Definition 1.2 .

Let 𝒒 := { ( x , k , y ) ∈ βˆ‚ ⁑ T Γ— β„€ Γ— βˆ‚ ⁑ T : x ∼ k y } assign 𝒒 conditional-set π‘₯ π‘˜ 𝑦 𝑇 β„€ 𝑇 subscript ∼ π‘˜ π‘₯ 𝑦 \mathcal{G}:=\{(x,k,y)\in\partial T\times\mathds{Z}\times\partial T:x\thicksim% _{k}y\} caligraphic_G := { ( italic_x , italic_k , italic_y ) ∈ βˆ‚ italic_T Γ— blackboard_Z Γ— βˆ‚ italic_T : italic_x ∼ start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT italic_y } . For pairs in 𝒒 2 := { ( ( x , k , y ) , ( y , m , z ) ) : ( x , k , y ) , ( y , m , z ) ∈ 𝒒 } assign superscript 𝒒 2 conditional-set π‘₯ π‘˜ 𝑦 𝑦 π‘š 𝑧 π‘₯ π‘˜ 𝑦 𝑦 π‘š 𝑧 𝒒 \mathcal{G}^{2}:=\{((x,k,y),(y,m,z)):(x,k,y),(y,m,z)\in\mathcal{G}\} caligraphic_G start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT := { ( ( italic_x , italic_k , italic_y ) , ( italic_y , italic_m , italic_z ) ) : ( italic_x , italic_k , italic_y ) , ( italic_y , italic_m , italic_z ) ∈ caligraphic_G } , we define

( x , k , y ) β‹… ( y , m , z ) = ( x , k + m , z ) . β‹… π‘₯ π‘˜ 𝑦 𝑦 π‘š 𝑧 π‘₯ π‘˜ π‘š 𝑧 (x,k,y)\cdot(y,m,z)=(x,k+m,z). ( italic_x , italic_k , italic_y ) β‹… ( italic_y , italic_m , italic_z ) = ( italic_x , italic_k + italic_m , italic_z ) . (1.1)

For arbitrary ( x , k , y ) ∈ 𝒒 π‘₯ π‘˜ 𝑦 𝒒 (x,k,y)\in\mathcal{G} ( italic_x , italic_k , italic_y ) ∈ caligraphic_G , we define

( x , k , y ) - 1 = ( y , - k , x ) . superscript π‘₯ π‘˜ 𝑦 1 𝑦 π‘˜ π‘₯ (x,k,y)^{-1}=(y,-k,x). ( italic_x , italic_k , italic_y ) start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT = ( italic_y , - italic_k , italic_x ) . (1.2)

Definition 3.5 .

A pair of intervals ( [ i , j ] , [ i β€² , j β€² ] ) 𝑖 𝑗 superscript 𝑖 β€² superscript 𝑗 β€² ([i,j],[i^{{}^{\prime}},j^{{}^{\prime}}]) ( [ italic_i , italic_j ] , [ italic_i start_POSTSUPERSCRIPT start_FLOATSUPERSCRIPT β€² end_FLOATSUPERSCRIPT end_POSTSUPERSCRIPT , italic_j start_POSTSUPERSCRIPT start_FLOATSUPERSCRIPT β€² end_FLOATSUPERSCRIPT end_POSTSUPERSCRIPT ] ) is c ⁒ o ⁒ m ⁒ p ⁒ a ⁒ t ⁒ i ⁒ b ⁒ l ⁒ e 𝑐 π‘œ π‘š 𝑝 π‘Ž 𝑑 𝑖 𝑏 𝑙 𝑒 compatible italic_c italic_o italic_m italic_p italic_a italic_t italic_i italic_b italic_l italic_e if

