Definition 3.3 .

An automorphism σ 𝜎 \sigma italic_σ on X C X C tensor-product subscript 𝑋 𝐶 subscript 𝑋 𝐶 X_{C}\otimes X_{C} italic_X start_POSTSUBSCRIPT italic_C end_POSTSUBSCRIPT ⊗ italic_X start_POSTSUBSCRIPT italic_C end_POSTSUBSCRIPT is a Yang-Baxter operator on X C subscript 𝑋 𝐶 X_{C} italic_X start_POSTSUBSCRIPT italic_C end_POSTSUBSCRIPT , iff σ 𝜎 \sigma italic_σ satisfies

( id ¯ σ ) a ( σ ¯ id ) a - 1 ( id ¯ σ ) a = a ( σ ¯ id ) a - 1 ( id ¯ σ ) a ( σ ¯ id ) . id ¯ tensor-product 𝜎 𝑎 𝜎 ¯ tensor-product id superscript 𝑎 1 id ¯ tensor-product 𝜎 𝑎 𝑎 𝜎 ¯ tensor-product id superscript 𝑎 1 id ¯ tensor-product 𝜎 𝑎 𝜎 ¯ tensor-product id (\mathrm{id}\bar{\otimes}\sigma)a(\sigma\bar{\otimes}\mathrm{id})a^{-1}(% \mathrm{id}\bar{\otimes}\sigma)a=a(\sigma\bar{\otimes}\mathrm{id})a^{-1}(% \mathrm{id}\bar{\otimes}\sigma)a(\sigma\bar{\otimes}\mathrm{id}). ( roman_id ¯ start_ARG ⊗ end_ARG italic_σ ) italic_a ( italic_σ ¯ start_ARG ⊗ end_ARG roman_id ) italic_a start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ( roman_id ¯ start_ARG ⊗ end_ARG italic_σ ) italic_a = italic_a ( italic_σ ¯ start_ARG ⊗ end_ARG roman_id ) italic_a start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ( roman_id ¯ start_ARG ⊗ end_ARG italic_σ ) italic_a ( italic_σ ¯ start_ARG ⊗ end_ARG roman_id ) .

Here, a = a X C , X C , X C 𝑎 subscript 𝑎 subscript 𝑋 𝐶 subscript 𝑋 𝐶 subscript 𝑋 𝐶 a=a_{X_{C},X_{C},X_{C}} italic_a = italic_a start_POSTSUBSCRIPT italic_X start_POSTSUBSCRIPT italic_C end_POSTSUBSCRIPT , italic_X start_POSTSUBSCRIPT italic_C end_POSTSUBSCRIPT , italic_X start_POSTSUBSCRIPT italic_C end_POSTSUBSCRIPT end_POSTSUBSCRIPT and id = id X C id subscript id subscript 𝑋 𝐶 \mathrm{id}=\mathrm{id}_{X_{C}} roman_id = roman_id start_POSTSUBSCRIPT italic_X start_POSTSUBSCRIPT italic_C end_POSTSUBSCRIPT end_POSTSUBSCRIPT .


Definition 4.6 .

A deformation retract datum of complexes of R 𝑅 R italic_R -modules consists of a diagram

\xymatrix @ C + 2 p c ( L , b ) \ar @ < - 0.8 e x > [ r ] ι & ( M , b ) , \ar @ < - 0.8 e x > [ l ] p h \xymatrix @ 𝐶 2 𝑝 𝑐 𝐿 𝑏 \ar @ expectation 0.8 𝑒 𝑥 subscript delimited-[] 𝑟 𝜄 & 𝑀 𝑏 \ar @ expectation 0.8 𝑒 𝑥 subscript delimited-[] 𝑙 𝑝 \xymatrix@C+2pc{(L,b)\ar@<-0.8ex>[r]_{\iota}&(M,b),\ar@<-0.8ex>[l]_{p}}\quad h @ italic_C + 2 italic_p italic_c ( italic_L , italic_b ) @ < - 0.8 italic_e italic_x > [ italic_r ] start_POSTSUBSCRIPT italic_ι end_POSTSUBSCRIPT & ( italic_M , italic_b ) , @ < - 0.8 italic_e italic_x > [ italic_l ] start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT italic_h

where ( L , b ) 𝐿 𝑏 (L,b) ( italic_L , italic_b ) and ( M , b ) 𝑀 𝑏 (M,b) ( italic_M , italic_b ) are complexes, p 𝑝 p italic_p and ι 𝜄 \iota italic_ι are morphisms of complexes, and h h italic_h is a degree one R 𝑅 R italic_R -linear map M M 𝑀 𝑀 M\longrightarrow M italic_M ⟶ italic_M , which together satisfy the following two conditions:

