Definition 1

Let Σ Σ \Sigma roman_Σ be a finite alphabet. A two-dimensional array of elements of Σ Σ \Sigma roman_Σ is a picture over Σ Σ \Sigma roman_Σ . The set of all pictures over Σ Σ \Sigma roman_Σ is Σ + + superscript Σ absent \Sigma^{++} roman_Σ start_POSTSUPERSCRIPT + + end_POSTSUPERSCRIPT . A picture language is a subset of Σ + + superscript Σ absent \Sigma^{++} roman_Σ start_POSTSUPERSCRIPT + + end_POSTSUPERSCRIPT .

For h , k 1 𝑘 1 h,k\geq 1 italic_h , italic_k ≥ 1 , Σ ( h , k ) superscript Σ 𝑘 \Sigma^{(h,k)} roman_Σ start_POSTSUPERSCRIPT ( italic_h , italic_k ) end_POSTSUPERSCRIPT denotes the set of pictures of size ( h , k ) 𝑘 (h,k) ( italic_h , italic_k ) (we will use the notation | p | = ( h , k ) , | p | r o w = h , | p | c o l = k formulae-sequence 𝑝 𝑘 formulae-sequence subscript 𝑝 𝑟 𝑜 𝑤 subscript 𝑝 𝑐 𝑜 𝑙 𝑘 |p|=(h,k),|p|_{row}=h,|p|_{col}=k | italic_p | = ( italic_h , italic_k ) , | italic_p | start_POSTSUBSCRIPT italic_r italic_o italic_w end_POSTSUBSCRIPT = italic_h , | italic_p | start_POSTSUBSCRIPT italic_c italic_o italic_l end_POSTSUBSCRIPT = italic_k ). # Σ absent Σ \notin\Sigma ∉ roman_Σ is used when needed as a boundary symbol ; p ^ ^ 𝑝 \hat{p} ^ start_ARG italic_p end_ARG refers to the bordered version of picture p 𝑝 p italic_p . That is, for p Σ ( h , k ) 𝑝 superscript Σ 𝑘 p\in\Sigma^{(h,k)} italic_p ∈ roman_Σ start_POSTSUPERSCRIPT ( italic_h , italic_k ) end_POSTSUPERSCRIPT , it is

p = p ( 1 , 1 ) p ( 1 , k ) p ( h , 1 ) p ( h , k ) p ^ = # # # # # p ( 1 , 1 ) p ( 1 , k ) # # p ( h , 1 ) p ( h , k ) # # # # # formulae-sequence 𝑝 𝑝 1 1 𝑝 1 𝑘 𝑝 1 𝑝 𝑘 ^ 𝑝 # # # # # 𝑝 1 1 𝑝 1 𝑘 # # 𝑝 1 𝑝 𝑘 # # # # # p=\begin{array}[]{ccc}p(1,1)&\ldots&p(1,k)\\ \vdots&\ddots&\vdots\\ p(h,1)&\ldots&p(h,k)\end{array}\;\;\;\;\;\hat{p}=\begin{array}[]{ccccc}\#&\#&% \ldots&\#&\#\\ \#&p(1,1)&\ldots&p(1,k)&\#\\ \vdots&\vdots&\ddots&\vdots&\vdots\\ \#&p(h,1)&\ldots&p(h,k)&\#\\ \#&\#&\ldots&\#&\#\\ \end{array} italic_p = start_ARRAY start_ROW start_CELL italic_p ( 1 , 1 ) end_CELL start_CELL … end_CELL start_CELL italic_p ( 1 , italic_k ) end_CELL end_ROW start_ROW start_CELL ⋮ end_CELL start_CELL ⋱ end_CELL start_CELL ⋮ end_CELL end_ROW start_ROW start_CELL italic_p ( italic_h , 1 ) end_CELL start_CELL … end_CELL start_CELL italic_p ( italic_h , italic_k ) end_CELL end_ROW end_ARRAY ^ start_ARG italic_p end_ARG = start_ARRAY start_ROW start_CELL # end_CELL start_CELL # end_CELL start_CELL … end_CELL start_CELL # end_CELL start_CELL # end_CELL end_ROW start_ROW start_CELL # end_CELL start_CELL italic_p ( 1 , 1 ) end_CELL start_CELL … end_CELL start_CELL italic_p ( 1 , italic_k ) end_CELL start_CELL # end_CELL end_ROW start_ROW start_CELL ⋮ end_CELL start_CELL ⋮ end_CELL start_CELL ⋱ end_CELL start_CELL ⋮ end_CELL start_CELL ⋮ end_CELL end_ROW start_ROW start_CELL # end_CELL start_CELL italic_p ( italic_h , 1 ) end_CELL start_CELL … end_CELL start_CELL italic_p ( italic_h , italic_k ) end_CELL start_CELL # end_CELL end_ROW start_ROW start_CELL # end_CELL start_CELL # end_CELL start_CELL … end_CELL start_CELL # end_CELL start_CELL # end_CELL end_ROW end_ARRAY