[ i , j ] ∩ [ i β€² , j β€² ] = βˆ… ⁒ or ⁒ [ i , j ] βŠ‚ [ i β€² , j β€² ] ⁒ or ⁒ [ i β€² , j β€² ] βŠ‚ [ i , j ] . 𝑖 𝑗 superscript 𝑖 β€² superscript 𝑗 β€² or 𝑖 𝑗 superscript 𝑖 β€² superscript 𝑗 β€² or superscript 𝑖 β€² superscript 𝑗 β€² 𝑖 𝑗 [i,j]\cap[i^{{}^{\prime}},j^{{}^{\prime}}]=\emptyset\ \mathrm{or}\ [i,j]% \subset[i^{{}^{\prime}},j^{{}^{\prime}}]\ \mathrm{or}\ [i^{{}^{\prime}},j^{{}^% {\prime}}]\subset[i,j]. [ italic_i , italic_j ] ∩ [ italic_i start_POSTSUPERSCRIPT start_FLOATSUPERSCRIPT β€² end_FLOATSUPERSCRIPT end_POSTSUPERSCRIPT , italic_j start_POSTSUPERSCRIPT start_FLOATSUPERSCRIPT β€² end_FLOATSUPERSCRIPT end_POSTSUPERSCRIPT ] = βˆ… roman_or [ italic_i , italic_j ] βŠ‚ [ italic_i start_POSTSUPERSCRIPT start_FLOATSUPERSCRIPT β€² end_FLOATSUPERSCRIPT end_POSTSUPERSCRIPT , italic_j start_POSTSUPERSCRIPT start_FLOATSUPERSCRIPT β€² end_FLOATSUPERSCRIPT end_POSTSUPERSCRIPT ] roman_or [ italic_i start_POSTSUPERSCRIPT start_FLOATSUPERSCRIPT β€² end_FLOATSUPERSCRIPT end_POSTSUPERSCRIPT , italic_j start_POSTSUPERSCRIPT start_FLOATSUPERSCRIPT β€² end_FLOATSUPERSCRIPT end_POSTSUPERSCRIPT ] βŠ‚ [ italic_i , italic_j ] .

Definition 1

Let ℬ ℬ \mathcal{B} caligraphic_B be a k π‘˜ k italic_k –basis of an algebra π’œ π’œ \mathcal{A} caligraphic_A . ℬ ℬ \mathcal{B} caligraphic_B is a multiplicative basis for π’œ π’œ \mathcal{A} caligraphic_A if

b , b β€² ∈ ℬ β‡’ b β‹… b β€² ∈ ℬ ⁒ or ⁒ b β‹… b β€² = 0 . 𝑏 superscript 𝑏 β€² ℬ β‡’ β‹… 𝑏 superscript 𝑏 β€² β‹… ℬ or 𝑏 superscript 𝑏 β€² 0 b,b^{\prime}\in\mathcal{B}\Rightarrow b\cdot b^{\prime}\in\mathcal{B}\text{ or% }b\cdot b^{\prime}=0. italic_b , italic_b start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ∈ caligraphic_B β‡’ italic_b β‹… italic_b start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ∈ caligraphic_B or italic_b β‹… italic_b start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT = 0 .

Definition 1.2

We say that r ∈ R π‘Ÿ 𝑅 r\in R italic_r ∈ italic_R is irreducible if

r = a ⁒ b β‡’ a ⁒ is a unit or ⁒ b ⁒ is a unit . π‘Ÿ π‘Ž 𝑏 β‡’ π‘Ž is a unit or 𝑏 is a unit r=ab\ \Rightarrow\ a\ \textrm{is a unit or }\ b\ \textrm{is a unit}. italic_r = italic_a italic_b β‡’ italic_a is a unit or italic_b is a unit .

Definition 2.7 .

Let f ⁒ ( x ) 𝑓 π‘₯ f(x) italic_f ( italic_x ) be a tropical rational function if there are two tropical polynomials g ⁒ ( x ) 𝑔 π‘₯ g(x) italic_g ( italic_x ) , h ⁒ ( x ) β„Ž π‘₯ h(x) italic_h ( italic_x ) such that

f ⁒ ( x ) = h ⁒ ( x ) ⊘ g ⁒ ( x ) . 𝑓 π‘₯ ⊘ β„Ž π‘₯ 𝑔 π‘₯ f(x)=h(x)\oslash g(x). italic_f ( italic_x ) = italic_h ( italic_x ) ⊘ italic_g ( italic_x ) .

Definition 2.6 .

