all g , h ∈ S 𝑔 β„Ž 𝑆 g,h\in S italic_g , italic_h ∈ italic_S and almost-every x ∈ M π‘₯ 𝑀 x\in M italic_x ∈ italic_M .


Definition 3 .

The algebra 𝔱 n subscript 𝔱 𝑛 \mathfrak{t}_{n} fraktur_t start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT is the quotient of the free Lie algebra with n ⁒ ( n - 1 ) / 2 𝑛 𝑛 1 2 n(n-1)/2 italic_n ( italic_n - 1 ) / 2 generators t i , j = t j , i superscript 𝑑 𝑖 𝑗 superscript 𝑑 𝑗 𝑖 t^{i,j}=t^{j,i} italic_t start_POSTSUPERSCRIPT italic_i , italic_j end_POSTSUPERSCRIPT = italic_t start_POSTSUPERSCRIPT italic_j , italic_i end_POSTSUPERSCRIPT by the following relations

[ t i , j , t k , l ] = 0 superscript 𝑑 𝑖 𝑗 superscript 𝑑 π‘˜ 𝑙 0 [t^{i,j},t^{k,l}]=0 [ italic_t start_POSTSUPERSCRIPT italic_i , italic_j end_POSTSUPERSCRIPT , italic_t start_POSTSUPERSCRIPT italic_k , italic_l end_POSTSUPERSCRIPT ] = 0 (8)

if all indices i , j , k 𝑖 𝑗 π‘˜ i,j,k italic_i , italic_j , italic_k , and l 𝑙 l italic_l are distinct, and

[ t i , j + t i , k , t j , k ] = 0 superscript 𝑑 𝑖 𝑗 superscript 𝑑 𝑖 π‘˜ superscript 𝑑 𝑗 π‘˜ 0 [t^{i,j}+t^{i,k},t^{j,k}]=0 [ italic_t start_POSTSUPERSCRIPT italic_i , italic_j end_POSTSUPERSCRIPT + italic_t start_POSTSUPERSCRIPT italic_i , italic_k end_POSTSUPERSCRIPT , italic_t start_POSTSUPERSCRIPT italic_j , italic_k end_POSTSUPERSCRIPT ] = 0 (9)

for all triples of distinct indices i , j 𝑖 𝑗 i,j italic_i , italic_j , and k π‘˜ k italic_k .

Definition 5 .

The Grothendieck–TeichmΓΌller Lie algebra is the Lie algebra spanned by the elements ψ ∈ 𝔩 ⁒ 𝔦 ⁒ 𝔒 2 πœ“ 𝔩 𝔦 subscript 𝔒 2 \psi\in\mathfrak{lie}_{2} italic_ψ ∈ fraktur_l fraktur_i fraktur_e start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT satisfying the following relations:

ψ ⁒ ( x , y ) = - ψ ⁒ ( y , x ) , πœ“ π‘₯ 𝑦 πœ“ 𝑦 π‘₯ \psi(x,y)=-\psi(y,x), italic_ψ ( italic_x , italic_y ) = - italic_ψ ( italic_y , italic_x ) , (10)
ψ ⁒ ( x , y ) + ψ ⁒ ( y , z ) + ψ ⁒ ( z , x ) = 0 , πœ“ π‘₯ 𝑦 πœ“ 𝑦 𝑧 πœ“ 𝑧 π‘₯ 0 \psi(x,y)+\psi(y,z)+\psi(z,x)=0, italic_ψ ( italic_x , italic_y ) + italic_ψ ( italic_y , italic_z ) + italic_ψ ( italic_z , italic_x ) = 0 , (11)

where z = - x - y 𝑧 π‘₯ 𝑦 z=-x-y italic_z = - italic_x - italic_y ,

ψ ⁒ ( t 1 , 2 , t 2 , 34 ) + ψ ⁒ ( t 12 , 3 , t 3 , 4 ) = ψ ⁒ ( t 2 , 3 , t 3 , 4 ) + ψ ⁒ ( t 1 , 23 , t 23 , 4 ) + ψ ⁒ ( t 1 , 2 , t 2 , 3 ) , πœ“ superscript 𝑑 1 2 superscript 𝑑 2 34 πœ“ superscript 𝑑 12 3 superscript 𝑑 3 4 πœ“ superscript 𝑑 2 3 superscript 𝑑 3 4 πœ“ superscript 𝑑 1 23 superscript 𝑑 23 4 πœ“ superscript 𝑑 1 2 superscript 𝑑 2 3 \psi(t^{1,2},t^{2,34})+\psi(t^{12,3},t^{3,4})=\psi(t^{2,3},t^{3,4})+\psi(t^{1,% 23},t^{23,4})+\psi(t^{1,2},t^{2,3}), italic_ψ ( italic_t start_POSTSUPERSCRIPT 1 , 2 end_POSTSUPERSCRIPT , italic_t start_POSTSUPERSCRIPT 2 , 34 end_POSTSUPERSCRIPT ) + italic_ψ ( italic_t start_POSTSUPERSCRIPT 12 , 3 end_POSTSUPERSCRIPT , italic_t start_POSTSUPERSCRIPT 3 , 4 end_POSTSUPERSCRIPT ) = italic_ψ ( italic_t start_POSTSUPERSCRIPT 2 , 3 end_POSTSUPERSCRIPT , italic_t start_POSTSUPERSCRIPT 3 , 4 end_POSTSUPERSCRIPT ) + italic_ψ ( italic_t start_POSTSUPERSCRIPT 1 , 23 end_POSTSUPERSCRIPT , italic_t start_POSTSUPERSCRIPT 23 , 4 end_POSTSUPERSCRIPT ) + italic_ψ ( italic_t start_POSTSUPERSCRIPT 1 , 2 end_POSTSUPERSCRIPT , italic_t start_POSTSUPERSCRIPT 2 , 3 end_POSTSUPERSCRIPT ) , (12)

where the latter takes place in 𝔱 4 subscript 𝔱 4 \mathfrak{t}_{4} fraktur_t start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT and t i , j ⁒ k = t i , j + t i , k superscript 𝑑 𝑖 𝑗 π‘˜ superscript 𝑑 𝑖 𝑗 superscript 𝑑 𝑖 π‘˜ t^{i,jk}=t^{i,j}+t^{i,k} italic_t start_POSTSUPERSCRIPT italic_i , italic_j italic_k end_POSTSUPERSCRIPT = italic_t start_POSTSUPERSCRIPT italic_i , italic_j end_POSTSUPERSCRIPT + italic_t start_POSTSUPERSCRIPT italic_i , italic_k end_POSTSUPERSCRIPT .


Definition .

An Ο‰ πœ” \omega italic_Ο‰ -Lie algebra is called multiplicative if there is a linear form Ξ» : L β†’ K : πœ† β†’ 𝐿 𝐾 \lambda:L\to K italic_Ξ» : italic_L β†’ italic_K such that ( 4 ) holds, i.e.,

[ [ x , y ] , z ] + [ [ z , x ] , y ] + [ [ y , z ] , x ] = Ξ» ⁒ ( [ x , y ] ) ⁒ z + Ξ» ⁒ ( [ z , x ] ) ⁒ y + Ξ» ⁒ ( [ y , z ] ) ⁒ x π‘₯ 𝑦 𝑧 𝑧 π‘₯ 𝑦 𝑦 𝑧 π‘₯ πœ† π‘₯ 𝑦 𝑧 πœ† 𝑧 π‘₯ 𝑦 πœ† 𝑦 𝑧 π‘₯ [[x,y],z]+[[z,x],y]+[[y,z],x]=\lambda([x,y])z+\lambda([z,x])y+\lambda([y,z])x [ [ italic_x , italic_y ] , italic_z ] + [ [ italic_z , italic_x ] , italic_y ] + [ [ italic_y , italic_z ] , italic_x ] = italic_Ξ» ( [ italic_x , italic_y ] ) italic_z + italic_Ξ» ( [ italic_z , italic_x ] ) italic_y + italic_Ξ» ( [ italic_y , italic_z ] ) italic_x

for any x , y , z ∈ L π‘₯ 𝑦 𝑧 𝐿 x,y,z\in L italic_x , italic_y , italic_z ∈ italic_L .

Definition .

