1.1.1 Definition .

A closed subset P 𝑃 P italic_P of an n 𝑛 n italic_n -dimensional smooth manifold X 𝑋 X italic_X is called a submanifold with corners of dimension k 𝑘 k italic_k if any point p P 𝑝 𝑃 p\in P italic_p ∈ italic_P has an open neighborhood U p 𝑝 𝑈 U\ni p italic_U ∋ italic_p and a C superscript 𝐶 C^{\infty} italic_C start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT -diffeomorphism ϕ : U n : italic-ϕ superscript similar-to 𝑈 superscript 𝑛 \phi\colon U\stackrel{{\scriptstyle\sim}}{{\allowbreak\mathrel{\mathop{\hbox t% o 12.0pt{\rightarrowfill}}\limits}}}\mathbb{R}^{n} italic_ϕ : italic_U start_RELOP SUPERSCRIPTOP start_ARG RELOP end_ARG start_ARG ∼ end_ARG end_RELOP blackboard_R start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT such that for some r 0 𝑟 0 r\geq 0 italic_r ≥ 0

ϕ ( p ) = 0 , italic-ϕ 𝑝 0 \displaystyle\phi(p)=0, italic_ϕ ( italic_p ) = 0 ,
ϕ ( P U ) = 0 r × k - r × 0 n - k italic-ϕ 𝑃 𝑈 subscript superscript 𝑟 absent 0 superscript 𝑘 𝑟 subscript 0 superscript 𝑛 𝑘 \displaystyle\phi(P\cap U)=\mathbb{R}^{r}_{\geq 0}\times\mathbb{R}^{k-r}\times 0% _{\mathbb{R}^{n-k}} italic_ϕ ( italic_P ∩ italic_U ) = blackboard_R start_POSTSUPERSCRIPT italic_r end_POSTSUPERSCRIPT start_POSTSUBSCRIPT ≥ 0 end_POSTSUBSCRIPT × blackboard_R start_POSTSUPERSCRIPT italic_k - italic_r end_POSTSUPERSCRIPT × 0 start_POSTSUBSCRIPT blackboard_R start_POSTSUPERSCRIPT italic_n - italic_k end_POSTSUPERSCRIPT end_POSTSUBSCRIPT

where 0 n - k subscript 0 superscript 𝑛 𝑘 0_{\mathbb{R}^{n-k}} 0 start_POSTSUBSCRIPT blackboard_R start_POSTSUPERSCRIPT italic_n - italic_k end_POSTSUPERSCRIPT end_POSTSUBSCRIPT is the zero element of n - k superscript 𝑛 𝑘 \mathbb{R}^{n-k} blackboard_R start_POSTSUPERSCRIPT italic_n - italic_k end_POSTSUPERSCRIPT . The set of submanifolds with corners is denoted by 𝒫 ( X ) 𝒫 𝑋 \mathcal{P}(X) caligraphic_P ( italic_X ) .


Definition 12

A Legendrian curve in T U ( 2 ) 𝑇 𝑈 superscript 2 TU(\mathbb{H}^{2}) italic_T italic_U ( blackboard_H start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) is an immersion α = ( γ , ν ) : I T U ( 2 ) normal-: 𝛼 𝛾 𝜈 𝐼 normal-→ 𝑇 𝑈 superscript 2 \alpha=(\gamma,\nu):I\subset\mathbb{R}\rightarrow TU(\mathbb{H}^{2}) italic_α = ( italic_γ , italic_ν ) : italic_I ⊂ blackboard_R → italic_T italic_U ( blackboard_H start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) such that

γ , ν = 0 . superscript 𝛾 𝜈 0 \langle\gamma^{\prime},\nu\rangle=0. ⟨ italic_γ start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT , italic_ν ⟩ = 0 .

Definition 23

A Riemannian F 𝐹 F italic_F -manifold is an F 𝐹 F italic_F -manifold with a compatible connection normal-∇ \nabla satisfying the following additional conditions:

1. The connection is metric:

g = 0 . 𝑔 0 \nabla g=0\ . ∇ italic_g = 0 .

