Definition 8.1 .

Given two smooth p 𝑝 p italic_p -forms α 𝛼 \alpha italic_α , β Ω p ( M ) 𝛽 superscript Ω 𝑝 𝑀 \beta\in\Omega^{p}(M) italic_β ∈ roman_Ω start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT ( italic_M ) on a Riemannian manifold M 𝑀 M italic_M , their pointwise inner product at point x M 𝑥 𝑀 x\in M italic_x ∈ italic_M is defined by

α ( x ) , β ( x ) μ = α ( x ) β ( x ) , 𝛼 𝑥 𝛽 𝑥 𝜇 𝛼 𝑥 𝛽 𝑥 \langle\alpha(x),\beta(x)\rangle\,\mu=\alpha(x)\wedge\operatorname{\ast}\beta(% x)\,, ⟨ italic_α ( italic_x ) , italic_β ( italic_x ) ⟩ italic_μ = italic_α ( italic_x ) ∧ ∗ italic_β ( italic_x ) , (8.1)

where μ = 1 𝜇 1 \mu=\operatorname{\ast}1 italic_μ = ∗ 1 is the volume form associated with the metric induced by the inner product on M 𝑀 M italic_M .


Definition 5.4 .

For A LCN ( E ) 𝐴 LCN 𝐸 A\in\textup{LCN}(E) italic_A ∈ LCN ( italic_E ) we call a crystalline deformation ρ : G Σ GL n ( A ) : 𝜌 subscript 𝐺 Σ subscript GL 𝑛 𝐴 \rho:G_{\Sigma}\rightarrow\operatorname{GL}_{n}(A) italic_ρ : italic_G start_POSTSUBSCRIPT roman_Σ end_POSTSUBSCRIPT → roman_GL start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( italic_A ) τ 𝜏 \tau italic_τ -self-dual or simply self-dual if τ 𝜏 \tau italic_τ is clear from the context if

tr ρ = tr ρ τ . tr 𝜌 tr 𝜌 𝜏 \textup{tr}\hskip 2.0pt\rho=\textup{tr}\hskip 2.0pt\rho\circ\tau. tr italic_ρ = tr italic_ρ ∘ italic_τ .

Definition 3.1

A right quasigroup is a set X 𝑋 X italic_X with a binary operation \circ such that for each a , b X 𝑎 𝑏 𝑋 a,b\in X italic_a , italic_b ∈ italic_X there exists a unique x X 𝑥 𝑋 x\in X italic_x ∈ italic_X such that a x = b 𝑎 𝑥 𝑏 a\,\circ\,x\,=\,b italic_a ∘ italic_x = italic_b . We write the solution of this equation x = a b 𝑥 normal-∙ 𝑎 𝑏 x\,=\,a\,\bullet\,b italic_x = italic_a ∙ italic_b .

An idempotent right quasigroup (irq) is a right quasigroup ( X , ) 𝑋 (X,\circ) ( italic_X , ∘ ) such that for any x X 𝑥 𝑋 x\in X italic_x ∈ italic_X x x = x 𝑥 𝑥 𝑥 x\,\circ\,x\,=\,x italic_x ∘ italic_x = italic_x . Equivalently, it can be seen as a set X 𝑋 X italic_X endowed with two operations \circ and normal-∙ \bullet , which satisfy the following axioms: for any x , y X 𝑥 𝑦 𝑋 x,y\in X italic_x , italic_y ∈ italic_X

  1. (R1)

    x x = x x = x 𝑥 𝑥 𝑥 𝑥 𝑥 \displaystyle x\,\circ\,x\,=\,x\,\bullet\,x\,=\,x italic_x ∘ italic_x = italic_x ∙ italic_x = italic_x

  2. (R2)

    x ( x y ) = x ( x y ) = y 𝑥 𝑥 𝑦 𝑥 𝑥 𝑦 𝑦 \displaystyle x\,\circ\,\left(x\,\bullet\,y\right)\,=\,x\,\bullet\,\left(x\,% \circ\,y\right)\,=\,y italic_x ∘ ( italic_x ∙ italic_y ) = italic_x ∙ ( italic_x ∘ italic_y ) = italic_y


Definition 2.1 .