A super-anticommutative superalgebra L = L 0 βŠ• L 1 𝐿 direct-sum subscript 𝐿 0 subscript 𝐿 1 L=L_{0}\oplus L_{1} italic_L = italic_L start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT βŠ• italic_L start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT is called an extended Ο‰ πœ” \omega italic_Ο‰ -Lie superalgebra if there is a super-skew-symmetric bilinear map Ο‰ : L Γ— L β†’ C ⁒ e ⁒ n ⁒ t ⁒ ( L ) : πœ” β†’ 𝐿 𝐿 𝐢 𝑒 𝑛 𝑑 𝐿 \omega:L\times L\to Cent(L) italic_Ο‰ : italic_L Γ— italic_L β†’ italic_C italic_e italic_n italic_t ( italic_L ) such that

(27) ( - 1 ) deg ⁑ x ⁒ deg ⁑ z ⁒ [ x , [ y , z ] ] + ( - 1 ) deg ⁑ z ⁒ deg ⁑ y ⁒ [ z , [ x , y ] ] + ( - 1 ) deg ⁑ y ⁒ deg ⁑ x ⁒ [ y , [ z , x ] ] + ( - 1 ) deg ⁑ x ⁒ deg ⁑ z ⁒ Ο‰ ⁒ ( y , z ) ⁒ x + ( - 1 ) deg ⁑ z ⁒ deg ⁑ y ⁒ Ο‰ ⁒ ( x , y ) ⁒ z + ( - 1 ) deg ⁑ y ⁒ deg ⁑ x ⁒ Ο‰ ⁒ ( z , x ) ⁒ y = 0 superscript 1 degree π‘₯ degree 𝑧 π‘₯ 𝑦 𝑧 superscript 1 degree 𝑧 degree 𝑦 𝑧 π‘₯ 𝑦 superscript 1 degree 𝑦 degree π‘₯ 𝑦 𝑧 π‘₯ superscript 1 degree π‘₯ degree 𝑧 πœ” 𝑦 𝑧 π‘₯ superscript 1 degree 𝑧 degree 𝑦 πœ” π‘₯ 𝑦 𝑧 superscript 1 degree 𝑦 degree π‘₯ πœ” 𝑧 π‘₯ 𝑦 0 \displaystyle(-1)^{\deg x\deg z}[x,[y,z]]+(-1)^{\deg z\deg y}[z,[x,y]]+(-1)^{% \deg y\deg x}[y,[z,x]]\\ \displaystyle+(-1)^{\deg x\deg z}\omega(y,z)x+(-1)^{\deg z\deg y}\omega(x,y)z+% (-1)^{\deg y\deg x}\omega(z,x)y=0 start_ROW start_CELL ( - 1 ) start_POSTSUPERSCRIPT roman_deg italic_x roman_deg italic_z end_POSTSUPERSCRIPT [ italic_x , [ italic_y , italic_z ] ] + ( - 1 ) start_POSTSUPERSCRIPT roman_deg italic_z roman_deg italic_y end_POSTSUPERSCRIPT [ italic_z , [ italic_x , italic_y ] ] + ( - 1 ) start_POSTSUPERSCRIPT roman_deg italic_y roman_deg italic_x end_POSTSUPERSCRIPT [ italic_y , [ italic_z , italic_x ] ] end_CELL end_ROW start_ROW start_CELL + ( - 1 ) start_POSTSUPERSCRIPT roman_deg italic_x roman_deg italic_z end_POSTSUPERSCRIPT italic_Ο‰ ( italic_y , italic_z ) italic_x + ( - 1 ) start_POSTSUPERSCRIPT roman_deg italic_z roman_deg italic_y end_POSTSUPERSCRIPT italic_Ο‰ ( italic_x , italic_y ) italic_z + ( - 1 ) start_POSTSUPERSCRIPT roman_deg italic_y roman_deg italic_x end_POSTSUPERSCRIPT italic_Ο‰ ( italic_z , italic_x ) italic_y = 0 end_CELL end_ROW

holds for any homogeneous elements x , y , z ∈ L π‘₯ 𝑦 𝑧 𝐿 x,y,z\in L italic_x , italic_y , italic_z ∈ italic_L .


Definition 3 .

A Lie bialgebra ( 𝔀 , [ , ] , Ξ΄ ) fragments normal-( g normal-, fragments normal-[ normal-, normal-] normal-, Ξ΄ normal-) (\mathfrak{g},[,],\delta) ( fraktur_g , [ , ] , italic_Ξ΄ ) is a Lie algebra ( 𝔀 , [ , ] ) fragments normal-( g normal-, fragments normal-[ normal-, normal-] normal-) (\mathfrak{g},[,]) ( fraktur_g , [ , ] ) equipped with an antisymmetric c ⁒ o ⁒ b ⁒ r ⁒ a ⁒ c ⁒ k ⁒ e ⁒ t 𝑐 π‘œ 𝑏 π‘Ÿ π‘Ž 𝑐 π‘˜ 𝑒 𝑑 cobracket italic_c italic_o italic_b italic_r italic_a italic_c italic_k italic_e italic_t map Ξ΄ : 𝔀 β†’ 𝔀 βŠ— 𝔀 normal-: 𝛿 normal-β†’ 𝔀 tensor-product 𝔀 𝔀 \delta:\mathfrak{g}\rightarrow\mathfrak{g}\otimes\mathfrak{g} italic_Ξ΄ : fraktur_g β†’ fraktur_g βŠ— fraktur_g satisfying the coJacobi identity

( i ⁒ d + Ο„ + Ο„ 2 ) ⁒ ( ( Ξ΄ βŠ— i ⁒ d ) ⁒ Ξ΄ ⁒ ( x ) ) = 0 𝑖 𝑑 𝜏 superscript 𝜏 2 tensor-product 𝛿 𝑖 𝑑 𝛿 π‘₯ 0 (id+\tau+\tau^{2})((\delta\otimes id)\delta(x))=0 ( italic_i italic_d + italic_Ο„ + italic_Ο„ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) ( ( italic_Ξ΄ βŠ— italic_i italic_d ) italic_Ξ΄ ( italic_x ) ) = 0

and the cocycle condition

Ξ΄ ⁒ ( [ x ⁒ y ] ) = a ⁒ d x ⁒ ( Ξ΄ ⁒ y ) - a ⁒ d y ⁒ ( Ξ΄ ⁒ x ) , 𝛿 delimited-[] π‘₯ 𝑦 π‘Ž subscript 𝑑 π‘₯ 𝛿 𝑦 π‘Ž subscript 𝑑 𝑦 𝛿 π‘₯ \delta([xy])=ad_{x}(\delta y)-ad_{y}(\delta x), italic_Ξ΄ ( [ italic_x italic_y ] ) = italic_a italic_d start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT ( italic_Ξ΄ italic_y ) - italic_a italic_d start_POSTSUBSCRIPT italic_y end_POSTSUBSCRIPT ( italic_Ξ΄ italic_x ) ,

for any x , y ∈ 𝔀 π‘₯ 𝑦 𝔀 x,y\in\mathfrak{g} italic_x , italic_y ∈ fraktur_g , where Ο„ 𝜏 \tau italic_Ο„ is the cyclic permutation on 𝔀 βŠ— 3 superscript 𝔀 tensor-product absent 3 \mathfrak{g}^{\otimes 3} fraktur_g start_POSTSUPERSCRIPT βŠ— 3 end_POSTSUPERSCRIPT .


Definition 10.4 .

Let K 𝐾 K italic_K be a field and Ξ“ Ξ“ \Gamma roman_Ξ“ a totally ordered abelian group. A pre-valuation v : K βˆ– { 0 } β†’ Ξ“ : 𝑣 β†’ 𝐾 0 Ξ“ v:K\setminus\{0\}\to\Gamma italic_v : italic_K βˆ– { 0 } β†’ roman_Ξ“ is a valuation if moreover it satisfies the following: for any f , g ∈ K 𝑓 𝑔 𝐾 f,g\in K italic_f , italic_g ∈ italic_K with f , g β‰  0 𝑓 𝑔 0 f,g\neq 0 italic_f , italic_g β‰  0 , we have

v ⁒ ( f ⁒ g ) = v ⁒ ( f ) + v ⁒ ( g ) . 𝑣 𝑓 𝑔 𝑣 𝑓 𝑣 𝑔 v(fg)=v(f)+v(g). italic_v ( italic_f italic_g ) = italic_v ( italic_f ) + italic_v ( italic_g ) .

The valuation v 𝑣 v italic_v is called faithful if its image is the whole Ξ“ Ξ“ \Gamma roman_Ξ“ .