2. The inner product , \langle\cdot,\cdot\rangle ⟨ ⋅ , ⋅ ⟩ defined by the metric g 𝑔 g italic_g is invariant with respect to the product \circ :

X Y , Z = X , Y Z . 𝑋 𝑌 𝑍 𝑋 𝑌 𝑍 \langle X\circ Y,Z\rangle=\langle X,Y\circ Z\rangle\ . ⟨ italic_X ∘ italic_Y , italic_Z ⟩ = ⟨ italic_X , italic_Y ∘ italic_Z ⟩ . (39)

Definition 8 .

Denote S ~ V = R 1 R 2 R 5 R 6 subscript ~ 𝑆 𝑉 subscript 𝑅 1 subscript 𝑅 2 subscript 𝑅 5 subscript 𝑅 6 \widetilde{S}_{V}=R_{1}\bigcup R_{2}\bigcup R_{5}\bigcup R_{6} ~ start_ARG italic_S end_ARG start_POSTSUBSCRIPT italic_V end_POSTSUBSCRIPT = italic_R start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ⋃ italic_R start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ⋃ italic_R start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT ⋃ italic_R start_POSTSUBSCRIPT 6 end_POSTSUBSCRIPT . We shall call a curve γ 𝛾 \gamma italic_γ a μ 𝜇 \mu italic_μ - vertical curve if γ : [ - 2 , 2 ] S ~ V : 𝛾 2 2 subscript ~ 𝑆 𝑉 \gamma:[-2,2]\rightarrow\widetilde{S}_{V} italic_γ : [ - 2 , 2 ] → ~ start_ARG italic_S end_ARG start_POSTSUBSCRIPT italic_V end_POSTSUBSCRIPT is such that

(3.7) π ~ γ ( t ) = ( u ( t ) , t ) ~ 𝜋 𝛾 𝑡 𝑢 𝑡 𝑡 \widetilde{\pi}\gamma(t)=(u(t),t) ~ start_ARG italic_π end_ARG italic_γ ( italic_t ) = ( italic_u ( italic_t ) , italic_t )

where π ~ : S ~ V [ - 2 , 2 ] × [ - 2 , 2 ] : ~ 𝜋 subscript ~ 𝑆 𝑉 2 2 2 2 \widetilde{\pi}:\widetilde{S}_{V}\rightarrow[-2,2]\times[-2,2] ~ start_ARG italic_π end_ARG : ~ start_ARG italic_S end_ARG start_POSTSUBSCRIPT italic_V end_POSTSUBSCRIPT → [ - 2 , 2 ] × [ - 2 , 2 ] sends S ~ V subscript ~ 𝑆 𝑉 \widetilde{S}_{V} ~ start_ARG italic_S end_ARG start_POSTSUBSCRIPT italic_V end_POSTSUBSCRIPT bijectively into the square in the following way:

(3.8) π ~ ( x , y , z ) := { ( x , z ) if ( x , y , z ) R 1 R 2 ( y , z ) if ( x , y , z ) R 5 R 6 assign ~ 𝜋 𝑥 𝑦 𝑧 cases 𝑥 𝑧 if 𝑥 𝑦 𝑧 subscript 𝑅 1 subscript 𝑅 2 𝑦 𝑧 if 𝑥 𝑦 𝑧 subscript 𝑅 5 subscript 𝑅 6 \widetilde{\pi}(x,y,z):=\left\{\begin{array}[]{lcr}(x,z)&\text{if}&(x,y,z)\in R% _{1}\bigcup R_{2}\\ (y,z)&\text{if}&(x,y,z)\in R_{5}\bigcup R_{6}\end{array}\right. ~ start_ARG italic_π end_ARG ( italic_x , italic_y , italic_z ) := { start_ARRAY start_ROW start_CELL ( italic_x , italic_z ) end_CELL start_CELL if end_CELL start_CELL ( italic_x , italic_y , italic_z ) ∈ italic_R start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ⋃ italic_R start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_CELL end_ROW start_ROW start_CELL ( italic_y , italic_z ) end_CELL start_CELL if end_CELL start_CELL ( italic_x , italic_y , italic_z ) ∈ italic_R start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT ⋃ italic_R start_POSTSUBSCRIPT 6 end_POSTSUBSCRIPT end_CELL end_ROW end_ARRAY

and the continuous function u : [ - 2 , 2 ] [ - 2 , 2 ] : 𝑢 2 2 2 2 u:[-2,2]\rightarrow[-2,2] italic_u : [ - 2 , 2 ] → [ - 2 , 2 ] satisfies

(3.9) | u ( t 1 ) - u ( t 2 ) | μ | t 1 - t 2 | . 𝑢 subscript 𝑡 1 𝑢 subscript 𝑡 2 𝜇 subscript 𝑡 1 subscript 𝑡 2 |u(t_{1})-u(t_{2})|\leq\mu|t_{1}-t_{2}|. | italic_u ( italic_t start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) - italic_u ( italic_t start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) | ≤ italic_μ | italic_t start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT - italic_t start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT | .

Finally, a set B S ~ V 𝐵 subscript ~ 𝑆 𝑉 B\subset\widetilde{S}_{V} italic_B ⊂ ~ start_ARG italic_S end_ARG start_POSTSUBSCRIPT italic_V end_POSTSUBSCRIPT is a μ 𝜇 \mu italic_μ - vertical strip if there exist two μ 𝜇 \mu italic_μ -vertical curves γ l subscript 𝛾 𝑙 \gamma_{l} italic_γ start_POSTSUBSCRIPT italic_l end_POSTSUBSCRIPT , γ r subscript 𝛾 𝑟 \gamma_{r} italic_γ start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT with π ~ γ l ( t ) = ( u l ( t ) , t ) ~ 𝜋 subscript 𝛾 𝑙 𝑡 subscript 𝑢 𝑙 𝑡 𝑡 \widetilde{\pi}\gamma_{l}(t)=(u_{l}(t),t) ~ start_ARG italic_π end_ARG italic_γ start_POSTSUBSCRIPT italic_l end_POSTSUBSCRIPT ( italic_t ) = ( italic_u start_POSTSUBSCRIPT italic_l end_POSTSUBSCRIPT ( italic_t ) , italic_t ) and π ~ γ r ( t ) = ( u r ( t ) , t ) ~ 𝜋 subscript 𝛾 𝑟 𝑡 subscript 𝑢 𝑟 𝑡 𝑡 \widetilde{\pi}\gamma_{r}(t)=(u_{r}(t),t) ~ start_ARG italic_π end_ARG italic_γ start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT ( italic_t ) = ( italic_u start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT ( italic_t ) , italic_t ) such that

(3.10) π ~ B = { ( s , t ) [ - 2 , 2 ] × [ - 2 , 2 ] | u r ( t ) s u r ( t ) } , ~ 𝜋 𝐵 conditional-set 𝑠 𝑡 2 2 2 2 subscript 𝑢 𝑟 𝑡 𝑠 subscript 𝑢 𝑟 𝑡 \widetilde{\pi}B=\{(s,t)\in[-2,2]\times[-2,2]\,|\,\ u_{r}(t)\leq s\leq u_{r}(t% )\}, ~ start_ARG italic_π end_ARG italic_B = { ( italic_s , italic_t ) ∈ [ - 2 , 2 ] × [ - 2 , 2 ] | italic_u start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT ( italic_t ) ≤ italic_s ≤ italic_u start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT ( italic_t ) } ,

we shall call the quantity diam ( B ) := max t [ - 2 , 2 ] | u r ( t ) - u l ( t ) | assign diam 𝐵 subscript 𝑡 2 2 subscript 𝑢 𝑟 𝑡 subscript 𝑢 𝑙 𝑡 \text{diam}(B):=\max_{t\in[-2,2]}|u_{r}(t)-u_{l}(t)| diam ( italic_B ) := roman_max start_POSTSUBSCRIPT italic_t ∈ [ - 2 , 2 ] end_POSTSUBSCRIPT | italic_u start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT ( italic_t ) - italic_u start_POSTSUBSCRIPT italic_l end_POSTSUBSCRIPT ( italic_t ) | the diameter of B 𝐵 B italic_B . Analogously we can define μ 𝜇 \mu italic_μ - horizontal curves and μ 𝜇 \mu italic_μ -horizontal strips.


Definition 1.6 (The Hamming Cubes Σ d superscript Σ 𝑑 \Sigma^{d} roman_Σ start_POSTSUPERSCRIPT italic_d end_POSTSUPERSCRIPT ) .