A Hom-Lie algebra ( V , [ , ] , α ) 𝑉 𝛼 (V,[\cdot,\cdot],\alpha) ( italic_V , [ ⋅ , ⋅ ] , italic_α ) is a vector space V 𝑉 V italic_V together with a skew-symmetric bilinear map [ , ] : V × V V : 𝑉 𝑉 𝑉 [\cdot,\cdot]:V\times V\rightarrow V [ ⋅ , ⋅ ] : italic_V × italic_V → italic_V and a linear map α : V V : 𝛼 𝑉 𝑉 \alpha:V\rightarrow V italic_α : italic_V → italic_V satisfying

[ α ( x ) , [ y , z ] ] = [ [ x , y ] , α ( z ) ] + [ α ( y ) , [ x , z ] ] 𝛼 𝑥 𝑦 𝑧 𝑥 𝑦 𝛼 𝑧 𝛼 𝑦 𝑥 𝑧 \displaystyle[\alpha(x),[y,z]]=[[x,y],\alpha(z)]+[\alpha(y),[x,z]] [ italic_α ( italic_x ) , [ italic_y , italic_z ] ] = [ [ italic_x , italic_y ] , italic_α ( italic_z ) ] + [ italic_α ( italic_y ) , [ italic_x , italic_z ] ]

for all x , y , z V 𝑥 𝑦 𝑧 𝑉 x,y,z\in V italic_x , italic_y , italic_z ∈ italic_V .


Definition 15 .

Fix a map . - 1 : 𝒰 α α - 1 𝒰 fragments superscript normal-. 1 normal-: U contains α maps-to superscript 𝛼 1 U .^{-1}:\mathcal{U}\ni\alpha\mapsto\alpha^{-1}\in\mathcal{U} . start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT : caligraphic_U ∋ italic_α ↦ italic_α start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ∈ caligraphic_U . A input-output map f 𝑓 f italic_f is said to be reversible with respect to the map . - 1 superscript normal-. 1 .^{-1} . start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT , if for all α 𝒰 𝛼 𝒰 \alpha\in\mathcal{U} italic_α ∈ caligraphic_U , s , w 𝒰 * 𝑠 𝑤 superscript 𝒰 s,w\in\mathcal{U}^{*} italic_s , italic_w ∈ caligraphic_U start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT , | s w | > 0 𝑠 𝑤 0 |sw|>0 | italic_s italic_w | > 0 ,

f ( s α α - 1 w ) = f ( s w ) . 𝑓 𝑠 𝛼 superscript 𝛼 1 𝑤 𝑓 𝑠 𝑤 f(s\alpha\alpha^{-1}w)=f(sw). italic_f ( italic_s italic_α italic_α start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT italic_w ) = italic_f ( italic_s italic_w ) .

Definition 2.1 ( [ E ] ) .

For N 1 𝑁 1 N\geqslant 1 italic_N ⩾ 1 , the Lie algebra 𝔤 𝔯 𝔱 𝔪 ( 1 ¯ , 1 ) ( N , 𝕜 ) 𝔤 𝔯 𝔱 subscript 𝔪 ¯ 1 1 𝑁 𝕜 \mathfrak{grtm}_{(\bar{1},1)}(N,\mathbb{k}) fraktur_g fraktur_r fraktur_t fraktur_m start_POSTSUBSCRIPT ( ¯ start_ARG 1 end_ARG , 1 ) end_POSTSUBSCRIPT ( italic_N , blackboard_k ) is defined to be the set of pairs ( φ , ψ ) 𝔱 3 0 × 𝔱 3 , N 0 𝜑 𝜓 subscript superscript 𝔱 0 3 subscript superscript 𝔱 0 3 𝑁 (\varphi,\psi)\in\mathfrak{t}^{0}_{3}\times\mathfrak{t}^{0}_{3,N} ( italic_φ , italic_ψ ) ∈ fraktur_t start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT × fraktur_t start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT 3 , italic_N end_POSTSUBSCRIPT satisfying φ 𝔤 𝔯 𝔱 1 ( 𝕜 ) 𝜑 𝔤 𝔯 subscript 𝔱 1 𝕜 \varphi\in\mathfrak{grt}_{1}(\mathbb{k}) italic_φ ∈ fraktur_g fraktur_r fraktur_t start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( blackboard_k ) ,
the mixed pentagon equation in 𝔱 4 , N 0 subscript superscript 𝔱 0 4 𝑁 \mathfrak{t}^{0}_{4,N} fraktur_t start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT 4 , italic_N end_POSTSUBSCRIPT