Definition 2.8

(PavičiΔ‡ and Megill [ 7 ] ) An ortholattice in which the following condition holds:

( a β€² ∩ ( a βˆͺ b ) ) βˆͺ b β€² βˆͺ ( a ∩ b ) = 1 superscript π‘Ž β€² π‘Ž 𝑏 superscript 𝑏 β€² π‘Ž 𝑏 1 \displaystyle(a^{\prime}\cap(a\cup b))\cup b^{\prime}\cup(a\cap b)=\textstyle{1} ( italic_a start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ∩ ( italic_a βˆͺ italic_b ) ) βˆͺ italic_b start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT βˆͺ ( italic_a ∩ italic_b ) = 1 (9)

is called a weakly orthomodular ortholattice (WOML) .

Definition 2.9

An ortholattice in which either of the following conditions hold: [ 11 ]

a ≑ b = 1 β‡’ a = b formulae-sequence π‘Ž 𝑏 1 β‡’ π‘Ž 𝑏 \displaystyle a\equiv b=\textstyle{1}\quad\Rightarrow\quad a=b italic_a ≑ italic_b = 1 β‡’ italic_a = italic_b (12)
a βˆͺ ( a β€² ∩ ( a βˆͺ b ) ) = a βˆͺ b π‘Ž superscript π‘Ž β€² π‘Ž 𝑏 π‘Ž 𝑏 \displaystyle a\cup(a^{\prime}\cap(a\cup b))=a\cup b italic_a βˆͺ ( italic_a start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ∩ ( italic_a βˆͺ italic_b ) ) = italic_a βˆͺ italic_b (13)

is called an orthomodular lattice (OML) .

Definition 3.1

(PavičiΔ‡ and Megill [ 7 ] ) An ortholattice in which the following equation holds:

( a ≑ b ) βˆͺ ( a ≑ b β€² ) = ( a ∩ b ) βˆͺ ( a ∩ b β€² ) βˆͺ ( a β€² ∩ b ) βˆͺ ( a β€² ∩ b β€² ) = 1 fragments fragments ( a b ) fragments ( a superscript 𝑏 β€² ) fragments ( a b ) fragments ( a superscript 𝑏 β€² ) fragments ( superscript π‘Ž β€² b ) fragments ( superscript π‘Ž β€² superscript 𝑏 β€² ) 1 \displaystyle(a\equiv b)\cup(a\equiv b^{\prime})=(a\cap b)\cup(a\cap b^{\prime% })\cup(a^{\prime}\cap b)\cup(a^{\prime}\cap b^{\prime})=\textstyle{1} ( italic_a ≑ italic_b ) βˆͺ ( italic_a ≑ italic_b start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ) = ( italic_a ∩ italic_b ) βˆͺ ( italic_a ∩ italic_b start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ) βˆͺ ( italic_a start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ∩ italic_b ) βˆͺ ( italic_a start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ∩ italic_b start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ) = 1 (33)

is called a weakly distributive ortholattice , WDOL .

Definition 3.2

An ortholattice to which the following condition is added:

a ∩ ( b βˆͺ c ) = ( a ∩ b ) βˆͺ ( a ∩ c ) π‘Ž 𝑏 𝑐 π‘Ž 𝑏 π‘Ž 𝑐 \displaystyle a\cap(b\cup c)=(a\cap b)\cup(a\cap c) italic_a ∩ ( italic_b βˆͺ italic_c ) = ( italic_a ∩ italic_b ) βˆͺ ( italic_a ∩ italic_c ) (34)

is called a distributive ortholattice (DOL) or (much more often) a Boolean algebra (BA) .


Definition 1

The system

x Λ™ ⁒ ( t ) = f ⁒ ( x ⁒ ( t ) ) + g ⁒ ( x ⁒ ( t ) ) ⁒ v ⁒ ( t - Ο„ ) , Λ™ π‘₯ 𝑑 𝑓 π‘₯ 𝑑 𝑔 π‘₯ 𝑑 𝑣 𝑑 𝜏 \dot{x}(t)=f(x(t))+g(x(t))v(t-\tau)\;, Λ™ start_ARG italic_x end_ARG ( italic_t ) = italic_f ( italic_x ( italic_t ) ) + italic_g ( italic_x ( italic_t ) ) italic_v ( italic_t - italic_Ο„ ) , (13)

with Ο„ β‰₯ 0 𝜏 0 \tau\geq 0 italic_Ο„ β‰₯ 0 is semi-globally practically stabilizable by quantized feedback if for any Ξ΅ < R < 0 πœ€ 𝑅 0 \varepsilon<R<0 italic_Ξ΅ < italic_R < 0 there exist a law z ⁒ ( x ) 𝑧 π‘₯ z(x) italic_z ( italic_x ) , a real number u 0 > 0 subscript 𝑒 0 0 u_{0}>0 italic_u start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT > 0 and an integer j β‰₯ 1 𝑗 1 j\geq 1 italic_j β‰₯ 1 such that the solution of

x Λ™ ⁒ ( t ) = f ⁒ ( x ⁒ ( t ) ) + g ⁒ ( x ⁒ ( t ) ) ⁒ Ξ¨ ⁒ ( z ⁒ ( x ⁒ ( t - Ο„ ) ) ) , Λ™ π‘₯ 𝑑 𝑓 π‘₯ 𝑑 𝑔 π‘₯ 𝑑 Ξ¨ 𝑧 π‘₯ 𝑑 𝜏 \dot{x}(t)=f(x(t))+g(x(t))\Psi(z(x(t-\tau)))\;, Λ™ start_ARG italic_x end_ARG ( italic_t ) = italic_f ( italic_x ( italic_t ) ) + italic_g ( italic_x ( italic_t ) ) roman_Ξ¨ ( italic_z ( italic_x ( italic_t - italic_Ο„ ) ) ) , (14)

starting from β„› = { Ο† ∈ C 1 ⁒ ( [ - 2 ⁒ Ο„ , 0 ] , ℝ n ) : || Ο† || c ≀ R } β„› conditional-set πœ‘ superscript 𝐢 1 2 𝜏 0 superscript ℝ 𝑛 subscript norm πœ‘ 𝑐 𝑅 {\cal R}=\{\varphi\in C^{1}([-2\tau,0],\mathbb{R}^{n}):||\varphi||_{c}\leq R\} caligraphic_R = { italic_Ο† ∈ italic_C start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT ( [ - 2 italic_Ο„ , 0 ] , blackboard_R start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT ) : | | italic_Ο† | | start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT ≀ italic_R } enters B Ξ΅ subscript 𝐡 πœ€ B_{\varepsilon} italic_B start_POSTSUBSCRIPT italic_Ξ΅ end_POSTSUBSCRIPT , the closed ball of radius Ξ΅ πœ€ \varepsilon italic_Ξ΅ , at some finite time t s β‰₯ 0 subscript 𝑑 𝑠 0 t_{s}\geq 0 italic_t start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT β‰₯ 0 , and remains in that set for all t β‰₯ t s 𝑑 subscript 𝑑 𝑠 t\geq t_{s} italic_t β‰₯ italic_t start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT .


Definition 2.38 ( ( ) Ο‰ + ⁣ βˆ— superscript limit-from πœ” βˆ— ()^{\omega+\ast} ( ) start_POSTSUPERSCRIPT italic_Ο‰ + βˆ— end_POSTSUPERSCRIPT ) .