A pixel is an element p ( i , j ) 𝑝 𝑖 𝑗 p(i,j) italic_p ( italic_i , italic_j ) of p 𝑝 p italic_p . If all pixels are identical to C Σ 𝐶 Σ C\in\Sigma italic_C ∈ roman_Σ the picture is called C 𝐶 C italic_C - homogeneous or C 𝐶 C italic_C -picture.

Row and column concatenations are denoted symmetric-difference \ominus and \obar , respectively. p q symmetric-difference 𝑝 𝑞 p\ominus q italic_p ⊖ italic_q is defined iff p 𝑝 p italic_p and q 𝑞 q italic_q have the same number of columns; the resulting picture is the vertical juxtaposition of p 𝑝 p italic_p over q 𝑞 q italic_q . p k superscript 𝑝 limit-from 𝑘 symmetric-difference p^{k\ominus} italic_p start_POSTSUPERSCRIPT italic_k ⊖ end_POSTSUPERSCRIPT is the vertical juxtaposition of k 𝑘 k italic_k copies of p 𝑝 p italic_p ; p + superscript 𝑝 absent symmetric-difference p^{+\ominus} italic_p start_POSTSUPERSCRIPT + ⊖ end_POSTSUPERSCRIPT is the corresponding closure. , k , + fragments superscript , 𝑘 absent superscript , absent \obar,^{k\obar},^{+\obar} ⦶ , start_POSTSUPERSCRIPT italic_k ⦶ end_POSTSUPERSCRIPT , start_POSTSUPERSCRIPT + ⦶ end_POSTSUPERSCRIPT are the column analogous.


Definition 3.10 .

Let ( α , β , γ ) 𝔽 q 3 𝛼 𝛽 𝛾 superscript subscript 𝔽 𝑞 3 (\alpha,\beta,\gamma)\in\mathbb{F}_{q}^{3} ( italic_α , italic_β , italic_γ ) ∈ blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT . We say that ( α , β , γ ) 𝛼 𝛽 𝛾 (\alpha,\beta,\gamma) ( italic_α , italic_β , italic_γ ) is singular if

α 2 + β 2 + γ 2 - α β γ = 4 . superscript 𝛼 2 superscript 𝛽 2 superscript 𝛾 2 𝛼 𝛽 𝛾 4 \alpha^{2}+\beta^{2}+\gamma^{2}-\alpha\beta\gamma=4. italic_α start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_β start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_γ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - italic_α italic_β italic_γ = 4 .