The Hamming cube of dimension d 𝑑 d italic_d is defined as the set of all binary sequences of length d, that is its elements are of the form

𝒙 = ( 0 , 1 , 1 , 0 , 1 , , 1 ) 𝒙 0 1 1 0 1 1 \boldsymbol{x}=(0,1,1,0,1,\ldots,1) bold_italic_x = ( 0 , 1 , 1 , 0 , 1 , … , 1 )

and the distance between two strings is just the number of elements they don’t have in common divided by d:

ρ ( 𝒙 , 𝒚 ) = i = 1 d | x i - y i | d 𝜌 𝒙 𝒚 superscript subscript 𝑖 1 𝑑 subscript 𝑥 𝑖 subscript 𝑦 𝑖 𝑑 \rho(\boldsymbol{x},\boldsymbol{y})=\frac{\sum_{i=1}^{d}{|x_{i}-y_{i}|}}{d} italic_ρ ( bold_italic_x , bold_italic_y ) = divide start_ARG ∑ start_POSTSUBSCRIPT italic_i = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_d end_POSTSUPERSCRIPT | italic_x start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT - italic_y start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT | end_ARG start_ARG italic_d end_ARG

This metric is known as the normalized Hamming distance. We will give the cube a uniform measure for this discussion.


Definition 2 .

A DG-algebra 𝒜 = ( A , d ) 𝒜 𝐴 𝑑 {\cal A}=(A,d) caligraphic_A = ( italic_A , italic_d ) is a graded associative algebra A = i = - A i 𝐴 superscript subscript direct-sum 𝑖 superscript 𝐴 𝑖 A=\bigoplus_{i=-\infty}^{\infty}A^{i} italic_A = ⊕ start_POSTSUBSCRIPT italic_i = - ∞ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT italic_A start_POSTSUPERSCRIPT italic_i end_POSTSUPERSCRIPT with a unit 1 A A 0 subscript 1 𝐴 superscript 𝐴 0 1_{A}\in A^{0} 1 start_POSTSUBSCRIPT italic_A end_POSTSUBSCRIPT ∈ italic_A start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT and an additive endomorphism d 𝑑 d italic_d of degree 1, s.t.

d 2 = 0 superscript 𝑑 2 0 d^{2}=0 italic_d start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT = 0
d ( a b ) = d a b + ( - 1 ) d e g ( a ) a d b 𝑑 𝑎 𝑏 𝑑 𝑎 𝑏 superscript 1 𝑑 𝑒 𝑔 𝑎 𝑎 𝑑 𝑏 d(a\cdot b)=da\cdot b+(-1)^{deg(a)}a\cdot db italic_d ( italic_a ⋅ italic_b ) = italic_d italic_a ⋅ italic_b + ( - 1 ) start_POSTSUPERSCRIPT italic_d italic_e italic_g ( italic_a ) end_POSTSUPERSCRIPT italic_a ⋅ italic_d italic_b
a n d d ( 1 A ) = 0 . 𝑎 𝑛 𝑑 𝑑 subscript 1 𝐴 0 and\,\,\,d(1_{A})=0. italic_a italic_n italic_d italic_d ( 1 start_POSTSUBSCRIPT italic_A end_POSTSUBSCRIPT ) = 0 .

Definition 4.11 .

Let R 𝑅 R italic_R and S 𝑆 S italic_S be idempotent rings. A (surjective) Morita context ( R , S , M , N , ψ , ϕ ) 𝑅 𝑆 𝑀 𝑁 𝜓 italic-ϕ (R,S,M,N,\psi,\phi) ( italic_R , italic_S , italic_M , italic_N , italic_ψ , italic_ϕ ) between R 𝑅 R italic_R and S 𝑆 S italic_S consists of unital bimodules M S R subscript subscript 𝑀 𝑆 𝑅 {}_{R}M_{S} start_FLOATSUBSCRIPT italic_R end_FLOATSUBSCRIPT italic_M start_POSTSUBSCRIPT italic_S end_POSTSUBSCRIPT and N R S subscript subscript 𝑁 𝑅 𝑆 {}_{S}N_{R} start_FLOATSUBSCRIPT italic_S end_FLOATSUBSCRIPT italic_N start_POSTSUBSCRIPT italic_R end_POSTSUBSCRIPT , a surjective R 𝑅 R italic_R -module homomorphism ψ : M S N R : 𝜓 subscript tensor-product 𝑆 𝑀 𝑁 𝑅 \psi:M\otimes_{S}N\to R italic_ψ : italic_M ⊗ start_POSTSUBSCRIPT italic_S end_POSTSUBSCRIPT italic_N → italic_R , and a surjective S 𝑆 S italic_S -module homomorphism ϕ : N R M S : italic-ϕ subscript tensor-product 𝑅 𝑁 𝑀 𝑆 \phi:N\otimes_{R}M\to S italic_ϕ : italic_N ⊗ start_POSTSUBSCRIPT italic_R end_POSTSUBSCRIPT italic_M → italic_S satisfying