A multiplicative character on 𝔽 q * superscript subscript 𝔽 π‘ž \mathbb{F}_{q}^{*} blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT is a map Ο‡ πœ’ \chi italic_Ο‡ from 𝔽 q * superscript subscript 𝔽 π‘ž \mathbb{F}_{q}^{*} blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT to the nonzero complex numbers β„‚ * superscript β„‚ \mathbb{C}^{*} blackboard_C start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT that satisfies Ο‡ ⁒ ( a ⁒ b ) = Ο‡ ⁒ ( a ) ⁒ Ο‡ ⁒ ( b ) πœ’ π‘Ž 𝑏 πœ’ π‘Ž πœ’ 𝑏 \chi(ab)=\chi(a)\chi(b) italic_Ο‡ ( italic_a italic_b ) = italic_Ο‡ ( italic_a ) italic_Ο‡ ( italic_b ) for all a , b ∈ 𝔽 q * π‘Ž 𝑏 superscript subscript 𝔽 π‘ž a,b\in\mathbb{F}_{q}^{*} italic_a , italic_b ∈ blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT . We extend the definition to the whole field 𝔽 q subscript 𝔽 π‘ž \mathbb{F}_{q} blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT by defining

Ο‡ ⁒ ( 0 ) = { 1 , Ο‡ = 1 ; 0 , otherwise. πœ’ 0 cases 1 πœ’ 1 0 otherwise. \chi(0)=\left\{\begin{array}[]{ll}1,&\mbox{$\chi=1$};\\ 0,&\mbox{otherwise.}\end{array}\right. italic_Ο‡ ( 0 ) = { start_ARRAY start_ROW start_CELL 1 , end_CELL start_CELL italic_Ο‡ = 1 ; end_CELL end_ROW start_ROW start_CELL 0 , end_CELL start_CELL otherwise. end_CELL end_ROW end_ARRAY

DΓ©finition 2.1.3

Let E 𝐸 E italic_E be a regular (a,b)-module. The dual E * superscript 𝐸 E^{*} italic_E start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT of E 𝐸 E italic_E is defined as the β„‚ ⁑ [ [ b ] ] - limit-from β„‚ delimited-[] 𝑏 \operatorname{\mathbb{C}}[[b]]- blackboard_C [ [ italic_b ] ] - module H ⁒ o ⁒ m β„‚ ⁑ [ [ b ] ] ⁒ ( E , E 0 ) 𝐻 π‘œ subscript π‘š β„‚ delimited-[] 𝑏 𝐸 subscript 𝐸 0 Hom_{\operatorname{\mathbb{C}}[[b]]}(E,E_{0}) italic_H italic_o italic_m start_POSTSUBSCRIPT blackboard_C [ [ italic_b ] ] end_POSTSUBSCRIPT ( italic_E , italic_E start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) with the β„‚ - limit-from β„‚ \operatorname{\mathbb{C}}- blackboard_C - linear map given by

( a . Ο† ) ( x ) = a . Ο† ( x ) - Ο† ( a . x ) fragments fragments ( a . Ο† ) fragments ( x ) a . Ο† fragments ( x ) Ο† fragments ( a . x ) (a.\varphi)(x)=a.\varphi(x)-\varphi(a.x) ( italic_a . italic_Ο† ) ( italic_x ) = italic_a . italic_Ο† ( italic_x ) - italic_Ο† ( italic_a . italic_x )

where E 0 := π’œ ~ / π’œ ~ . a ≃ β„‚ ⁑ [ [ b ] ] . e 0 formulae-sequence assign subscript 𝐸 0 normal-~ π’œ normal-~ π’œ similar-to-or-equals π‘Ž β„‚ delimited-[] 𝑏 subscript 𝑒 0 E_{0}:=\tilde{\mathcal{A}}\big{/}\tilde{\mathcal{A}}.a\simeq\operatorname{% \mathbb{C}}[[b]].e_{0} italic_E start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT := ~ start_ARG caligraphic_A end_ARG / ~ start_ARG caligraphic_A end_ARG . italic_a ≃ blackboard_C [ [ italic_b ] ] . italic_e start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT with a . e 0 = 0 formulae-sequence π‘Ž subscript 𝑒 0 0 a.e_{0}=0 italic_a . italic_e start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT = 0 .


Definition 1.1 (Hom-associative algebra) .