Let l = 𝒪 r d ( α ) 𝑙 𝒪 𝑟 𝑑 𝛼 l=\mathcal{O}rd(\alpha) italic_l = caligraphic_O italic_r italic_d ( italic_α ) , m = 𝒪 r d ( β ) 𝑚 𝒪 𝑟 𝑑 𝛽 m=\mathcal{O}rd(\beta) italic_m = caligraphic_O italic_r italic_d ( italic_β ) and n = 𝒪 r d ( γ ) 𝑛 𝒪 𝑟 𝑑 𝛾 n=\mathcal{O}rd(\gamma) italic_n = caligraphic_O italic_r italic_d ( italic_γ ) . We say that ( α , β , γ ) 𝛼 𝛽 𝛾 (\alpha,\beta,\gamma) ( italic_α , italic_β , italic_γ ) is small if at least two of l , m , n 𝑙 𝑚 𝑛 l,m,n italic_l , italic_m , italic_n are equal to 2 2 2 2 or if 2 l , m , n 5 formulae-sequence 2 𝑙 𝑚 𝑛 5 2\leq l,m,n\leq 5 2 ≤ italic_l , italic_m , italic_n ≤ 5 .


Definition 3 .

Let 𝒵 𝒵 {\mathcal{Z}} caligraphic_Z be the {\mathbb{Q}} blackboard_Q -algebra generated by convergent polyzêtas and let 𝒵 superscript 𝒵 normal-′ {\mathcal{Z}}^{\prime} caligraphic_Z start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT be the 5 5 5 Here, γ 𝛾 \gamma italic_γ stands for the Euler constant γ = .5772156649015328606065120900824024310421593359399235988057672348848677 𝛾 .5772156649015328606065120900824024310421593359399235988057672348848677 normal-… \gamma=.5772156649015328606065120900824024310421593359399235988057672348848677\ldots italic_γ = .5772156649015328606065120900824024310421593359399235988057672348848677 … [ γ ] delimited-[] 𝛾 {\mathbb{Q}}[\gamma] blackboard_Q [ italic_γ ] -algebra generated by 𝒵 𝒵 {\mathcal{Z}} caligraphic_Z .


Definition 1

A rack is a set R with two binary operations, contains-as-subgroup \rhd and - 1 superscript contains-as-subgroup 1 \rhd^{-1} ⊳ start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT , that satisfy for all x , y , z R 𝑥 𝑦 𝑧 𝑅 x,y,z\in R italic_x , italic_y , italic_z ∈ italic_R :


Definition 3.4 .

Let γ , η 𝛾 𝜂 \gamma,\eta italic_γ , italic_η denote two polygons on S 𝑆 S italic_S . We say that η 𝜂 \eta italic_η is convergent relative to γ 𝛾 \gamma italic_γ if there are no stable partitions of S 𝑆 S italic_S compatible with both γ 𝛾 \gamma italic_γ and η 𝜂 \eta italic_η :

(3.2) χ ( γ ) χ ( η ) = . 𝜒 𝛾 𝜒 𝜂 \chi(\gamma)\cap\chi(\eta)=\emptyset\ . italic_χ ( italic_γ ) ∩ italic_χ ( italic_η ) = ∅ .

In other words, there exists no block of γ 𝛾 \gamma italic_γ having the same underlying set as a block of η 𝜂 \eta italic_η . If η 𝜂 \eta italic_η is a polygon on S 𝑆 S italic_S , then a block of η 𝜂 \eta italic_η is said to be a consecutive block if its underlying set corresponds to a block of the polygon with the standard cyclic order δ 𝛿 \delta italic_δ . The polygon η 𝜂 \eta italic_η is said to be convergent if it has no consecutive blocks at all, i.e., if it is convergent relative to δ 𝛿 \delta italic_δ . A polygon η 𝒫 S { d } 𝜂 subscript 𝒫 𝑆 𝑑 \eta\in{\mathcal{P}}_{S\cup\{d\}} italic_η ∈ caligraphic_P start_POSTSUBSCRIPT italic_S ∪ { italic_d } end_POSTSUBSCRIPT is said to be convergent if it has no chords partitioning S { d } 𝑆 𝑑 S\cup\{d\} italic_S ∪ { italic_d } into disjoint subsets S 1 S 2 subscript 𝑆 1 subscript 𝑆 2 S_{1}\cup S_{2} italic_S start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ∪ italic_S start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT such that S 1 subscript 𝑆 1 S_{1} italic_S start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT is a consecutive subset of S = { 1 , , n } 𝑆 1 𝑛 S=\{1,\ldots,n\} italic_S = { 1 , … , italic_n } .