Notice that in particular p 𝑝 p italic_p is a homotopy equivalence with inverse ι 𝜄 \iota italic_ι .


Definition B.18 .

A symplectic Lie algebra is a Lie algebra 𝔰 𝔰 \mathfrak{s} fraktur_s endowed with a symplectic structure ω 𝜔 \omega italic_ω such that x for-all 𝑥 \forall x ∀ italic_x , y 𝑦 y italic_y , z 𝔰 𝑧 𝔰 z\in\mathfrak{s} italic_z ∈ fraktur_s ,

ω ( [ x , y ] , z ) + ω ( [ y , z ] , x ) + ω ( [ z , x ] , y ) = 0 . 𝜔 𝑥 𝑦 𝑧 𝜔 𝑦 𝑧 𝑥 𝜔 𝑧 𝑥 𝑦 0 \omega([x,y],z)+\omega([y,z],x)+\omega([z,x],y)=0. italic_ω ( [ italic_x , italic_y ] , italic_z ) + italic_ω ( [ italic_y , italic_z ] , italic_x ) + italic_ω ( [ italic_z , italic_x ] , italic_y ) = 0 . (B.83)

Definition 4.1 .

Let C 𝐶 C italic_C be a differential nonnegatively graded coalgebra over a commutative ring K 𝐾 K italic_K and let E 𝐸 E italic_E be a differential {\mathbb{Z}} blackboard_Z -graded algebra over K 𝐾 K italic_K which we index with two different notations: E n = E - n subscript 𝐸 𝑛 superscript 𝐸 𝑛 E_{n}=E^{-n} italic_E start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT = italic_E start_POSTSUPERSCRIPT - italic_n end_POSTSUPERSCRIPT . Then a twisting cochain on C 𝐶 C italic_C with coefficients in E 𝐸 E italic_E is a K 𝐾 K italic_K -linear map τ : C E : 𝜏 𝐶 subscript 𝐸 \tau:C\to E_{\ast} italic_τ : italic_C → italic_E start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT of degree - 1 1 -1 - 1 , i.e., τ = n 0 τ n 𝜏 subscript 𝑛 0 subscript 𝜏 𝑛 \tau=\sum_{n\geq 0}\tau_{n} italic_τ = ∑ start_POSTSUBSCRIPT italic_n ≥ 0 end_POSTSUBSCRIPT italic_τ start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT where τ n : C n E n - 1 = E 1 - n : subscript 𝜏 𝑛 subscript 𝐶 𝑛 subscript 𝐸 𝑛 1 superscript 𝐸 1 𝑛 \tau_{n}:C_{n}\to E_{n-1}=E^{1-n} italic_τ start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT : italic_C start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT → italic_E start_POSTSUBSCRIPT italic_n - 1 end_POSTSUBSCRIPT = italic_E start_POSTSUPERSCRIPT 1 - italic_n end_POSTSUPERSCRIPT so that τ 0 = 0 subscript 𝜏 0 0 \tau_{0}=0 italic_τ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT = 0 and

τ = τ - τ τ . 𝜏 superscript 𝜏 𝜏 𝜏 \partial\tau=\tau\partial-\tau\cup^{\prime}\tau. ∂ italic_τ = italic_τ ∂ - italic_τ ∪ start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT italic_τ .

Definition 2.4 .

For any relative prime integers q 𝑞 q italic_q and a 𝑎 a italic_a , define

c ( q ; a ) = - 1 + # { x (mod q ) : x 2 a (mod q ) } . 𝑐 𝑞 𝑎 1 # conditional-set 𝑥 (mod q ) superscript 𝑥 2 𝑎 (mod q ) c(q;a)=-1+\#\{x{\text{\rm\ (mod~{}$q$)}}\colon x^{2}\equiv a{\text{\rm\ (mod~{% }$q$)}}\}. italic_c ( italic_q ; italic_a ) = - 1 + # { italic_x (mod italic_q ) : italic_x start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ≡ italic_a (mod italic_q ) } .