A Hom-associative algebra is a triple ( A , β‹… , Ξ± ) 𝐴 β‹… 𝛼 (A,\cdot,\alpha) ( italic_A , β‹… , italic_Ξ± ) consisting of a vector space A 𝐴 A italic_A on which β‹… : A βŠ— A β†’ A fragments β‹… : A tensor-product A β†’ A \cdot:A\otimes A\rightarrow A β‹… : italic_A βŠ— italic_A β†’ italic_A and Ξ± : A β†’ A : 𝛼 β†’ 𝐴 𝐴 \alpha:A\rightarrow A italic_Ξ± : italic_A β†’ italic_A are linear maps, satisfying

(1.1) Ξ± ⁒ ( x ) β‹… ( y β‹… z ) = ( x β‹… y ) β‹… Ξ± ⁒ ( z ) . β‹… 𝛼 π‘₯ β‹… 𝑦 𝑧 β‹… β‹… π‘₯ 𝑦 𝛼 𝑧 \alpha(x)\cdot(y\cdot z)=(x\cdot y)\cdot\alpha(z). italic_Ξ± ( italic_x ) β‹… ( italic_y β‹… italic_z ) = ( italic_x β‹… italic_y ) β‹… italic_Ξ± ( italic_z ) .
Definition 1.5 (Hom-Lie algebra) .

A Hom-Lie algebra is a triple ( 𝔀 , [ , ] , Ξ± ) fragments ( g , fragments [ , ] , Ξ± ) (\mathfrak{g},[\ ,\ ],\alpha) ( fraktur_g , [ , ] , italic_Ξ± ) consisting of a vector space 𝔀 𝔀 \mathfrak{g} fraktur_g on which [ , ] : 𝔀 Γ— 𝔀 β†’ 𝔀 fragments fragments [ , ] : g g β†’ g [\ ,\ ]:\mathfrak{g}\times\mathfrak{g}\rightarrow\mathfrak{g} [ , ] : fraktur_g Γ— fraktur_g β†’ fraktur_g is a bilinear map and Ξ± : 𝔀 β†’ 𝔀 : 𝛼 β†’ 𝔀 𝔀 \alpha:\mathfrak{g}\rightarrow\mathfrak{g} italic_Ξ± : fraktur_g β†’ fraktur_g a linear map satisfying

(1.3) [ x , y ] = - [ y , x ] , (skew-symmetry) π‘₯ 𝑦 𝑦 π‘₯ (skew-symmetry) \displaystyle[x,y]=-[y,x],\quad{\text{(skew-symmetry)}} [ italic_x , italic_y ] = - [ italic_y , italic_x ] , (skew-symmetry)
(1.4) β†Ί x , y , z [ Ξ± ⁒ ( x ) , [ y , z ] ] = 0 (Hom-Jacobi condition) formulae-sequence subscript β†Ί π‘₯ 𝑦 𝑧 absent 𝛼 π‘₯ 𝑦 𝑧 0 (Hom-Jacobi condition) \displaystyle\circlearrowleft_{x,y,z}{[\alpha(x),[y,z]]}=0\quad{\text{(Hom-% Jacobi condition)}} β†Ί start_POSTSUBSCRIPT italic_x , italic_y , italic_z end_POSTSUBSCRIPT [ italic_Ξ± ( italic_x ) , [ italic_y , italic_z ] ] = 0 (Hom-Jacobi condition)

for all x , y , z π‘₯ 𝑦 𝑧 x,y,z italic_x , italic_y , italic_z in 𝔀 𝔀 \mathfrak{g} fraktur_g , where β†Ί x , y , z subscript β†Ί π‘₯ 𝑦 𝑧 \circlearrowleft_{x,y,z} β†Ί start_POSTSUBSCRIPT italic_x , italic_y , italic_z end_POSTSUBSCRIPT denotes summation over the cyclic permutation on x , y , z π‘₯ 𝑦 𝑧 x,y,z italic_x , italic_y , italic_z .

Definition 1.9 (Hom-preLie algebras,) .