Definition 2.2

( [ 18 ] ) An immersed surface in ( G , g [ 1 ] ) 𝐺 𝑔 delimited-[] 1 (G,g[1]) ( italic_G , italic_g [ 1 ] ) of the form:

(9) φ ( u , v ) = ( 1 x ( u ) 0 1 ) ( v 0 0 1 / v ) ( cos u sin u - sin u cos u ) 𝜑 𝑢 𝑣 1 𝑥 𝑢 0 1 𝑣 0 0 1 𝑣 𝑢 𝑢 𝑢 𝑢 \varphi(u,v)=\left(\begin{array}[]{cc}1&x(u)\\ 0&1\end{array}\right)\left(\begin{array}[]{cc}\sqrt{v}&0\\ 0&1/\sqrt{v}\end{array}\right)\left(\begin{array}[]{cc}\cos u&\sin u\\ -\sin u&\cos u\end{array}\right) italic_φ ( italic_u , italic_v ) = ( start_ARRAY start_ROW start_CELL 1 end_CELL start_CELL italic_x ( italic_u ) end_CELL end_ROW start_ROW start_CELL 0 end_CELL start_CELL 1 end_CELL end_ROW end_ARRAY ) ( start_ARRAY start_ROW start_CELL square-root start_ARG italic_v end_ARG end_CELL start_CELL 0 end_CELL end_ROW start_ROW start_CELL 0 end_CELL start_CELL 1 / square-root start_ARG italic_v end_ARG end_CELL end_ROW end_ARRAY ) ( start_ARRAY start_ROW start_CELL roman_cos italic_u end_CELL start_CELL roman_sin italic_u end_CELL end_ROW start_ROW start_CELL - roman_sin italic_u end_CELL start_CELL roman_cos italic_u end_CELL end_ROW end_ARRAY )

is called a conoid in G 𝐺 G italic_G .


Definition 5.1 .

( [ 52 ] ) A (left) PostLie algebra is a \mathbb{R} blackboard_R -vector space L 𝐿 L italic_L with two bilinear operations \circ and [ , ] fragments [ , ] [,] [ , ] which satisfy the relations:

(59) [ x , y ] = - [ y , x ] , 𝑥 𝑦 𝑦 𝑥 [x,y]=-[y,x], [ italic_x , italic_y ] = - [ italic_y , italic_x ] ,
(60) [ [ x , y ] , z ] + [ [ z , x ] , y ] + [ [ y , z ] , x ] = 0 , 𝑥 𝑦 𝑧 𝑧 𝑥 𝑦 𝑦 𝑧 𝑥 0 [[x,y],z]+[[z,x],y]+[[y,z],x]=0, [ [ italic_x , italic_y ] , italic_z ] + [ [ italic_z , italic_x ] , italic_y ] + [ [ italic_y , italic_z ] , italic_x ] = 0 ,
(61) z ( y x ) - y ( z x ) + ( y z ) x - ( z y ) x + [ y , z ] x = 0 , 𝑧 𝑦 𝑥 𝑦 𝑧 𝑥 𝑦 𝑧 𝑥 𝑧 𝑦 𝑥 𝑦 𝑧 𝑥 0 z\circ(y\circ x)-y\circ(z\circ x)+(y\circ z)\circ x-(z\circ y)\circ x+[y,z]% \circ x=0, italic_z ∘ ( italic_y ∘ italic_x ) - italic_y ∘ ( italic_z ∘ italic_x ) + ( italic_y ∘ italic_z ) ∘ italic_x - ( italic_z ∘ italic_y ) ∘ italic_x + [ italic_y , italic_z ] ∘ italic_x = 0 ,
(62) z [ x , y ] - [ z x , y ] - [ x , z y ] = 0 , 𝑧 𝑥 𝑦 𝑧 𝑥 𝑦 𝑥 𝑧 𝑦 0 z\circ[x,y]-[z\circ x,y]-[x,z\circ y]=0, italic_z ∘ [ italic_x , italic_y ] - [ italic_z ∘ italic_x , italic_y ] - [ italic_x , italic_z ∘ italic_y ] = 0 ,