If L 𝐿 L italic_L is a finite lattice, and f ∈ π’ž ⁒ ( L 2 ) 𝑓 π’ž superscript 𝐿 2 f\in\mathscr{C}(L^{2}) italic_f ∈ script_C ( italic_L start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) , then we set

f Ο‰ + ⁣ βˆ— = f Ο‰ ⁒ f * . superscript 𝑓 limit-from πœ” βˆ— superscript 𝑓 πœ” superscript 𝑓 f^{\omega+\ast}=f^{\omega}f^{*}. italic_f start_POSTSUPERSCRIPT italic_Ο‰ + βˆ— end_POSTSUPERSCRIPT = italic_f start_POSTSUPERSCRIPT italic_Ο‰ end_POSTSUPERSCRIPT italic_f start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT . (2.6)

In other words, ( β„“ , β„“ β€² ) β„“ superscript β„“ β€² (\ell,\ell^{\prime}) ( roman_β„“ , roman_β„“ start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ) is stable for f Ο‰ + ⁣ βˆ— superscript 𝑓 limit-from πœ” βˆ— f^{\omega+\ast} italic_f start_POSTSUPERSCRIPT italic_Ο‰ + βˆ— end_POSTSUPERSCRIPT if and only if

β„“ ⁒ \xymatrix ⁒ \ar ⁒ [ r ] f Ο‰ Β― ⁒ & ⁒ \ar ⁒ @ ⁒ ( r , u ) f Β― β„“ β€² , β„“ \xymatrix \ar superscript delimited-[] π‘Ÿ Β― superscript 𝑓 πœ” & \ar @ subscript π‘Ÿ 𝑒 Β― 𝑓 superscript β„“ β€² \ell\mathop{\xymatrix{\ar[r]^{\overline{f^{\omega}}}&\ar@(r,u)_{\overline{f}}}% }\ell^{\prime}, roman_β„“ start_BIGOP [ italic_r ] start_POSTSUPERSCRIPT Β― start_ARG italic_f start_POSTSUPERSCRIPT italic_Ο‰ end_POSTSUPERSCRIPT end_ARG end_POSTSUPERSCRIPT & @ ( italic_r , italic_u ) start_POSTSUBSCRIPT Β― start_ARG italic_f end_ARG end_POSTSUBSCRIPT end_BIGOP roman_β„“ start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ,

if and only if β„“ β†’ f Ο‰ Β― β„“ β€² β†’ f Β― β„“ β€² Β― superscript 𝑓 πœ” β†’ β„“ superscript β„“ β€² Β― 𝑓 β†’ superscript β„“ β€² \ell\xrightarrow{\overline{f^{\omega}}}\ell^{\prime}\xrightarrow{\overline{f}}% \ell^{\prime} roman_β„“ start_ARROW start_OVERACCENT Β― start_ARG italic_f start_POSTSUPERSCRIPT italic_Ο‰ end_POSTSUPERSCRIPT end_ARG end_OVERACCENT β†’ end_ARROW roman_β„“ start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT start_ARROW start_OVERACCENT Β― start_ARG italic_f end_ARG end_OVERACCENT β†’ end_ARROW roman_β„“ start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT .


Definition 2.6. Example: enveloping algebras

Let 𝔀 𝔀 {\mathfrak{g}} fraktur_g be a finite dimensional Lie algebra over k π‘˜ k italic_k , and put the standard (nonnegative) filtration on the enveloping algebra U ⁒ ( 𝔀 ) π‘ˆ 𝔀 U({\mathfrak{g}}) italic_U ( fraktur_g ) , so that U ⁒ ( 𝔀 ) 0 = k π‘ˆ subscript 𝔀 0 π‘˜ U({\mathfrak{g}})_{0}=k italic_U ( fraktur_g ) start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT = italic_k and U ⁒ ( 𝔀 ) 1 = k + 𝔀 π‘ˆ subscript 𝔀 1 π‘˜ 𝔀 U({\mathfrak{g}})_{1}=k+{\mathfrak{g}} italic_U ( fraktur_g ) start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT = italic_k + fraktur_g , while U ⁒ ( 𝔀 ) n = U ⁒ ( 𝔀 ) 1 n π‘ˆ subscript 𝔀 𝑛 π‘ˆ superscript subscript 𝔀 1 𝑛 U({\mathfrak{g}})_{n}=U({\mathfrak{g}})_{1}^{n} italic_U ( fraktur_g ) start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT = italic_U ( fraktur_g ) start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT for n > 1 𝑛 1 n>1 italic_n > 1 . The associated graded algebra is commutative, and is naturally identified with the symmetric algebra S ⁒ ( 𝔀 ) 𝑆 𝔀 S({\mathfrak{g}}) italic_S ( fraktur_g ) of the vector space 𝔀 𝔀 {\mathfrak{g}} fraktur_g . In particular, we use the same symbol to denote an element of 𝔀 𝔀 {\mathfrak{g}} fraktur_g and its coset in gr 1 ⁑ U ⁒ ( 𝔀 ) = S ⁒ ( 𝔀 ) 1 subscript gr 1 π‘ˆ 𝔀 𝑆 subscript 𝔀 1 \operatorname{gr}_{1}U({\mathfrak{g}})=S({\mathfrak{g}})_{1} roman_gr start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_U ( fraktur_g ) = italic_S ( fraktur_g ) start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT . Then S ⁒ ( 𝔀 ) 𝑆 𝔀 S({\mathfrak{g}}) italic_S ( fraktur_g ) is the semiclassical limit of U ⁒ ( 𝔀 ) π‘ˆ 𝔀 U({\mathfrak{g}}) italic_U ( fraktur_g ) , equipped with the Poisson bracket satisfying

{ e , f } = [ e , f ] 𝑒 𝑓 𝑒 𝑓 \{e,f\}=[e,f] { italic_e , italic_f } = [ italic_e , italic_f ]

for all e , f ∈ 𝔀 𝑒 𝑓 𝔀 e,f\in{\mathfrak{g}} italic_e , italic_f ∈ fraktur_g , where [ e , f ] 𝑒 𝑓 [e,f] [ italic_e , italic_f ] denotes the Lie product in 𝔀 𝔀 {\mathfrak{g}} fraktur_g . The above formula determines { - , - } \{-,-\} { - , - } uniquely, since 𝔀 𝔀 {\mathfrak{g}} fraktur_g generates S ⁒ ( 𝔀 ) 𝑆 𝔀 S({\mathfrak{g}}) italic_S ( fraktur_g ) .

Now view the dual space 𝔀 * superscript 𝔀 {\mathfrak{g}}^{*} fraktur_g start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT as an algebraic variety, namely the affine space 𝔸 dim ⁑ 𝔀 superscript 𝔸 dimension 𝔀 {\mathbb{A}}^{\dim{\mathfrak{g}}} blackboard_A start_POSTSUPERSCRIPT roman_dim fraktur_g end_POSTSUPERSCRIPT . The coordinate ring π’ͺ ⁒ ( 𝔀 * ) π’ͺ superscript 𝔀 {\Cal{O}}({\mathfrak{g}}^{*}) caligraphic_O ( fraktur_g start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT ) is a polynomial algebra over k π‘˜ k italic_k in dim ⁑ 𝔀 dimension 𝔀 \dim{\mathfrak{g}} roman_dim fraktur_g indeterminates, as is S ⁒ ( 𝔀 ) 𝑆 𝔀 S({\mathfrak{g}}) italic_S ( fraktur_g ) . There is a canonical isomorphism

ΞΈ : S ( 𝔀 ) @ > β‰… > > π’ͺ ( 𝔀 * ) fragments ΞΈ : S fragments ( g ) @ O fragments ( superscript 𝔀 ) \theta:S({\mathfrak{g}})@>{\ \cong\ }>>{\Cal{O}}({\mathfrak{g}}^{*}) italic_ΞΈ : italic_S ( fraktur_g ) @ > β‰… > > caligraphic_O ( fraktur_g start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT ) 2.6 2.6 2.6

which sends each e ∈ 𝔀 𝑒 𝔀 e\in{\mathfrak{g}} italic_e ∈ fraktur_g to the polynomial function on 𝔀 * superscript 𝔀 {\mathfrak{g}}^{*} fraktur_g start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT given by evaluation at e 𝑒 e italic_e , that is, ΞΈ ⁒ ( e ) ⁒ ( Ξ± ) = Ξ± ⁒ ( e ) πœƒ 𝑒 𝛼 𝛼 𝑒 \theta(e)(\alpha)=\alpha(e) italic_ΞΈ ( italic_e ) ( italic_Ξ± ) = italic_Ξ± ( italic_e ) for Ξ± ∈ 𝔀 * 𝛼 superscript 𝔀 \alpha\in{\mathfrak{g}}^{*} italic_Ξ± ∈ fraktur_g start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT . (This isomorphism is often treated as an identification of the algebras S ⁒ ( 𝔀 ) 𝑆 𝔀 S({\mathfrak{g}}) italic_S ( fraktur_g ) and π’ͺ ⁒ ( 𝔀 * ) π’ͺ superscript 𝔀 {\Cal{O}}({\mathfrak{g}}^{*}) caligraphic_O ( fraktur_g start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT ) .) Via ΞΈ πœƒ \theta italic_ΞΈ , the Poisson bracket on S ⁒ ( 𝔀 ) 𝑆 𝔀 S({\mathfrak{g}}) italic_S ( fraktur_g ) obtained from the semiclassical limit process above carries over to a Poisson bracket on π’ͺ ⁒ ( 𝔀 * ) π’ͺ superscript 𝔀 {\Cal{O}}({\mathfrak{g}}^{*}) caligraphic_O ( fraktur_g start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT ) , known as the Kirillov-Kostant-Souriau Poisson bracket .