Note that c ( q ; a ) 𝑐 𝑞 𝑎 c(q;a) italic_c ( italic_q ; italic_a ) takes only the values - 1 1 -1 - 1 and ρ ( q ) - 1 𝜌 𝑞 1 \rho(q)-1 italic_ρ ( italic_q ) - 1 . Now, with X γ subscript 𝑋 𝛾 X_{\gamma} italic_X start_POSTSUBSCRIPT italic_γ end_POSTSUBSCRIPT as defined in Definition 2.2 , define the random variable

X q ; a , b = c ( q , b ) - c ( q , a ) + 2 χ (mod q ) | χ ( b ) - χ ( a ) | γ > 0 L ( 1 / 2 + i γ , χ ) = 0 X γ 1 4 + γ 2 . subscript 𝑋 𝑞 𝑎 𝑏 𝑐 𝑞 𝑏 𝑐 𝑞 𝑎 2 subscript 𝜒 (mod q ) 𝜒 𝑏 𝜒 𝑎 subscript 𝛾 0 𝐿 1 2 𝑖 𝛾 𝜒 0 subscript 𝑋 𝛾 1 4 superscript 𝛾 2 X_{q;a,b}=c(q,b)-c(q,a)+2\sum_{\chi{\text{\rm\ (mod~{}$q$)}}}|\chi(b)-\chi(a)|% \sum_{\begin{subarray}{c}\gamma>0\\ L(1/2+i\gamma,\chi)=0\end{subarray}}\frac{X_{\gamma}}{\sqrt{\frac{1}{4}+\gamma% ^{2}}}. italic_X start_POSTSUBSCRIPT italic_q ; italic_a , italic_b end_POSTSUBSCRIPT = italic_c ( italic_q , italic_b ) - italic_c ( italic_q , italic_a ) + 2 ∑ start_POSTSUBSCRIPT italic_χ (mod italic_q ) end_POSTSUBSCRIPT | italic_χ ( italic_b ) - italic_χ ( italic_a ) | ∑ start_POSTSUBSCRIPT start_ARG start_ROW start_CELL italic_γ > 0 end_CELL end_ROW start_ROW start_CELL italic_L ( 1 / 2 + italic_i italic_γ , italic_χ ) = 0 end_CELL end_ROW end_ARG end_POSTSUBSCRIPT divide start_ARG italic_X start_POSTSUBSCRIPT italic_γ end_POSTSUBSCRIPT end_ARG start_ARG square-root start_ARG divide start_ARG 1 end_ARG start_ARG 4 end_ARG + italic_γ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG end_ARG .

Note that the expectation of the random variable X q ; a , b subscript 𝑋 𝑞 𝑎 𝑏 X_{q;a,b} italic_X start_POSTSUBSCRIPT italic_q ; italic_a , italic_b end_POSTSUBSCRIPT is either ± ρ ( q ) plus-or-minus 𝜌 𝑞 \pm\rho(q) ± italic_ρ ( italic_q ) or 0, depending on the values of c ( q , a ) 𝑐 𝑞 𝑎 c(q,a) italic_c ( italic_q , italic_a ) and c ( q , b ) 𝑐 𝑞 𝑏 c(q,b) italic_c ( italic_q , italic_b ) . \diamondsuit


Definition 2

. The bijection λ 𝜆 \lambda italic_λ is defined by λ ( x ) 𝜆 𝑥 \lambda(x) italic_λ ( italic_x ) satisfying the properties that λ ( x ) = x 𝜆 𝑥 𝑥 \lambda(x)=x italic_λ ( italic_x ) = italic_x for x X 𝑥 𝑋 x\in X italic_x ∈ italic_X and that

λ ( l ) = [ λ ( m ) , λ ( n ) ] 𝜆 𝑙 𝜆 𝑚 𝜆 𝑛 \lambda(l)=[\lambda(m),\lambda(n)] italic_λ ( italic_l ) = [ italic_λ ( italic_m ) , italic_λ ( italic_n ) ] (5.7)

for l L y ( X ) = X 𝑙 𝐿 𝑦 𝑋 𝑋 l\in Ly(X)=X italic_l ∈ italic_L italic_y ( italic_X ) = italic_X , where σ ( l ) = ( m , n ) 𝜎 𝑙 𝑚 𝑛 \sigma(l)=(m,n) italic_σ ( italic_l ) = ( italic_m , italic_n ) is the standard factorization of l 𝑙 l italic_l .