for all x , y L 𝑥 𝑦 𝐿 x,y\in L italic_x , italic_y ∈ italic_L . Eq. ( 59 ) and Eq. ( 60 ) mean that L 𝐿 L italic_L is a Lie algebra for the bracket [ , ] fragments [ , ] [,] [ , ] , and we denote it by ( 𝔊 ( L ) , [ , ] ) fragments ( G fragments ( L ) , fragments [ , ] ) (\mathfrak{G}(L),[,]) ( fraktur_G ( italic_L ) , [ , ] ) . Moreover, we say that ( L , [ , ] , ) fragments ( L , fragments [ , ] , ) (L,[,],\circ) ( italic_L , [ , ] , ∘ ) is a PostLie algebra structure on ( 𝔊 ( L ) , [ , ] ) fragments normal-( G fragments normal-( L normal-) normal-, fragments normal-[ normal-, normal-] normal-) (\mathfrak{G}(L),[,]) ( fraktur_G ( italic_L ) , [ , ] ) . On the other hand, it is straightforward to check that L 𝐿 L italic_L is also a Lie algebra for the operation:

(63) { x , y } x y - y x + [ x , y ] , x , y L . formulae-sequence 𝑥 𝑦 𝑥 𝑦 𝑦 𝑥 𝑥 𝑦 for-all 𝑥 𝑦 𝐿 \{x,y\}\equiv x\circ y-y\circ x+[x,y],\;\;\forall x,y\in L. { italic_x , italic_y } ≡ italic_x ∘ italic_y - italic_y ∘ italic_x + [ italic_x , italic_y ] , ∀ italic_x , italic_y ∈ italic_L .

We shall denote it by ( 𝒢 ( L ) , { , } ) fragments ( G fragments ( L ) , fragments { , } ) (\mathcal{G}(L),\{,\}) ( caligraphic_G ( italic_L ) , { , } ) and say that ( 𝒢 ( L ) , { , } ) fragments ( G fragments ( L ) , fragments { , } ) (\mathcal{G}(L),\{,\}) ( caligraphic_G ( italic_L ) , { , } ) has a compatible PostLie algebra structure given by ( L , [ , ] , ) fragments normal-( L normal-, fragments normal-[ normal-, normal-] normal-, normal-) (L,[,],\circ) ( italic_L , [ , ] , ∘ ) . A homomorphism between two PostLie algebras is defined as a linear map between the two PostLie algebras that preserves the corresponding operations.


Definition 3.2 .

For a smooth embedding ı : M p + 2 : italic-ı 𝑀 superscript 𝑝 2 \imath:M\hookrightarrow{\mathbb{R}}^{p+2} italic_ı : italic_M ↪ blackboard_R start_POSTSUPERSCRIPT italic_p + 2 end_POSTSUPERSCRIPT of a connected, closed, oriented p 𝑝 p italic_p -dimensional smooth manifold M 𝑀 M italic_M into p + 2 superscript 𝑝 2 {\mathbb{R}}^{p+2} blackboard_R start_POSTSUPERSCRIPT italic_p + 2 end_POSTSUPERSCRIPT , we define the induced spin structure as:

ı ( ς p + 2 ) = ı * ( σ ) , superscript italic-ı superscript 𝜍 𝑝 2 superscript italic-ı superscript 𝜎 perpendicular-to \imath^{\sharp}(\varsigma^{p+2})=\imath^{*}(\sigma^{\perp}), italic_ı start_POSTSUPERSCRIPT ♯ end_POSTSUPERSCRIPT ( italic_ς start_POSTSUPERSCRIPT italic_p + 2 end_POSTSUPERSCRIPT ) = italic_ı start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT ( italic_σ start_POSTSUPERSCRIPT ⟂ end_POSTSUPERSCRIPT ) ,

where σ superscript 𝜎 perpendicular-to \sigma^{\perp} italic_σ start_POSTSUPERSCRIPT ⟂ end_POSTSUPERSCRIPT is as described above.