If { e 1 , … , e n } subscript 𝑒 1 … subscript 𝑒 𝑛 \{e_{1},\dots,e_{n}\} { italic_e start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … , italic_e start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT } is a basis for 𝔀 𝔀 {\mathfrak{g}} fraktur_g , then S ⁒ ( 𝔀 ) = k ⁒ [ e 1 , … , e n ] 𝑆 𝔀 π‘˜ subscript 𝑒 1 … subscript 𝑒 𝑛 S({\mathfrak{g}})=k[e_{1},\dots,e_{n}] italic_S ( fraktur_g ) = italic_k [ italic_e start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … , italic_e start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ] and ΞΈ πœƒ \theta italic_ΞΈ sends the e i subscript 𝑒 𝑖 e_{i} italic_e start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT to indeterminates x i subscript π‘₯ 𝑖 x_{i} italic_x start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT such that π’ͺ ⁒ ( 𝔀 * ) = k ⁒ [ x 1 , … , x n ] π’ͺ superscript 𝔀 π‘˜ subscript π‘₯ 1 … subscript π‘₯ 𝑛 {\Cal{O}}({\mathfrak{g}}^{*})=k[x_{1},\dots,x_{n}] caligraphic_O ( fraktur_g start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT ) = italic_k [ italic_x start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … , italic_x start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ] . An explicit description of the KKS Poisson bracket on π’ͺ ⁒ ( 𝔀 * ) π’ͺ superscript 𝔀 {\Cal{O}}({\mathfrak{g}}^{*}) caligraphic_O ( fraktur_g start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT ) can be obtained in terms of the structure constants of 𝔀 𝔀 {\mathfrak{g}} fraktur_g , as follows. These constants are scalars c i ⁒ j l ∈ k subscript superscript 𝑐 𝑙 𝑖 𝑗 π‘˜ c^{l}_{ij}\in k italic_c start_POSTSUPERSCRIPT italic_l end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT ∈ italic_k such that [ e i , e j ] = βˆ‘ l c i ⁒ j l ⁒ e l subscript 𝑒 𝑖 subscript 𝑒 𝑗 subscript 𝑙 subscript superscript 𝑐 𝑙 𝑖 𝑗 subscript 𝑒 𝑙 [e_{i},e_{j}]=\sum_{l}c^{l}_{ij}e_{l} [ italic_e start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT , italic_e start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT ] = βˆ‘ start_POSTSUBSCRIPT italic_l end_POSTSUBSCRIPT italic_c start_POSTSUPERSCRIPT italic_l end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT italic_e start_POSTSUBSCRIPT italic_l end_POSTSUBSCRIPT for all i 𝑖 i italic_i , j 𝑗 j italic_j . Since { e i , e j } = [ e i , e j ] subscript 𝑒 𝑖 subscript 𝑒 𝑗 subscript 𝑒 𝑖 subscript 𝑒 𝑗 \{e_{i},e_{j}\}=[e_{i},e_{j}] { italic_e start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT , italic_e start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT } = [ italic_e start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT , italic_e start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT ] in S ⁒ ( 𝔀 ) 𝑆 𝔀 S({\mathfrak{g}}) italic_S ( fraktur_g ) , an application of ΞΈ πœƒ \theta italic_ΞΈ yields { x i , x j } = βˆ‘ l c i ⁒ j l ⁒ x l subscript π‘₯ 𝑖 subscript π‘₯ 𝑗 subscript 𝑙 subscript superscript 𝑐 𝑙 𝑖 𝑗 subscript π‘₯ 𝑙 \{x_{i},x_{j}\}=\sum_{l}c^{l}_{ij}x_{l} { italic_x start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT , italic_x start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT } = βˆ‘ start_POSTSUBSCRIPT italic_l end_POSTSUBSCRIPT italic_c start_POSTSUPERSCRIPT italic_l end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT italic_x start_POSTSUBSCRIPT italic_l end_POSTSUBSCRIPT for all i 𝑖 i italic_i , j 𝑗 j italic_j . It follows that

{ p , q } = βˆ‘ i , j , l c i ⁒ j l ⁒ x l ⁒ βˆ‚ ⁑ p βˆ‚ ⁑ x i ⁒ βˆ‚ ⁑ q βˆ‚ ⁑ x j 𝑝 π‘ž subscript 𝑖 𝑗 𝑙 subscript superscript 𝑐 𝑙 𝑖 𝑗 subscript π‘₯ 𝑙 𝑝 subscript π‘₯ 𝑖 π‘ž subscript π‘₯ 𝑗 \{p,q\}=\sum_{i,j,l}c^{l}_{ij}x_{l}\frac{\partial p}{\partial x_{i}}\frac{% \partial q}{\partial x_{j}} { italic_p , italic_q } = βˆ‘ start_POSTSUBSCRIPT italic_i , italic_j , italic_l end_POSTSUBSCRIPT italic_c start_POSTSUPERSCRIPT italic_l end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT italic_x start_POSTSUBSCRIPT italic_l end_POSTSUBSCRIPT divide start_ARG βˆ‚ italic_p end_ARG start_ARG βˆ‚ italic_x start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT end_ARG divide start_ARG βˆ‚ italic_q end_ARG start_ARG βˆ‚ italic_x start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT end_ARG

for p , q ∈ π’ͺ ⁒ ( 𝔀 * ) 𝑝 π‘ž π’ͺ superscript 𝔀 p,q\in{\Cal{O}}({\mathfrak{g}}^{*}) italic_p , italic_q ∈ caligraphic_O ( fraktur_g start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT ) [ 7 , Proposition 1.3.18 ] . To see this, just check that the displayed formula determines a Poisson bracket on π’ͺ ⁒ ( 𝔀 * ) π’ͺ superscript 𝔀 {\Cal{O}}({\mathfrak{g}}^{*}) caligraphic_O ( fraktur_g start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT ) which agrees with the KKS bracket on pairs of indeterminates.

The KKS Poisson bracket on π’ͺ ⁒ ( 𝔀 * ) π’ͺ superscript 𝔀 {\Cal{O}}({\mathfrak{g}}^{*}) caligraphic_O ( fraktur_g start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT ) can also be obtained by applying the method of Β§2.1 to the homogenization of U ⁒ ( 𝔀 ) π‘ˆ 𝔀 U({\mathfrak{g}}) italic_U ( fraktur_g ) , that is, the k ⁒ [ h ] π‘˜ delimited-[] β„Ž k[h] italic_k [ italic_h ] -algebra A 𝐴 A italic_A with generating vector space 𝔀 𝔀 {\mathfrak{g}} fraktur_g and relations e ⁒ f - f ⁒ e = h ⁒ [ e , f ] 𝑒 𝑓 𝑓 𝑒 β„Ž 𝑒 𝑓 ef-fe=h[e,f] italic_e italic_f - italic_f italic_e = italic_h [ italic_e , italic_f ] for e , f ∈ 𝔀 𝑒 𝑓 𝔀 e,f\in{\mathfrak{g}} italic_e , italic_f ∈ fraktur_g (where [ e , f ] 𝑒 𝑓 [e,f] [ italic_e , italic_f ] again denotes the Lie product in 𝔀 𝔀 {\mathfrak{g}} fraktur_g ). Here A / h ⁒ A β‰… S ⁒ ( 𝔀 ) β‰… π’ͺ ⁒ ( 𝔀 * ) 𝐴 β„Ž 𝐴 𝑆 𝔀 π’ͺ superscript 𝔀 A/hA\cong S({\mathfrak{g}})\cong{\Cal{O}}({\mathfrak{g}}^{*}) italic_A / italic_h italic_A β‰… italic_S ( fraktur_g ) β‰… caligraphic_O ( fraktur_g start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT ) and A / ( h - Ξ» ) ⁒ A β‰… U ⁒ ( 𝔀 ) 𝐴 β„Ž πœ† 𝐴 π‘ˆ 𝔀 A/(h-\lambda)A\cong U({\mathfrak{g}}) italic_A / ( italic_h - italic_Ξ» ) italic_A β‰… italic_U ( fraktur_g ) for all Ξ» ∈ k Γ— πœ† superscript π‘˜ \lambda\in k^{\times} italic_Ξ» ∈ italic_k start_POSTSUPERSCRIPT Γ— end_POSTSUPERSCRIPT .