ϕ ( n m ) n = n ψ ( m n ) and m ϕ ( n m ) = ψ ( m n ) m formulae-sequence italic-ϕ tensor-product 𝑛 𝑚 superscript 𝑛 𝑛 𝜓 tensor-product 𝑚 superscript 𝑛 and superscript 𝑚 italic-ϕ tensor-product 𝑛 𝑚 𝜓 tensor-product superscript 𝑚 𝑛 𝑚 \phi(n\otimes m)n^{\prime}=n\psi(m\otimes n^{\prime})\qquad\text{ and }\qquad m% ^{\prime}\phi(n\otimes m)=\psi(m^{\prime}\otimes n)m italic_ϕ ( italic_n ⊗ italic_m ) italic_n start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT = italic_n italic_ψ ( italic_m ⊗ italic_n start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) and italic_m start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT italic_ϕ ( italic_n ⊗ italic_m ) = italic_ψ ( italic_m start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ⊗ italic_n ) italic_m

for every m , m M 𝑚 superscript 𝑚 𝑀 m,m^{\prime}\in M italic_m , italic_m start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ∈ italic_M and n , n N 𝑛 superscript 𝑛 𝑁 n,n^{\prime}\in N italic_n , italic_n start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ∈ italic_N . We say that R 𝑅 R italic_R and S 𝑆 S italic_S are Morita equivalent in the case that there exists a Morita context.


Definition 2.5 .

Let M 𝑀 M italic_M be an R 𝑅 R italic_R -module. The trivial extension of R 𝑅 R italic_R by M 𝑀 M italic_M is the ring R M left-normal-factor-semidirect-product 𝑅 𝑀 R\ltimes M italic_R ⋉ italic_M , described as follows. As an additive abelian group, we have R M = R M left-normal-factor-semidirect-product 𝑅 𝑀 direct-sum 𝑅 𝑀 R\ltimes M=R\oplus M italic_R ⋉ italic_M = italic_R ⊕ italic_M . The multiplication in R M left-normal-factor-semidirect-product 𝑅 𝑀 R\ltimes M italic_R ⋉ italic_M is given by the formula

( r , m ) ( r , m ) = ( r r , r m + r m ) . 𝑟 𝑚 superscript 𝑟 superscript 𝑚 𝑟 superscript 𝑟 𝑟 superscript 𝑚 superscript 𝑟 𝑚 (r,m)(r^{\prime},m^{\prime})=(rr^{\prime},rm^{\prime}+r^{\prime}m). ( italic_r , italic_m ) ( italic_r start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT , italic_m start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) = ( italic_r italic_r start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT , italic_r italic_m start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT + italic_r start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT italic_m ) .

The multiplicative identity on R M left-normal-factor-semidirect-product 𝑅 𝑀 R\ltimes M italic_R ⋉ italic_M is ( 1 , 0 ) 1 0 (1,0) ( 1 , 0 ) . We let ϵ M : R R M : subscript italic-ϵ 𝑀 𝑅 left-normal-factor-semidirect-product 𝑅 𝑀 \epsilon_{M}\colon R\to R\ltimes M italic_ϵ start_POSTSUBSCRIPT italic_M end_POSTSUBSCRIPT : italic_R → italic_R ⋉ italic_M and τ M : R M R : subscript 𝜏 𝑀 left-normal-factor-semidirect-product 𝑅 𝑀 𝑅 \tau_{M}\colon R\ltimes M\to R italic_τ start_POSTSUBSCRIPT italic_M end_POSTSUBSCRIPT : italic_R ⋉ italic_M → italic_R denote the natural injection and surjection, respectively.