(2.1) ψ 1 , 2 , 34 + ψ 12 , 3 , 4 = φ 2 , 3 , 4 + ψ 1 , 23 , 4 + ψ 1 , 2 , 3 , superscript 𝜓 1 2 34 superscript 𝜓 12 3 4 superscript 𝜑 2 3 4 superscript 𝜓 1 23 4 superscript 𝜓 1 2 3 \psi^{1,2,34}+\psi^{12,3,4}=\varphi^{2,3,4}+\psi^{1,23,4}+\psi^{1,2,3}, italic_ψ start_POSTSUPERSCRIPT 1 , 2 , 34 end_POSTSUPERSCRIPT + italic_ψ start_POSTSUPERSCRIPT 12 , 3 , 4 end_POSTSUPERSCRIPT = italic_φ start_POSTSUPERSCRIPT 2 , 3 , 4 end_POSTSUPERSCRIPT + italic_ψ start_POSTSUPERSCRIPT 1 , 23 , 4 end_POSTSUPERSCRIPT + italic_ψ start_POSTSUPERSCRIPT 1 , 2 , 3 end_POSTSUPERSCRIPT ,

the octagon equation in 𝔱 3 , N 0 subscript superscript 𝔱 0 3 𝑁 \mathfrak{t}^{0}_{3,N} fraktur_t start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT 3 , italic_N end_POSTSUBSCRIPT

(2.2) ψ ( A , B ( 0 ) , B ( 1 ) , , B ( i ) , , B ( N - 1 ) ) 𝜓 𝐴 𝐵 0 𝐵 1 𝐵 𝑖 𝐵 𝑁 1 \displaystyle\psi\bigl{(}A,B(0),B(1),\dots,B(i),\dots,B(N-1)\bigr{)} italic_ψ ( italic_A , italic_B ( 0 ) , italic_B ( 1 ) , … , italic_B ( italic_i ) , … , italic_B ( italic_N - 1 ) )
- \displaystyle- - ψ ( A , B ( 1 ) , B ( 2 ) , , B ( i + 1 ) , , B ( 0 ) ) 𝜓 𝐴 𝐵 1 𝐵 2 𝐵 𝑖 1 𝐵 0 \displaystyle\psi\bigl{(}A,B(1),B(2),\dots,B(i+1),\dots,B(0)\bigr{)} italic_ψ ( italic_A , italic_B ( 1 ) , italic_B ( 2 ) , … , italic_B ( italic_i + 1 ) , … , italic_B ( 0 ) )
+ \displaystyle+ + ψ ( C , B ( 1 ) , B ( 0 ) , , B ( N + 1 - i ) , , B ( 2 ) ) 𝜓 𝐶 𝐵 1 𝐵 0 𝐵 𝑁 1 𝑖 𝐵 2 \displaystyle\psi\bigl{(}C,B(1),B(0),\dots,B(N+1-i),\dots,B(2)\bigr{)} italic_ψ ( italic_C , italic_B ( 1 ) , italic_B ( 0 ) , … , italic_B ( italic_N + 1 - italic_i ) , … , italic_B ( 2 ) )
- \displaystyle- - ψ ( C , B ( 0 ) , B ( N - 1 ) , , B ( N - i ) , , B ( 1 ) ) = 0 𝜓 𝐶 𝐵 0 𝐵 𝑁 1 𝐵 𝑁 𝑖 𝐵 1 0 \displaystyle\psi\bigl{(}C,B(0),B(N-1),\dots,B(N-i),\dots,B(1)\bigr{)}=0 italic_ψ ( italic_C , italic_B ( 0 ) , italic_B ( italic_N - 1 ) , … , italic_B ( italic_N - italic_i ) , … , italic_B ( 1 ) ) = 0

with A + a / N B ( a ) + C = 0 𝐴 subscript 𝑎 𝑁 𝐵 𝑎 𝐶 0 A+\sum_{a\in\mathbb{Z}/N\mathbb{Z}}B(a)+C=0 italic_A + ∑ start_POSTSUBSCRIPT italic_a ∈ blackboard_Z / italic_N blackboard_Z end_POSTSUBSCRIPT italic_B ( italic_a ) + italic_C = 0 ,
the special derivation condition in 𝔱 3 , N 0 subscript superscript 𝔱 0 3 𝑁 \mathfrak{t}^{0}_{3,N} fraktur_t start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT 3 , italic_N end_POSTSUBSCRIPT