Definition 2.1.1 .

[ 25 ] , see also [ 3 , Definition 2, p.543] . The group G ~ 2 subscript ~ 𝐺 2 \tilde{G}_{2} ~ start_ARG italic_G end_ARG start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT is defined as the subgroup { g G L ( 7 ) | g * ( ϕ ~ ) = ϕ ~ } conditional-set 𝑔 𝐺 𝐿 superscript 7 superscript 𝑔 ~ italic-ϕ ~ italic-ϕ \{g\in GL({\mathbb{R}}^{7})|\,g^{*}(\tilde{\phi})=\tilde{\phi}\} { italic_g ∈ italic_G italic_L ( blackboard_R start_POSTSUPERSCRIPT 7 end_POSTSUPERSCRIPT ) | italic_g start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT ( ~ start_ARG italic_ϕ end_ARG ) = ~ start_ARG italic_ϕ end_ARG } where

ϕ ~ = ω 123 - ω 145 - ω 167 - ω 246 + ω 257 + ω 347 + ω 356 . ~ italic-ϕ superscript 𝜔 123 superscript 𝜔 145 superscript 𝜔 167 superscript 𝜔 246 superscript 𝜔 257 superscript 𝜔 347 superscript 𝜔 356 \tilde{\phi}={\omega}^{123}-{\omega}^{145}-{\omega}^{167}-{\omega}^{246}+{% \omega}^{257}+{\omega}^{347}+{\omega}^{356}. ~ start_ARG italic_ϕ end_ARG = italic_ω start_POSTSUPERSCRIPT 123 end_POSTSUPERSCRIPT - italic_ω start_POSTSUPERSCRIPT 145 end_POSTSUPERSCRIPT - italic_ω start_POSTSUPERSCRIPT 167 end_POSTSUPERSCRIPT - italic_ω start_POSTSUPERSCRIPT 246 end_POSTSUPERSCRIPT + italic_ω start_POSTSUPERSCRIPT 257 end_POSTSUPERSCRIPT + italic_ω start_POSTSUPERSCRIPT 347 end_POSTSUPERSCRIPT + italic_ω start_POSTSUPERSCRIPT 356 end_POSTSUPERSCRIPT .
Definition 2.2.1 .

[ 25 ] , see also [ 13 , IV.1.A, p.114] , and [ 3 , Definition 1, p.539] . The group G 2 subscript 𝐺 2 G_{2} italic_G start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT is defined as the subgroup { g G L ( 7 ) | g * ( ϕ ~ ) = ϕ ~ } conditional-set 𝑔 𝐺 𝐿 superscript 7 superscript 𝑔 ~ italic-ϕ ~ italic-ϕ \{g\in GL({\mathbb{R}}^{7})|\,g^{*}(\tilde{\phi})=\tilde{\phi}\} { italic_g ∈ italic_G italic_L ( blackboard_R start_POSTSUPERSCRIPT 7 end_POSTSUPERSCRIPT ) | italic_g start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT ( ~ start_ARG italic_ϕ end_ARG ) = ~ start_ARG italic_ϕ end_ARG } where