Definition 2

For w Σ * 𝑤 superscript Σ w\in\Sigma^{*} italic_w ∈ roman_Σ start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT , the set of equivalent words is

eq ( w ) = { w : r ( w ) = r ( w ) } eq 𝑤 conditional-set superscript 𝑤 𝑟 𝑤 𝑟 superscript 𝑤 {\rm eq}(w)=\{w^{\prime}:r(w)=r(w^{\prime})\} roman_eq ( italic_w ) = { italic_w start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT : italic_r ( italic_w ) = italic_r ( italic_w start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) }

For L Σ * 𝐿 superscript Σ L\subseteq\Sigma^{*} italic_L ⊆ roman_Σ start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT , the set of equivalent words is

eq ( L ) = { eq ( w ) : w L } eq 𝐿 conditional-set eq 𝑤 𝑤 𝐿 {\rm eq}(L)=\{{\rm eq}(w):w\in L\} roman_eq ( italic_L ) = { roman_eq ( italic_w ) : italic_w ∈ italic_L }

Definition 4.2 (Lattice Coordinates) .

Let z 𝑧 z italic_z be any integer. The lattice coordinates of z 𝑧 z italic_z are the unique solutions ( r , c ) 𝑟 𝑐 (r,c) ( italic_r , italic_c ) to the equation

( β - α ) c - α r = z , 𝛽 𝛼 𝑐 𝛼 𝑟 𝑧 (\beta-\alpha)c-\alpha r=z, ( italic_β - italic_α ) italic_c - italic_α italic_r = italic_z , (1)

for which r 𝑟 r italic_r and c 𝑐 c italic_c are integers and 0 r < β - α 0 𝑟 𝛽 𝛼 0\leq r<\beta-\alpha 0 ≤ italic_r < italic_β - italic_α . We call r 𝑟 r italic_r and c 𝑐 c italic_c the row and column of z 𝑧 z italic_z respectively.


Definition 2.3 .

A set 𝒯 α subscript 𝒯 𝛼 \mathcal{M}\subset\mathcal{T}_{\alpha} caligraphic_M ⊂ caligraphic_T start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT is said to be logically closed if and only if whenever b , c formulae-sequence 𝑏 𝑐 b\in\mathcal{M},\;c\in\mathcal{M} italic_b ∈ caligraphic_M , italic_c ∈ caligraphic_M and

a = b a = c proves absent 𝑎 𝑏 𝑎 𝑐 \vdash a=b\vee a=c ⊢ italic_a = italic_b ∨ italic_a = italic_c

then a 𝑎 a\in\mathcal{M} italic_a ∈ caligraphic_M also. A minimal logically closed set ¯ 𝒯 α ¯ subscript 𝒯 𝛼 \overline{\mathcal{M}}\subset\mathcal{T}_{\alpha} ¯ start_ARG caligraphic_M end_ARG ⊂ caligraphic_T start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT which includes an arbitrary set 𝒯 α subscript 𝒯 𝛼 \mathcal{M}\subset\mathcal{T}_{\alpha} caligraphic_M ⊂ caligraphic_T start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT is said to be its logical closure . If in addition, 𝒩 𝒯 α 𝒩 subscript 𝒯 𝛼 \mathcal{N}\subset\mathcal{T}_{\alpha} caligraphic_N ⊂ caligraphic_T start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT and ¯ = 𝒩 ¯ ¯ ¯ 𝒩 \overline{\mathcal{M}}=\overline{\mathcal{N}} ¯ start_ARG caligraphic_M end_ARG = ¯ start_ARG caligraphic_N end_ARG , we say the two sets \mathcal{M} caligraphic_M and 𝒩 𝒩 \mathcal{N} caligraphic_N are logically equivalent and denote this relation as 𝒩 similar-to-or-equals 𝒩 \mathcal{M}\simeq\mathcal{N} caligraphic_M ≃ caligraphic_N .


Definition 1.2 .