(2.3) a / N subscript 𝑎 𝑁 \displaystyle\sum_{a\in\mathbb{Z}/N\mathbb{Z}} ∑ start_POSTSUBSCRIPT italic_a ∈ blackboard_Z / italic_N blackboard_Z end_POSTSUBSCRIPT [ ψ ( A , B ( a ) , B ( a + 1 ) , , B ( a + i ) , , B ( a - 1 ) ) , B ( a ) ] 𝜓 𝐴 𝐵 𝑎 𝐵 𝑎 1 𝐵 𝑎 𝑖 𝐵 𝑎 1 𝐵 𝑎 \displaystyle\Bigl{[}\psi\bigl{(}A,B(a),B(a+1),\dots,B(a+i),\dots,B(a-1)\bigr{% )},B(a)\Bigr{]} [ italic_ψ ( italic_A , italic_B ( italic_a ) , italic_B ( italic_a + 1 ) , … , italic_B ( italic_a + italic_i ) , … , italic_B ( italic_a - 1 ) ) , italic_B ( italic_a ) ]
+ [ ψ ( fragments fragments [ ψ ( \displaystyle+\Bigl{[}\psi\bigl{(} + [ italic_ψ ( A , B ( 0 ) , B ( 1 ) , , B ( i ) , , B ( N - 1 ) ) fragments A , B fragments ( 0 ) , B fragments ( 1 ) , , B fragments ( i ) , , B fragments ( N 1 ) ) \displaystyle A,B(0),B(1),\dots,B(i),\dots,B(N-1)\bigr{)} italic_A , italic_B ( 0 ) , italic_B ( 1 ) , … , italic_B ( italic_i ) , … , italic_B ( italic_N - 1 ) )
- ψ ( C , B ( 0 ) , B ( N - 1 ) , , B ( N - i ) , , B ( 1 ) ) , C ] = 0 fragments ψ fragments ( C , B fragments ( 0 ) , B fragments ( N 1 ) , , B fragments ( N i ) , , B fragments ( 1 ) ) , C ] 0 \displaystyle-\psi\bigl{(}C,B(0),B(N-1),\dots,B(N-i),\dots,B(1)\bigr{)},C\Bigr% {]}=0 - italic_ψ ( italic_C , italic_B ( 0 ) , italic_B ( italic_N - 1 ) , … , italic_B ( italic_N - italic_i ) , … , italic_B ( 1 ) ) , italic_C ] = 0

and c B ( 0 ) ( ψ ) = 0 subscript 𝑐 𝐵 0 𝜓 0 c_{B(0)}(\psi)=0 italic_c start_POSTSUBSCRIPT italic_B ( 0 ) end_POSTSUBSCRIPT ( italic_ψ ) = 0 . 2 2 2 For our convenience, we slightly change the original definition by adding the small condition c B ( 0 ) ( ψ ) = 0 subscript 𝑐 𝐵 0 𝜓 0 c_{B(0)}(\psi)=0 italic_c start_POSTSUBSCRIPT italic_B ( 0 ) end_POSTSUBSCRIPT ( italic_ψ ) = 0 . The relation to the original Lie algebra is the direct sum decomposition of Lie algebras 𝔤 original = 𝔤 𝕜 B ( 0 ) superscript 𝔤 original direct-sum 𝔤 𝕜 𝐵 0 {\mathfrak{g}}^{\text{original}}={\mathfrak{g}}\oplus\mathbb{k}\cdot B(0) fraktur_g start_POSTSUPERSCRIPT original end_POSTSUPERSCRIPT = fraktur_g ⊕ blackboard_k ⋅ italic_B ( 0 ) , where 𝔤 = 𝔤 𝔯 𝔱 𝔪 ( 1 ¯ , 1 ) ( N , 𝕜 ) 𝔤 𝔤 𝔯 𝔱 subscript 𝔪 ¯ 1 1 𝑁 𝕜 {\mathfrak{g}}=\mathfrak{grtm}_{(\bar{1},1)}(N,\mathbb{k}) fraktur_g = fraktur_g fraktur_r fraktur_t fraktur_m start_POSTSUBSCRIPT ( ¯ start_ARG 1 end_ARG , 1 ) end_POSTSUBSCRIPT ( italic_N , blackboard_k ) .