ϕ = ω 123 + ω 145 + ω 167 + ω 246 - ω 257 - ω 347 - ω 356 . italic-ϕ superscript 𝜔 123 superscript 𝜔 145 superscript 𝜔 167 superscript 𝜔 246 superscript 𝜔 257 superscript 𝜔 347 superscript 𝜔 356 \phi={\omega}^{123}+{\omega}^{145}+{\omega}^{167}+{\omega}^{246}-{\omega}^{257% }-{\omega}^{347}-{\omega}^{356}. italic_ϕ = italic_ω start_POSTSUPERSCRIPT 123 end_POSTSUPERSCRIPT + italic_ω start_POSTSUPERSCRIPT 145 end_POSTSUPERSCRIPT + italic_ω start_POSTSUPERSCRIPT 167 end_POSTSUPERSCRIPT + italic_ω start_POSTSUPERSCRIPT 246 end_POSTSUPERSCRIPT - italic_ω start_POSTSUPERSCRIPT 257 end_POSTSUPERSCRIPT - italic_ω start_POSTSUPERSCRIPT 347 end_POSTSUPERSCRIPT - italic_ω start_POSTSUPERSCRIPT 356 end_POSTSUPERSCRIPT .

Definition 2.5 .

Let ( n - r , r ) 𝑛 𝑟 𝑟 \mathcal{M}(n-r,r) caligraphic_M ( italic_n - italic_r , italic_r ) be the closed substack of ( n - r , r ) naive superscript 𝑛 𝑟 𝑟 naive \mathcal{M}(n-r,r)^{\text{\rm naive}} caligraphic_M ( italic_n - italic_r , italic_r ) start_POSTSUPERSCRIPT naive end_POSTSUPERSCRIPT consisting of those triples ( A , ι , λ ) 𝐴 𝜄 𝜆 (A,\iota,\lambda) ( italic_A , italic_ι , italic_λ ) for which the action of O k subscript 𝑂 k O_{{\text{\smallcute k}}} italic_O start_POSTSUBSCRIPT k end_POSTSUBSCRIPT on Lie A Lie 𝐴 \text{\rm Lie}\,A Lie italic_A satisfies the wedge condition :

(2.2) n - r + 1 ( ι ( a ) - a ) = 0 , r + 1 ( ι ( a ) - a σ ) = 0 . formulae-sequence superscript 𝑛 𝑟 1 𝜄 𝑎 𝑎 0 superscript 𝑟 1 𝜄 𝑎 superscript 𝑎 𝜎 0 \wedge^{n-r+1}(\iota(a)-a)=0,\qquad\wedge^{r+1}(\iota(a)-a^{\sigma})=0. ∧ start_POSTSUPERSCRIPT italic_n - italic_r + 1 end_POSTSUPERSCRIPT ( italic_ι ( italic_a ) - italic_a ) = 0 , ∧ start_POSTSUPERSCRIPT italic_r + 1 end_POSTSUPERSCRIPT ( italic_ι ( italic_a ) - italic_a start_POSTSUPERSCRIPT italic_σ end_POSTSUPERSCRIPT ) = 0 .

Definition 1 .

The algebra 𝖻𝗏 𝖻𝗏 \mathsf{bv} sansserif_bv is an associative algebra with two generators x , y 𝑥 𝑦 x,y italic_x , italic_y and two relations

y 2 = 0 , superscript 𝑦 2 0 \displaystyle y^{2}=0, italic_y start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT = 0 ,
x 2 y + x y x + y x 2 = 0 . superscript 𝑥 2 𝑦 𝑥 𝑦 𝑥 𝑦 superscript 𝑥 2 0 \displaystyle x^{2}y+xyx+yx^{2}=0. italic_x start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_y + italic_x italic_y italic_x + italic_y italic_x start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT = 0 .
Definition 2 .

The anti-associative operad As ~ ~ As \widetilde{\operatorname{As}} ~ start_ARG roman_As end_ARG is the nonsymmetric operad with one generator f ( - , - ) As ~ ( 2 ) 𝑓 - - ~ As 2 f(\textrm{-},\textrm{-})\in\widetilde{\operatorname{As}}(2) italic_f ( - , - ) ∈ ~ start_ARG roman_As end_ARG ( 2 ) and one relation

(5) f ( f ( - , - ) , - ) + f ( - , f ( - , - ) ) = 0 . 𝑓 𝑓 - - - 𝑓 - 𝑓 - - 0 f(f(\textrm{-},\textrm{-}),\textrm{-})+f(\textrm{-},f(\textrm{-},\textrm{-}))=0. italic_f ( italic_f ( - , - ) , - ) + italic_f ( - , italic_f ( - , - ) ) = 0 .