A left Hom-preLie algebra (resp. right Hom-preLie algebra) is a triple ( A , β‹… , Ξ± ) 𝐴 β‹… 𝛼 (A,\cdot,\alpha) ( italic_A , β‹… , italic_Ξ± ) consisting of a vector space A 𝐴 A italic_A , a bilinear map β‹… : A Γ— A β†’ A fragments β‹… : A A β†’ A \cdot:A\times A\rightarrow A β‹… : italic_A Γ— italic_A β†’ italic_A and a homomorphism Ξ± 𝛼 \alpha italic_Ξ± satisfying

(1.5) Ξ± ⁒ ( x ) β‹… ( y , z ) - ( x β‹… y ) β‹… z = Ξ± ⁒ ( y ) β‹… ( x β‹… z ) - ( y β‹… x ) β‹… Ξ± ⁒ ( z ) , β‹… 𝛼 π‘₯ 𝑦 𝑧 β‹… β‹… π‘₯ 𝑦 𝑧 β‹… 𝛼 𝑦 β‹… π‘₯ 𝑧 β‹… β‹… 𝑦 π‘₯ 𝛼 𝑧 \alpha(x)\cdot(y,z)-(x\cdot y)\cdot z=\alpha(y)\cdot(x\cdot z)-(y\cdot x)\cdot% \alpha(z), italic_Ξ± ( italic_x ) β‹… ( italic_y , italic_z ) - ( italic_x β‹… italic_y ) β‹… italic_z = italic_Ξ± ( italic_y ) β‹… ( italic_x β‹… italic_z ) - ( italic_y β‹… italic_x ) β‹… italic_Ξ± ( italic_z ) ,

resp.

(1.6) Ξ± ⁒ ( x ) β‹… ( y , z ) - ( x β‹… y ) β‹… Ξ± ⁒ ( z ) = Ξ± ⁒ ( x ) β‹… ( z β‹… y ) - ( x β‹… z ) β‹… Ξ± ⁒ ( y ) . β‹… 𝛼 π‘₯ 𝑦 𝑧 β‹… β‹… π‘₯ 𝑦 𝛼 𝑧 β‹… 𝛼 π‘₯ β‹… 𝑧 𝑦 β‹… β‹… π‘₯ 𝑧 𝛼 𝑦 \alpha(x)\cdot(y,z)-(x\cdot y)\cdot\alpha(z)=\alpha(x)\cdot(z\cdot y)-(x\cdot z% )\cdot\alpha(y). italic_Ξ± ( italic_x ) β‹… ( italic_y , italic_z ) - ( italic_x β‹… italic_y ) β‹… italic_Ξ± ( italic_z ) = italic_Ξ± ( italic_x ) β‹… ( italic_z β‹… italic_y ) - ( italic_x β‹… italic_z ) β‹… italic_Ξ± ( italic_y ) .
Definition 2.3 (Hom-Zinbiel algebra) .

A Hom-Zinbiel algebra is a triple ( A , ∘ , Ξ± ) 𝐴 𝛼 (A,\circ,\alpha) ( italic_A , ∘ , italic_Ξ± ) consisting of a vector space A 𝐴 A italic_A on which ∘ : A βŠ— A β†’ A fragments : A tensor-product A β†’ A \circ:A\otimes A\rightarrow A ∘ : italic_A βŠ— italic_A β†’ italic_A and Ξ± : A β†’ A : 𝛼 β†’ 𝐴 𝐴 \alpha:A\rightarrow A italic_Ξ± : italic_A β†’ italic_A are linear maps satisfying

(2.4) ( x ∘ y ) ∘ Ξ± ⁒ ( z ) = Ξ± ⁒ ( x ) ∘ ( y ∘ z ) + Ξ± ⁒ ( x ) ∘ ( z ∘ y ) . π‘₯ 𝑦 𝛼 𝑧 𝛼 π‘₯ 𝑦 𝑧 𝛼 π‘₯ 𝑧 𝑦 \displaystyle(x\circ y)\circ\alpha(z)=\alpha(x)\circ(y\circ z)+\alpha(x)\circ(% z\circ y). ( italic_x ∘ italic_y ) ∘ italic_Ξ± ( italic_z ) = italic_Ξ± ( italic_x ) ∘ ( italic_y ∘ italic_z ) + italic_Ξ± ( italic_x ) ∘ ( italic_z ∘ italic_y ) .

for x , y , z π‘₯ 𝑦 𝑧 x,y,z italic_x , italic_y , italic_z in A 𝐴 A italic_A .