Definition 2.3 ( [ E ] ) .

For N 1 𝑁 1 N\geqslant 1 italic_N ⩾ 1 , the group GRTM ( 1 ¯ , 1 ) ( N , 𝕜 ) subscript GRTM ¯ 1 1 𝑁 𝕜 \mathrm{GRTM}_{(\bar{1},1)}(N,\mathbb{k}) roman_GRTM start_POSTSUBSCRIPT ( ¯ start_ARG 1 end_ARG , 1 ) end_POSTSUBSCRIPT ( italic_N , blackboard_k ) is defined to be the set of pairs ( g , h ) exp 𝔱 3 0 × exp 𝔱 3 , N 0 𝑔 subscript superscript 𝔱 0 3 subscript superscript 𝔱 0 3 𝑁 (g,h)\in\exp\mathfrak{t}^{0}_{3}\times\exp\mathfrak{t}^{0}_{3,N} ( italic_g , italic_h ) ∈ roman_exp fraktur_t start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT × roman_exp fraktur_t start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT 3 , italic_N end_POSTSUBSCRIPT satisfying g GRT 1 ( 𝕜 ) 𝑔 subscript GRT 1 𝕜 g\in\mathrm{GRT}_{1}(\mathbb{k}) italic_g ∈ roman_GRT start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( blackboard_k ) , c B ( 0 ) ( h ) = 0 subscript 𝑐 𝐵 0 0 c_{B(0)}(h)=0 italic_c start_POSTSUBSCRIPT italic_B ( 0 ) end_POSTSUBSCRIPT ( italic_h ) = 0 ,
the mixed pentagon equation in exp 𝔱 4 , N 0 subscript superscript 𝔱 0 4 𝑁 \exp\mathfrak{t}^{0}_{4,N} roman_exp fraktur_t start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT 4 , italic_N end_POSTSUBSCRIPT

(2.5) h 1 , 2 , 34 h 12 , 3 , 4 = g 2 , 3 , 4 h 1 , 23 , 4 h 1 , 2 , 3 , superscript 1 2 34 superscript 12 3 4 superscript 𝑔 2 3 4 superscript 1 23 4 superscript 1 2 3 h^{1,2,34}h^{12,3,4}=g^{2,3,4}h^{1,23,4}h^{1,2,3}, italic_h start_POSTSUPERSCRIPT 1 , 2 , 34 end_POSTSUPERSCRIPT italic_h start_POSTSUPERSCRIPT 12 , 3 , 4 end_POSTSUPERSCRIPT = italic_g start_POSTSUPERSCRIPT 2 , 3 , 4 end_POSTSUPERSCRIPT italic_h start_POSTSUPERSCRIPT 1 , 23 , 4 end_POSTSUPERSCRIPT italic_h start_POSTSUPERSCRIPT 1 , 2 , 3 end_POSTSUPERSCRIPT ,

the octagon equation in exp 𝔱 3 , N 0 subscript superscript 𝔱 0 3 𝑁 \exp\mathfrak{t}^{0}_{3,N} roman_exp fraktur_t start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT 3 , italic_N end_POSTSUBSCRIPT

(2.6) h ( fragments h ( \displaystyle h\bigl{(} italic_h ( A , B ( 1 ) , B ( 2 ) , , B ( 0 ) ) - 1 h ( C , B ( 1 ) , B ( 0 ) , , B ( 2 ) ) fragments A , B fragments ( 1 ) , B fragments ( 2 ) , , B fragments ( 0 ) ) 1 h ( C , B fragments ( 1 ) , B fragments ( 0 ) , , B fragments ( 2 ) ) \displaystyle A,B(1),B(2),\dots,B(0)\bigr{)}^{-1}h\bigl{(}C,B(1),B(0),\dots,B(% 2)\bigr{)}\cdot italic_A , italic_B ( 1 ) , italic_B ( 2 ) , … , italic_B ( 0 ) ) start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT italic_h ( italic_C , italic_B ( 1 ) , italic_B ( 0 ) , … , italic_B ( 2 ) ) ⋅
h ( C , B ( 0 ) , B ( N - 1 ) , , B ( 1 ) ) - 1 h ( A , B ( 0 ) , B ( 1 ) , , B ( N - 1 ) ) = 1 superscript 𝐶 𝐵 0 𝐵 𝑁 1 𝐵 1 1 𝐴 𝐵 0 𝐵 1 𝐵 𝑁 1 1 \displaystyle h\bigl{(}C,B(0),B(N-1),\dots,B(1)\bigr{)}^{-1}h\bigl{(}A,B(0),B(% 1),\dots,B(N-1)\bigr{)}=1 italic_h ( italic_C , italic_B ( 0 ) , italic_B ( italic_N - 1 ) , … , italic_B ( 1 ) ) start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT italic_h ( italic_A , italic_B ( 0 ) , italic_B ( 1 ) , … , italic_B ( italic_N - 1 ) ) = 1