Definition 5.1. The algebraic adjoint group

Let 𝔀 𝔀 {\mathfrak{g}} fraktur_g be a finite dimensional complex Lie algebra. Treating 𝔀 𝔀 {\mathfrak{g}} fraktur_g for a moment just as a vector space, we have the general linear group G ⁒ L ⁒ ( 𝔀 ) 𝐺 𝐿 𝔀 GL({\mathfrak{g}}) italic_G italic_L ( fraktur_g ) on 𝔀 𝔀 {\mathfrak{g}} fraktur_g , which is a complex algebraic group whose Lie algebra is the general linear Lie algebra 𝔀 ⁒ 𝔩 ⁒ ( 𝔀 ) 𝔀 𝔩 𝔀 \mathfrak{gl}({\mathfrak{g}}) fraktur_g fraktur_l ( fraktur_g ) . Any algebraic subgroup of G ⁒ L ⁒ ( 𝔀 ) 𝐺 𝐿 𝔀 GL({\mathfrak{g}}) italic_G italic_L ( fraktur_g ) (i.e., any Zariski closed subgroup) has a Lie algebra which is naturally contained in 𝔀 ⁒ 𝔩 ⁒ ( 𝔀 ) 𝔀 𝔩 𝔀 \mathfrak{gl}({\mathfrak{g}}) fraktur_g fraktur_l ( fraktur_g ) . The algebraic adjoint group of 𝔀 𝔀 {\mathfrak{g}} fraktur_g is the smallest algebraic subgroup G βŠ† G ⁒ L ⁒ ( 𝔀 ) 𝐺 𝐺 𝐿 𝔀 G\subseteq GL({\mathfrak{g}}) italic_G βŠ† italic_G italic_L ( fraktur_g ) whose Lie algebra contains ad ⁑ 𝔀 = { ad ⁑ x ∣ x ∈ 𝔀 } ad 𝔀 conditional-set ad π‘₯ π‘₯ 𝔀 \operatorname{ad}{\mathfrak{g}}=\{\operatorname{ad}x\mid x\in{\mathfrak{g}}\} roman_ad fraktur_g = { roman_ad italic_x ∣ italic_x ∈ fraktur_g } (cf. [ 2 , Β§12.2; 50 , Definition 24.8.1 ] ).

The natural action of G ⁒ L ⁒ ( 𝔀 ) 𝐺 𝐿 𝔀 GL({\mathfrak{g}}) italic_G italic_L ( fraktur_g ) on 𝔀 𝔀 {\mathfrak{g}} fraktur_g by linear automorphisms restricts to an action of G 𝐺 G italic_G on 𝔀 𝔀 {\mathfrak{g}} fraktur_g , the adjoint action . This, in turn, induces a (left) action of G 𝐺 G italic_G on 𝔀 * superscript 𝔀 {\mathfrak{g}}^{*} fraktur_g start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT , the coadjoint action , under which

( g . Ξ± ) ( x ) = Ξ± ( g - 1 . x ) fragments fragments ( g . Ξ± ) fragments ( x ) Ξ± fragments ( superscript 𝑔 1 . x ) (g.\alpha)(x)=\alpha(g^{-1}.x) ( italic_g . italic_Ξ± ) ( italic_x ) = italic_Ξ± ( italic_g start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT . italic_x )

for g ∈ G 𝑔 𝐺 g\in G italic_g ∈ italic_G , Ξ± ∈ 𝔀 * 𝛼 superscript 𝔀 \alpha\in{\mathfrak{g}}^{*} italic_Ξ± ∈ fraktur_g start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT , and x ∈ 𝔀 π‘₯ 𝔀 x\in{\mathfrak{g}} italic_x ∈ fraktur_g . The orbits of this action, the coadjoint orbits , are collected in the set 𝔀 * / G superscript 𝔀 𝐺 {\mathfrak{g}}^{*}/G fraktur_g start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT / italic_G . We equip 𝔀 * / G superscript 𝔀 𝐺 {\mathfrak{g}}^{*}/G fraktur_g start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT / italic_G with the quotient topology induced from the Zariski topology on 𝔀 * superscript 𝔀 {\mathfrak{g}}^{*} fraktur_g start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT , and thus refer to it as the space of coadjoint orbits.


Definition 2.6 .

A semimodule , M 𝑀 M italic_M , over a semiring SS SS \SS roman_SS is an abelian monoid under addition which has a neutral element, 0 0 {0} , and is equipped with a law

SS Γ— M β†’ M ( s , m ) β†’ s β‹… m SS 𝑀 β†’ 𝑀 𝑠 π‘š β†’ β‹… 𝑠 π‘š \begin{array}[]{ccc}\SS\times M&\to&M\\ (s,{m})&\to&s\cdot{m}\end{array} start_ARRAY start_ROW start_CELL roman_SS Γ— italic_M end_CELL start_CELL β†’ end_CELL start_CELL italic_M end_CELL end_ROW start_ROW start_CELL ( italic_s , italic_m ) end_CELL start_CELL β†’ end_CELL start_CELL italic_s β‹… italic_m end_CELL end_ROW end_ARRAY

called action or scalar multiplication such that for all m π‘š {m} italic_m and m β€² superscript π‘š β€² {m}^{\prime} italic_m start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT in M 𝑀 M italic_M and r , s ∈ SS π‘Ÿ 𝑠 SS r,s\in\SS italic_r , italic_s ∈ roman_SS

  1. (1)

    ( s β‹… r ) β‹… m = s β‹… ( r β‹… m ) β‹… β‹… 𝑠 π‘Ÿ π‘š β‹… 𝑠 β‹… π‘Ÿ π‘š (s\cdot r)\cdot{m}=s\cdot(r\cdot{m}) ( italic_s β‹… italic_r ) β‹… italic_m = italic_s β‹… ( italic_r β‹… italic_m ) ,

  2. (2)

    ( s + r ) β‹… m = s β‹… m + r β‹… m β‹… 𝑠 π‘Ÿ π‘š β‹… 𝑠 π‘š β‹… π‘Ÿ π‘š (s+r)\cdot{m}=s\cdot{m}+r\cdot{m} ( italic_s + italic_r ) β‹… italic_m = italic_s β‹… italic_m + italic_r β‹… italic_m ,

  3. (3)

    s β‹… ( m + m β€² ) = s β‹… m + s β‹… m β€² β‹… 𝑠 π‘š superscript π‘š β€² β‹… 𝑠 π‘š β‹… 𝑠 superscript π‘š β€² s\cdot({m}+{m}^{\prime})=s\cdot{m}+s\cdot{m}^{\prime} italic_s β‹… ( italic_m + italic_m start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ) = italic_s β‹… italic_m + italic_s β‹… italic_m start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ,

  4. (4)

    1 β‹… m = m β‹… 1 π‘š π‘š 1\cdot{m}={m} 1 β‹… italic_m = italic_m ,

  5. (5)

    s β‹… 0 = 0 = 0 β‹… m β‹… 𝑠 0 0 β‹… 0 π‘š s\cdot{0}={0}=0\cdot{m} italic_s β‹… 0 = 0 = 0 β‹… italic_m .

Definition 4.1 .

A map Ο„ : SS β†’ SS : 𝜏 β†’ SS SS \tau:\SS\to\SS italic_Ο„ : roman_SS β†’ roman_SS is a symmetry if Ο„ 𝜏 \tau italic_Ο„ is a left and right SS SS \SS roman_SS -semimodule homomorphism from SS SS \SS roman_SS to SS SS \SS roman_SS of order 2, i.e.,

(4.1a) Ο„ ⁒ ( a + b ) = Ο„ ⁒ ( a ) + Ο„ ⁒ ( b ) 𝜏 π‘Ž 𝑏 𝜏 π‘Ž 𝜏 𝑏 \displaystyle\tau(a+b)=\tau(a)+\tau(b) italic_Ο„ ( italic_a + italic_b ) = italic_Ο„ ( italic_a ) + italic_Ο„ ( italic_b )
(4.1b) Ο„ ⁒ ( 0 ) = 0 𝜏 0 0 \displaystyle\tau(0)=0 italic_Ο„ ( 0 ) = 0
(4.1c) Ο„ ⁒ ( a β‹… b ) = a β‹… Ο„ ⁒ ( b ) = Ο„ ⁒ ( a ) β‹… b 𝜏 β‹… π‘Ž 𝑏 β‹… π‘Ž 𝜏 𝑏 β‹… 𝜏 π‘Ž 𝑏 \displaystyle\tau(a\cdot b)=a\cdot\tau(b)=\tau(a)\cdot b italic_Ο„ ( italic_a β‹… italic_b ) = italic_a β‹… italic_Ο„ ( italic_b ) = italic_Ο„ ( italic_a ) β‹… italic_b
(4.1d) Ο„ ⁒ ( Ο„ ⁒ ( a ) ) = a . 𝜏 𝜏 π‘Ž π‘Ž \displaystyle\tau(\tau(a))=a. italic_Ο„ ( italic_Ο„ ( italic_a ) ) = italic_a .