Definition 2.1 .

An inverse semigroup is a semigroup S 𝑆 S italic_S such that, for each x S 𝑥 𝑆 x\in S italic_x ∈ italic_S , there is a unique y S 𝑦 𝑆 y\in S italic_y ∈ italic_S such that

x y x = x and y x y = y . 𝑥 𝑦 𝑥 𝑥 and 𝑦 𝑥 𝑦 𝑦 xyx=x\textup{ and }yxy=y. italic_x italic_y italic_x = italic_x and italic_y italic_x italic_y = italic_y .

In this case, we write y = x - 1 𝑦 superscript 𝑥 1 y=x^{-1} italic_y = italic_x start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT .


Definition-Proposition 2.1 .

Let q 𝑞 q italic_q be a real number with 0 < | q | 1 0 𝑞 1 0<|q|\leq 1 0 < | italic_q | ≤ 1 . Define 𝑃𝑜𝑙 ( S U q ( 2 ) ) 𝑃𝑜𝑙 𝑆 subscript 𝑈 𝑞 2 \textrm{Pol}(SU_{q}(2)) Pol ( italic_S italic_U start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ( 2 ) ) as the unital * {}^{*} start_FLOATSUPERSCRIPT * end_FLOATSUPERSCRIPT -algebra, generated (as a unital * {}^{*} start_FLOATSUPERSCRIPT * end_FLOATSUPERSCRIPT -algebra) by two generators a 𝑎 a italic_a and b 𝑏 b italic_b satisfying the relations

{ a * a + b * b = 1 a b = q b a a a * + q 2 b b * = 1 a * b = q - 1 b a * b b * = b * b . cases superscript 𝑎 𝑎 superscript 𝑏 𝑏 1 missing-subexpression 𝑎 𝑏 𝑞 𝑏 𝑎 missing-subexpression missing-subexpression missing-subexpression missing-subexpression 𝑎 superscript 𝑎 superscript 𝑞 2 𝑏 superscript 𝑏 1 missing-subexpression superscript 𝑎 𝑏 superscript 𝑞 1 𝑏 superscript 𝑎 missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression 𝑏 superscript 𝑏 superscript 𝑏 𝑏 missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression \left\{\begin{array}[]{lllclll}a^{*}a+b^{*}b=1&&\!\!\!\!\!\!\!\!\!\!\!\!ab=qba% \\ aa^{*}+q^{2}bb^{*}=1&&\!\!\!\!\!\!\!\!\!\!\!\!a^{*}b=q^{-1}ba^{*}\\ &\!\!\!\!\!\!\!\!bb^{*}=b^{*}b.\end{array}\right. { start_ARRAY start_ROW start_CELL italic_a start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT italic_a + italic_b start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT italic_b = 1 end_CELL start_CELL end_CELL start_CELL italic_a italic_b = italic_q italic_b italic_a end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL end_ROW start_ROW start_CELL italic_a italic_a start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT + italic_q start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_b italic_b start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT = 1 end_CELL start_CELL end_CELL start_CELL italic_a start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT italic_b = italic_q start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT italic_b italic_a start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL end_ROW start_ROW start_CELL end_CELL start_CELL italic_b italic_b start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT = italic_b start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT italic_b . end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL end_ROW end_ARRAY

Then there exists a Hopf * {}^{*} start_FLOATSUPERSCRIPT * end_FLOATSUPERSCRIPT -algebra structure ( 𝑃𝑜𝑙 ( S U q ( 2 ) ) , Δ ) 𝑃𝑜𝑙 𝑆 subscript 𝑈 𝑞 2 Δ (\textrm{Pol}(SU_{q}(2)),\Delta) ( Pol ( italic_S italic_U start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ( 2 ) ) , roman_Δ ) on 𝑃𝑜𝑙 ( S U q ( 2 ) ) 𝑃𝑜𝑙 𝑆 subscript 𝑈 𝑞 2 \textrm{Pol}(SU_{q}(2)) Pol ( italic_S italic_U start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ( 2 ) ) which satisfies