with A + a / N B ( a ) + C = 0 𝐴 subscript 𝑎 𝑁 𝐵 𝑎 𝐶 0 A+\sum_{a\in\mathbb{Z}/N\mathbb{Z}}B(a)+C=0 italic_A + ∑ start_POSTSUBSCRIPT italic_a ∈ blackboard_Z / italic_N blackboard_Z end_POSTSUBSCRIPT italic_B ( italic_a ) + italic_C = 0 and
the special action condition in exp 𝔱 3 , N 0 subscript superscript 𝔱 0 3 𝑁 \exp\mathfrak{t}^{0}_{3,N} roman_exp fraktur_t start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT 3 , italic_N end_POSTSUBSCRIPT

(2.7) A + a / N A d ( τ a h - 1 ) ( B ( a ) ) + A d ( h - 1 h ( C , B ( 0 ) , B ( N - 1 ) , , B ( 1 ) ) ) ( C ) = 0 𝐴 subscript 𝑎 𝑁 𝐴 𝑑 subscript 𝜏 𝑎 superscript 1 𝐵 𝑎 𝐴 𝑑 superscript 1 𝐶 𝐵 0 𝐵 𝑁 1 𝐵 1 𝐶 0 A+\sum_{a\in\mathbb{Z}/N\mathbb{Z}}Ad(\tau_{a}h^{-1})(B(a))+Ad\Bigl{(}h^{-1}% \cdot h\bigl{(}C,B(0),B(N-1),\dots,B(1)\bigr{)}\Bigr{)}(C)=0 italic_A + ∑ start_POSTSUBSCRIPT italic_a ∈ blackboard_Z / italic_N blackboard_Z end_POSTSUBSCRIPT italic_A italic_d ( italic_τ start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT italic_h start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ) ( italic_B ( italic_a ) ) + italic_A italic_d ( italic_h start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ⋅ italic_h ( italic_C , italic_B ( 0 ) , italic_B ( italic_N - 1 ) , … , italic_B ( 1 ) ) ) ( italic_C ) = 0

where τ a subscript 𝜏 𝑎 \tau_{a} italic_τ start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT ( a / N 𝑎 𝑁 a\in\mathbb{Z}/N\mathbb{Z} italic_a ∈ blackboard_Z / italic_N blackboard_Z ) is the automorphism defined by A A maps-to 𝐴 𝐴 A\mapsto A italic_A ↦ italic_A and B ( c ) B ( c + a ) maps-to 𝐵 𝑐 𝐵 𝑐 𝑎 B(c)\mapsto B(c+a) italic_B ( italic_c ) ↦ italic_B ( italic_c + italic_a ) for all c / N 𝑐 𝑁 c\in\mathbb{Z}/N\mathbb{Z} italic_c ∈ blackboard_Z / italic_N blackboard_Z .


Definition 4.1 .

Let

θ ( x , y ) = - x 1 + x y , 𝜃 𝑥 𝑦 𝑥 1 𝑥 𝑦 \theta(x,y)=\dfrac{-x}{1+xy}\,, italic_θ ( italic_x , italic_y ) = divide start_ARG - italic_x end_ARG start_ARG 1 + italic_x italic_y end_ARG ,

and define the region of large coefficients of Diophantine approximation to be

𝒟 = { P Γ | θ ( P ) > τ , θ ( 𝒯 - 1 ( P ) ) > τ } . 𝒟 conditional-set 𝑃 Γ formulae-sequence 𝜃 𝑃 𝜏 𝜃 superscript 𝒯 1 𝑃 𝜏 \mathcal{D}=\big{\{}\,P\in\Gamma\;|\;\theta(P)>\tau,\,\theta(\,\mathcal{T}^{-1% }(P)\,)>\tau\,\big{\}}\,. caligraphic_D = { italic_P ∈ roman_Γ | italic_θ ( italic_P ) > italic_τ , italic_θ ( caligraphic_T start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ( italic_P ) ) > italic_τ } .