Definition 19 ( [ 9 ] ) .

The operad Lie 2 superscript Lie 2 \operatorname{Lie}^{2} roman_Lie start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT (called also the operad of two compatible brackets) is generated by two skew-symmetric operations (brackets) { β‹… , β‹… } β‹… β‹… \{\cdot,\cdot\} { β‹… , β‹… } and [ β‹… , β‹… ] β‹… β‹… [\cdot,\cdot] [ β‹… , β‹… ] . The relations in this operad mean that all linear combinations of these brackets satisfy the Jacobi identity. It is equivalent to the following identities in each algebra over this operad:

{ a , { b , c } } + { b , { c , a } } + { c , { a , b } } = 0 , fragments { a , fragments { b , c } } { b , fragments { c , a } } { c , fragments { a , b } } 0 , \displaystyle\{a,\{b,c\}\}+\{b,\{c,a\}\}+\{c,\{a,b\}\}=0, { italic_a , { italic_b , italic_c } } + { italic_b , { italic_c , italic_a } } + { italic_c , { italic_a , italic_b } } = 0 ,
+ [ b , { c , a } ] + [ c , { a , b } ] + { a , [ b , c ] } + { b ⁒ [ c , a ] } + { c , [ a , b ] } = 0 , 𝑏 𝑐 π‘Ž 𝑐 π‘Ž 𝑏 π‘Ž 𝑏 𝑐 𝑏 𝑐 π‘Ž 𝑐 π‘Ž 𝑏 0 \displaystyle+[b,\{c,a\}]+[c,\{a,b\}]+\{a,[b,c]\}+\{b[c,a]\}+\{c,[a,b]\}=0, + [ italic_b , { italic_c , italic_a } ] + [ italic_c , { italic_a , italic_b } ] + { italic_a , [ italic_b , italic_c ] } + { italic_b [ italic_c , italic_a ] } + { italic_c , [ italic_a , italic_b ] } = 0 ,
] + [ b , [ c , a ] ] + [ c , [ a , b ] ] = 0 . fragments ] [ b , fragments [ c , a ] ] [ c , fragments [ a , b ] ] 0 . \displaystyle]+[b,[c,a]]+[c,[a,b]]=0. ] + [ italic_b , [ italic_c , italic_a ] ] + [ italic_c , [ italic_a , italic_b ] ] = 0 .

The operad Com 2 superscript Com 2 \,{}^{2}\operatorname{Com} start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT roman_Com of two strongly compatible commutative products is generated by two symmetric binary operations (products) ∘ \circ ∘ and βˆ™ βˆ™ \bullet βˆ™ such that in any algebra over this operad the following identities hold:

a ∘ ( b ∘ c ) = ( a ∘ b ) ∘ c , π‘Ž 𝑏 𝑐 π‘Ž 𝑏 𝑐 \displaystyle a\circ(b\circ c)=(a\circ b)\circ c, italic_a ∘ ( italic_b ∘ italic_c ) = ( italic_a ∘ italic_b ) ∘ italic_c ,
a ∘ ( b βˆ™ c ) = a βˆ™ ( b ∘ c ) = b ∘ ( a βˆ™ c ) = b βˆ™ ( a ∘ c ) = c ∘ ( a βˆ™ b ) = c βˆ™ ( a ∘ b ) , π‘Ž βˆ™ 𝑏 𝑐 βˆ™ π‘Ž 𝑏 𝑐 𝑏 βˆ™ π‘Ž 𝑐 βˆ™ 𝑏 π‘Ž 𝑐 𝑐 βˆ™ π‘Ž 𝑏 βˆ™ 𝑐 π‘Ž 𝑏 \displaystyle a\circ(b\bullet c)=a\bullet(b\circ c)=b\circ(a\bullet c)=b% \bullet(a\circ c)=c\circ(a\bullet b)=c\bullet(a\circ b), italic_a ∘ ( italic_b βˆ™ italic_c ) = italic_a βˆ™ ( italic_b ∘ italic_c ) = italic_b ∘ ( italic_a βˆ™ italic_c ) = italic_b βˆ™ ( italic_a ∘ italic_c ) = italic_c ∘ ( italic_a βˆ™ italic_b ) = italic_c βˆ™ ( italic_a ∘ italic_b ) ,
a βˆ™ ( b βˆ™ c ) = ( a βˆ™ b ) βˆ™ c . βˆ™ π‘Ž βˆ™ 𝑏 𝑐 βˆ™ βˆ™ π‘Ž 𝑏 𝑐 \displaystyle a\bullet(b\bullet c)=(a\bullet b)\bullet c. italic_a βˆ™ ( italic_b βˆ™ italic_c ) = ( italic_a βˆ™ italic_b ) βˆ™ italic_c .
Definition 21 ( [ 4 ] ) .

The operad LieGriess LieGriess \operatorname{LieGriess} roman_LieGriess is a binary quadratic operad with two skew-symmetric generators [ β‹… , β‹… ] β‹… β‹… [\cdot{,}\cdot] [ β‹… , β‹… ] and { β‹… , β‹… } β‹… β‹… \{\cdot{,}\cdot\} { β‹… , β‹… } that satisfy the identities

{ a , { b , c } } + { b , { c , a } } + { c , { a , b } } = 0 , fragments { a , fragments { b , c } } { b , fragments { c , a } } { c , fragments { a , b } } 0 , \displaystyle\{a,\{b,c\}\}+\{b,\{c,a\}\}+\{c,\{a,b\}\}=0, { italic_a , { italic_b , italic_c } } + { italic_b , { italic_c , italic_a } } + { italic_c , { italic_a , italic_b } } = 0 ,
+ [ b , { c , a } ] + [ c , { a , b } ] + { a , [ b , c ] } + { b , [ c , a ] } + { c , [ a , b ] } = 0 , 𝑏 𝑐 π‘Ž 𝑐 π‘Ž 𝑏 π‘Ž 𝑏 𝑐 𝑏 𝑐 π‘Ž 𝑐 π‘Ž 𝑏 0 \displaystyle+[b,\{c,a\}]+[c,\{a,b\}]+\{a,[b,c]\}+\{b,[c,a]\}+\{c,[a,b]\}=0, + [ italic_b , { italic_c , italic_a } ] + [ italic_c , { italic_a , italic_b } ] + { italic_a , [ italic_b , italic_c ] } + { italic_b , [ italic_c , italic_a ] } + { italic_c , [ italic_a , italic_b ] } = 0 ,

The Ramanujan operad Ram Ram \operatorname{Ram} roman_Ram is a binary quadratic operad with a symmetric generator β‹… ⁣ ⋆ ⁣ β‹… β‹… ⋆ β‹… \cdot\star\cdot β‹… ⋆ β‹… and two skew-symmetric generator [ β‹… , β‹… ] β‹… β‹… [\cdot{,}\cdot] [ β‹… , β‹… ] and { β‹… , β‹… } β‹… β‹… \{\cdot{,}\cdot\} { β‹… , β‹… } for which the product β‹… ⁣ ⋆ ⁣ β‹… β‹… ⋆ β‹… \cdot\star\cdot β‹… ⋆ β‹… generates a suboperad isomorphic to Com Com \operatorname{Com} roman_Com , the operations [ β‹… , β‹… ] β‹… β‹… [\cdot{,}\cdot] [ β‹… , β‹… ] and { β‹… , β‹… } β‹… β‹… \{\cdot{,}\cdot\} { β‹… , β‹… } generate a suboperad isomorphic to LieGriess LieGriess \operatorname{LieGriess} roman_LieGriess , and these suboperads together are related by a distributive law [ 20 , 8 ]

[ a , b ⋆ c ] = [ a , b ] ⋆ c + b ⋆ [ a , c ] , π‘Ž ⋆ 𝑏 𝑐 ⋆ π‘Ž 𝑏 𝑐 ⋆ 𝑏 π‘Ž 𝑐 \displaystyle[a,b\star c]=[a,b]\star c+b\star[a,c], [ italic_a , italic_b ⋆ italic_c ] = [ italic_a , italic_b ] ⋆ italic_c + italic_b ⋆ [ italic_a , italic_c ] ,
{ a , b ⋆ c } = { a , b } ⋆ c + b ⋆ { a , c } . fragments { a , b ⋆ c } { a , b } ⋆ c b ⋆ { a , c } . \displaystyle\{a,b\star c\}=\{a,b\}\star c+b\star\{a,c\}. { italic_a , italic_b ⋆ italic_c } = { italic_a , italic_b } ⋆ italic_c + italic_b ⋆ { italic_a , italic_c } .