[ 11 ] Let 𝔞 𝔞 \mathfrak{a} fraktur_a be an arbitrary Lie antialgebra.

(1) An LA-module of 𝔞 𝔞 \mathfrak{a} fraktur_a is a 2 subscript 2 \mathbb{Z}_{2} blackboard_Z start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT -graded vector space V 𝑉 V italic_V together with an even linear map ρ : 𝔞 End ( V ) , : 𝜌 𝔞 End 𝑉 \rho:\mathfrak{a}\to\textup{End}(V), italic_ρ : fraktur_a → End ( italic_V ) , such that the direct sum 𝔞 V direct-sum 𝔞 𝑉 \mathfrak{a}\oplus{}V fraktur_a ⊕ italic_V equipped with the product

(1.4) ( a + v ) ( b + w ) = a b + ( ρ ( a ) ( w ) + ( - 1 ) b ¯ v ¯ ρ ( b ) ( v ) ) , 𝑎 𝑣 𝑏 𝑤 𝑎 𝑏 𝜌 𝑎 𝑤 superscript 1 ¯ 𝑏 ¯ 𝑣 𝜌 𝑏 𝑣 (a+v)\cdot(b+w)=a\cdot{}b\,+\;\left(\rho(a)\,(w)+(-1)^{\bar{b}\bar{v}}\,\rho(b% )\,(v)\right), ( italic_a + italic_v ) ⋅ ( italic_b + italic_w ) = italic_a ⋅ italic_b + ( italic_ρ ( italic_a ) ( italic_w ) + ( - 1 ) start_POSTSUPERSCRIPT ¯ start_ARG italic_b end_ARG ¯ start_ARG italic_v end_ARG end_POSTSUPERSCRIPT italic_ρ ( italic_b ) ( italic_v ) ) ,

where a , b 𝔞 𝑎 𝑏 𝔞 a,b\in\mathfrak{a} italic_a , italic_b ∈ fraktur_a and v , w V 𝑣 𝑤 𝑉 v,w\in{}V italic_v , italic_w ∈ italic_V are homogeneous elements, is again a Lie antialgebra.

(2) An LA-representation of 𝔞 𝔞 \mathfrak{a} fraktur_a is a 2 subscript 2 \mathbb{Z}_{2} blackboard_Z start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT -graded vector space V 𝑉 V italic_V together with an even linear map ρ : 𝔞 End ( V ) , : 𝜌 𝔞 End 𝑉 \rho:\mathfrak{a}\to\textup{End}(V), italic_ρ : fraktur_a → End ( italic_V ) , such that

(1.5) ρ ( a b ) = [ ρ ( a ) , ρ ( b ) ] + , 𝜌 𝑎 𝑏 subscript 𝜌 𝑎 𝜌 𝑏 \rho(a\cdot b)=[\rho(a),\rho(b)]_{+}, italic_ρ ( italic_a ⋅ italic_b ) = [ italic_ρ ( italic_a ) , italic_ρ ( italic_b ) ] start_POSTSUBSCRIPT + end_POSTSUBSCRIPT ,

for all elements a , b 𝑎 𝑏 a,b italic_a , italic_b in 𝔞 𝔞 \mathfrak{a} fraktur_a , and

(1.6) ρ ( x ) ρ ( y ) = ρ ( y ) ρ ( x ) , 𝜌 𝑥 𝜌 𝑦 𝜌 𝑦 𝜌 𝑥 \rho(x)\rho(y)=\rho(y)\rho(x), italic_ρ ( italic_x ) italic_ρ ( italic_y ) = italic_ρ ( italic_y ) italic_ρ ( italic_x ) ,

for all even elements x , y 𝑥 𝑦 x,y italic_x , italic_y in 𝔞 0 subscript 𝔞 0 \mathfrak{a}_{0} fraktur_a start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT .


Definition 5.1

A 2 2 2 2 -cocycle (with values in 𝕂 * superscript 𝕂 \mathbb{K}^{*} blackboard_K start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT ) on n superscript 𝑛 {\mathbb{Z}}^{n} blackboard_Z start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT is a map c : n × n 𝕂 * : 𝑐 superscript 𝑛 superscript 𝑛 superscript 𝕂 c:{\mathbb{Z}}^{n}\times{\mathbb{Z}}^{n}\longrightarrow\mathbb{K}^{*} italic_c : blackboard_Z start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT × blackboard_Z start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT ⟶ blackboard_K start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT such that

c ( s , t + u ) c ( t , u ) = c ( s , t ) c ( s + t , u ) 𝑐 𝑠 𝑡 𝑢 𝑐 𝑡 𝑢 𝑐 𝑠 𝑡 𝑐 𝑠 𝑡 𝑢 c(s,t+u)c(t,u)=c(s,t)c(s+t,u) italic_c ( italic_s , italic_t + italic_u ) italic_c ( italic_t , italic_u ) = italic_c ( italic_s , italic_t ) italic_c ( italic_s + italic_t , italic_u )

for all s , t , u n 𝑠 𝑡 𝑢 superscript 𝑛 s,t,u\in{\mathbb{Z}}^{n} italic_s , italic_t , italic_u ∈ blackboard_Z start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT .


Definition 2.3 .

For every integer n 1 𝑛 1 n\geq 1 italic_n ≥ 1 let ‘ \cdot ’ denote the Euclidean scalar product on n superscript 𝑛 {{\mathbb{R}}}^{n} blackboard_R start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT . We introduce the Heisenberg algebra 𝔥 2 n + 1 = n × n × subscript 𝔥 2 𝑛 1 superscript 𝑛 superscript 𝑛 {\mathfrak{h}}_{2n+1}={{\mathbb{R}}}^{n}\times{{\mathbb{R}}}^{n}\times{{% \mathbb{R}}} fraktur_h start_POSTSUBSCRIPT 2 italic_n + 1 end_POSTSUBSCRIPT = blackboard_R start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT × blackboard_R start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT × blackboard_R with the bracket

[ ( q , p , t ) , ( q , p , t ) ] = [ ( 0 , 0 , p q - p q ) ] . 𝑞 𝑝 𝑡 superscript 𝑞 superscript 𝑝 superscript 𝑡 delimited-[] 0 0 𝑝 superscript 𝑞 superscript 𝑝 𝑞 [(q,p,t),(q^{\prime},p^{\prime},t^{\prime})]=[(0,0,p\cdot q^{\prime}-p^{\prime% }\cdot q)]. [ ( italic_q , italic_p , italic_t ) , ( italic_q start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT , italic_p start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT , italic_t start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) ] = [ ( 0 , 0 , italic_p ⋅ italic_q start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT - italic_p start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ⋅ italic_q ) ] .

The Heisenberg group 2 n + 1 subscript 2 𝑛 1 {\mathbb{H}}_{2n+1} blackboard_H start_POSTSUBSCRIPT 2 italic_n + 1 end_POSTSUBSCRIPT is just 𝔥 2 n + 1 subscript 𝔥 2 𝑛 1 {\mathfrak{h}}_{2n+1} fraktur_h start_POSTSUBSCRIPT 2 italic_n + 1 end_POSTSUBSCRIPT thought of as a group with the multiplication \ast defined by

X Y = X + Y + 1 2 [ X , Y ] . 𝑋 𝑌 𝑋 𝑌 1 2 𝑋 𝑌 X\ast Y=X+Y+\frac{1}{2}[X,Y]. italic_X ∗ italic_Y = italic_X + italic_Y + divide start_ARG 1 end_ARG start_ARG 2 end_ARG [ italic_X , italic_Y ] .

The unit element is 0 2 n + 1 0 subscript 2 𝑛 1 0\in{\mathbb{H}}_{2n+1} 0 ∈ blackboard_H start_POSTSUBSCRIPT 2 italic_n + 1 end_POSTSUBSCRIPT and the inversion mapping given by X - 1 := - X assign superscript 𝑋 1 𝑋 X^{-1}:=-X italic_X start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT := - italic_X . ∎