{ Δ ( a ) = a a - q b * b Δ ( b ) = b a + a * b . cases Δ 𝑎 tensor-product 𝑎 𝑎 tensor-product 𝑞 superscript 𝑏 𝑏 Δ 𝑏 tensor-product 𝑏 𝑎 tensor-product superscript 𝑎 𝑏 \left\{\begin{array}[]{l}\Delta(a)=a\otimes a-qb^{*}\otimes b\\ \Delta(b)=b\otimes a+a^{*}\otimes b.\end{array}\right. { start_ARRAY start_ROW start_CELL roman_Δ ( italic_a ) = italic_a ⊗ italic_a - italic_q italic_b start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT ⊗ italic_b end_CELL end_ROW start_ROW start_CELL roman_Δ ( italic_b ) = italic_b ⊗ italic_a + italic_a start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT ⊗ italic_b . end_CELL end_ROW end_ARRAY

Moreover, this Hopf * {}^{*} start_FLOATSUPERSCRIPT * end_FLOATSUPERSCRIPT -algebra possesses an invariant state φ 𝜑 \varphi italic_φ , and has a unique completion to a compact matrix quantum group ( C ( S U q ( 2 ) ) , Δ ) 𝐶 𝑆 subscript 𝑈 𝑞 2 Δ (C(SU_{q}(2)),\Delta) ( italic_C ( italic_S italic_U start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ( 2 ) ) , roman_Δ ) .


Definition 5.4 .

For each r s 𝑟 𝑠 subscript \frac{r}{s}\in\mathbb{Q}_{\infty} divide start_ARG italic_r end_ARG start_ARG italic_s end_ARG ∈ blackboard_Q start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT we define its complexity by

γ ( r s ) = | r | + | s | + | r + s | . 𝛾 𝑟 𝑠 𝑟 𝑠 𝑟 𝑠 \gamma(\tfrac{r}{s})=\lvert r\rvert+\lvert s\rvert+\lvert r+s\rvert. italic_γ ( divide start_ARG italic_r end_ARG start_ARG italic_s end_ARG ) = | italic_r | + | italic_s | + | italic_r + italic_s | .

We shall also say that the arc α p ε superscript subscript 𝛼 𝑝 𝜀 \alpha_{p}^{\varepsilon} italic_α start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_ε end_POSTSUPERSCRIPT has complexity γ ( p ) 𝛾 𝑝 \gamma(p) italic_γ ( italic_p ) . The lowest complexity is 2 2 2 2 and occurs if and only if r s { - 1 , 0 , } 𝑟 𝑠 1 0 \frac{r}{s}\in\{-1,0,\infty\} divide start_ARG italic_r end_ARG start_ARG italic_s end_ARG ∈ { - 1 , 0 , ∞ } .


Definition .

If x , y 𝒫 𝑥 𝑦 𝒫 x,y\in{\mathcal{P}} italic_x , italic_y ∈ caligraphic_P and c 𝑐 c italic_c is a cut point (so c 𝒫 𝑐 𝒫 c\in{\mathcal{P}} italic_c ∈ caligraphic_P ) we say that c ( x , y ) 𝑐 𝑥 𝑦 c\in(x,y) italic_c ∈ ( italic_x , italic_y ) if for some (any) a x 𝑎 𝑥 a\in x italic_a ∈ italic_x , b y 𝑏 𝑦 b\in y italic_b ∈ italic_y , we have c ( a , b ) 𝑐 𝑎 𝑏 c\in(a,b) italic_c ∈ ( italic_a , italic_b ) .

For z 𝒫 𝑧 𝒫 z\in{\mathcal{P}} italic_z ∈ caligraphic_P , z 𝑧 z italic_z not a cut point we say that z ( x , y ) 𝑧 𝑥 𝑦 z\in(x,y) italic_z ∈ ( italic_x , italic_y ) if for some (any) a x , b y , c z formulae-sequence 𝑎 𝑥 formulae-sequence 𝑏 𝑦 𝑐 𝑧 a\in x,b\in y,c\in z italic_a ∈ italic_x , italic_b ∈ italic_y , italic_c ∈ italic_z we have that

[ a , c ) ( c , b ] = . 𝑎 𝑐 𝑐 𝑏 [a,c)\cap(c,b]=\emptyset. [ italic_a , italic_c ) ∩ ( italic_c , italic_b ] = ∅ .