Definition 5 .

A k π‘˜ k italic_k -ary function f ∈ β„± B 𝑓 subscript β„± B f\in\mathcal{F}_{\!\mathrm{B}} italic_f ∈ caligraphic_F start_POSTSUBSCRIPT roman_B end_POSTSUBSCRIPT is pure affine if there is a constant w ∈ β„š > 0 𝑀 superscript β„š absent 0 w\in\mathbb{Q}^{>0}\! italic_w ∈ blackboard_Q start_POSTSUPERSCRIPT > 0 end_POSTSUPERSCRIPT , an affine function g ∈ 𝒫 k 𝑔 subscript 𝒫 π‘˜ g\in\mathcal{P}_{k} italic_g ∈ caligraphic_P start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT and a polynomial s ∈ 𝒫 k 𝑠 subscript 𝒫 π‘˜ s\in\mathcal{P}_{k} italic_s ∈ caligraphic_P start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT such that

f ⁒ ( x Β― ) = w ⁒ ( - 1 ) s ⁒ ( x Β― ) ⁒ g ⁒ ( x Β― ) . 𝑓 Β― π‘₯ 𝑀 superscript 1 𝑠 Β― π‘₯ 𝑔 Β― π‘₯ f(\bar{x})\ =\ w\hskip 1.0pt(-1)^{s(\bar{x})}g(\bar{x})\,. italic_f ( Β― start_ARG italic_x end_ARG ) = italic_w ( - 1 ) start_POSTSUPERSCRIPT italic_s ( Β― start_ARG italic_x end_ARG ) end_POSTSUPERSCRIPT italic_g ( Β― start_ARG italic_x end_ARG ) . (1)

DEFINITION 5

(PavičiΔ‡ and Megill [ 36 ] ) An ortholattice that satisfies the following condition:

a ≑ b = 1 β‡’ ( a βˆͺ c ) ≑ ( b βˆͺ c ) = 1 formulae-sequence π‘Ž 𝑏 1 β‡’ π‘Ž 𝑐 𝑏 𝑐 1 \displaystyle a\equiv b=1\qquad\Rightarrow\qquad(a\cup c)\equiv(b\cup c)=1 italic_a ≑ italic_b = 1 β‡’ ( italic_a βˆͺ italic_c ) ≑ ( italic_b βˆͺ italic_c ) = 1 (9)

is called a weakly orthomodular ortholattice , WOML .

DEFINITION 6

(PavičiΔ‡ [ 29 ] ) An ortholattice that satisfies the following condition:

a ≑ b = 1 β‡’ a = b , formulae-sequence π‘Ž 𝑏 1 β‡’ π‘Ž 𝑏 \displaystyle a\equiv b=1\qquad\Rightarrow\qquad a=b, italic_a ≑ italic_b = 1 β‡’ italic_a = italic_b , (10)

is called an orthomodular lattice , OML .

DEFINITION 7

(Foulis [ 39 ] , Kalmbach [ 11 ] ) An ortholattice that satisfies either of the following two conditions:

a βˆͺ ( a β€² ∩ ( a βˆͺ b ) ) = a βˆͺ b π‘Ž superscript π‘Ž β€² π‘Ž 𝑏 π‘Ž 𝑏 \displaystyle a\cup(a^{\prime}\cap(a\cup b))=a\cup b italic_a βˆͺ ( italic_a start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ∩ ( italic_a βˆͺ italic_b ) ) = italic_a βˆͺ italic_b (11)
a ⁒ π’ž ⁒ b & a ⁒ π’ž ⁒ c β‡’ a ∩ ( b βˆͺ c ) = ( a ∩ b ) βˆͺ ( a ∩ c ) π‘Ž π’ž 𝑏 π‘Ž π’ž 𝑐 β‡’ π‘Ž 𝑏 𝑐 π‘Ž 𝑏 π‘Ž 𝑐 \displaystyle a\,{\mathcal{C}}\,b\quad\&\quad a\,{\mathcal{C}}\,c\quad% \Rightarrow\quad a\cap(b\cup c)=(a\cap b)\cup(a\cap c) italic_a caligraphic_C italic_b & italic_a caligraphic_C italic_c β‡’ italic_a ∩ ( italic_b βˆͺ italic_c ) = ( italic_a ∩ italic_b ) βˆͺ ( italic_a ∩ italic_c ) (12)

where a ⁒ π’ž ⁒ b ⟺ def a = ( a ∩ b ) βˆͺ ( a ∩ b β€² ) π‘Ž π’ž 𝑏 superscript normal-⟺ normal-def π‘Ž π‘Ž 𝑏 π‘Ž superscript 𝑏 normal-β€² a\,{\mathcal{C}}\,b\ \ {\buildrel\rm def\over{\Longleftrightarrow}}\ \ a=(a% \cap b)\cup(a\cap b\,^{\prime}) italic_a caligraphic_C italic_b start_RELOP SUPERSCRIPTOP start_ARG ⟺ end_ARG start_ARG roman_def end_ARG end_RELOP italic_a = ( italic_a ∩ italic_b ) βˆͺ ( italic_a ∩ italic_b start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ) ( a π‘Ž a italic_a commutes with b 𝑏 b italic_b ), is called an orthomodular lattice , OML .

DEFINITION 8

(PavičiΔ‡ and Megill [ 36 ] ) An ortholattice that satisfies the following: 19 19 19 This condition is known as commensurability . [ 7 , Definition (2.13), p.Β 32] Commensurability is a weaker form of the commutativity from Definition 7 . Actually, a metaimplication from commensurability to commutativity is yet another way to express orthomodularity. They coincide in any OML.

( a ≑ b ) βˆͺ ( a ≑ b β€² ) = ( a ∩ b ) βˆͺ ( a ∩ b β€² ) βˆͺ ( a β€² ∩ b ) βˆͺ ( a β€² ∩ b β€² ) = 1 fragments fragments ( a b ) fragments ( a superscript 𝑏 β€² ) fragments ( a b ) fragments ( a superscript 𝑏 β€² ) fragments ( superscript π‘Ž β€² b ) fragments ( superscript π‘Ž β€² superscript 𝑏 β€² ) 1 \displaystyle(a\equiv b)\cup(a\equiv b^{\prime})=(a\cap b)\cup(a\cap b^{\prime% })\cup(a^{\prime}\cap b)\cup(a^{\prime}\cap b^{\prime})=1 ( italic_a ≑ italic_b ) βˆͺ ( italic_a ≑ italic_b start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ) = ( italic_a ∩ italic_b ) βˆͺ ( italic_a ∩ italic_b start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ) βˆͺ ( italic_a start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ∩ italic_b ) βˆͺ ( italic_a start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ∩ italic_b start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ) = 1 (13)

is called a weakly distributive ortholattice , WDOL .

DEFINITION 10

(SchrΓΆder [ 40 ] ) An ortholattice that satisfies the following condition:

a ∩ ( b βˆͺ c ) = ( a ∩ b ) βˆͺ ( a ∩ c ) π‘Ž 𝑏 𝑐 π‘Ž 𝑏 π‘Ž 𝑐 \displaystyle a\cap(b\cup c)=(a\cap b)\cup(a\cap c) italic_a ∩ ( italic_b βˆͺ italic_c ) = ( italic_a ∩ italic_b ) βˆͺ ( italic_a ∩ italic_c ) (15)

is called a Boolean algebra .