Definition 3 .

Let the function s 𝑠 s italic_s be defined on 0 subscript 0 \mathbb{N}_{0} blackboard_N start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT by

s ( n ) = { 1 if n = m 2 , 0 otherwise. 𝑠 𝑛 cases 1 if 𝑛 superscript 𝑚 2 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 0 otherwise. 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 s(n)=\begin{cases}1\quad\text{if\ }n=m^{2},\\ 0\quad\text{otherwise.}\end{cases} italic_s ( italic_n ) = { start_ROW start_CELL 1 if italic_n = italic_m start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT , end_CELL start_CELL end_CELL end_ROW start_ROW start_CELL 0 otherwise. end_CELL start_CELL end_CELL end_ROW

Definition 0 .

Let ( Λ 0 , Λ 1 ) subscript normal-Λ 0 subscript normal-Λ 1 (\Lambda_{0},\Lambda_{1}) ( roman_Λ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , roman_Λ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) be a cleanly intersecting pair of Lagrangians in codimension k 𝑘 k italic_k in T * ( X ) \ 0 normal-\ superscript 𝑇 𝑋 0 T^{*}(X)\backslash 0 italic_T start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT ( italic_X ) \ 0 . The space of paired Lagrangian distributions of order p , l 𝑝 𝑙 p,l\in\mathbb{R} italic_p , italic_l ∈ blackboard_R associated to ( Λ 0 , Λ 1 ) subscript normal-Λ 0 subscript normal-Λ 1 (\Lambda_{0},\Lambda_{1}) ( roman_Λ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , roman_Λ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) , denoted by I p , l ( Λ 0 , Λ 1 ) superscript 𝐼 𝑝 𝑙 subscript normal-Λ 0 subscript normal-Λ 1 I^{p,l}(\Lambda_{0},\Lambda_{1}) italic_I start_POSTSUPERSCRIPT italic_p , italic_l end_POSTSUPERSCRIPT ( roman_Λ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , roman_Λ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) , is the set of all locally finite sums of elements of I p + 1 ( Λ 0 ) + I p ( Λ 1 ) superscript 𝐼 𝑝 1 subscript normal-Λ 0 superscript 𝐼 𝑝 subscript normal-Λ 1 I^{p+1}(\Lambda_{0})+I^{p}(\Lambda_{1}) italic_I start_POSTSUPERSCRIPT italic_p + 1 end_POSTSUPERSCRIPT ( roman_Λ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) + italic_I start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT ( roman_Λ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) and distributions of the form

u ( x ) = e i ϕ ( x ; θ ; σ ) a ( x ; θ ; σ ) 𝑑 θ 𝑑 σ , 𝑢 𝑥 superscript 𝑒 𝑖 italic-ϕ 𝑥 𝜃 𝜎 𝑎 𝑥 𝜃 𝜎 differential-d 𝜃 differential-d 𝜎 u(x)=\int e^{i\phi(x;\theta;\sigma)}a(x;\theta;\sigma)d\theta d\sigma, italic_u ( italic_x ) = ∫ italic_e start_POSTSUPERSCRIPT italic_i italic_ϕ ( italic_x ; italic_θ ; italic_σ ) end_POSTSUPERSCRIPT italic_a ( italic_x ; italic_θ ; italic_σ ) italic_d italic_θ italic_d italic_σ , (2.3)

where a S p ~ , l ~ ( X × ( N \ 0 ) × k ) 𝑎 superscript 𝑆 normal-~ 𝑝 normal-~ 𝑙 𝑋 normal-\ superscript 𝑁 0 superscript 𝑘 a\in S^{\tilde{p},\tilde{l}}(X\times(\mathbb{R}^{N}\backslash 0)\times\mathbb{% R}^{k}) italic_a ∈ italic_S start_POSTSUPERSCRIPT ~ start_ARG italic_p end_ARG , ~ start_ARG italic_l end_ARG end_POSTSUPERSCRIPT ( italic_X × ( blackboard_R start_POSTSUPERSCRIPT italic_N end_POSTSUPERSCRIPT \ 0 ) × blackboard_R start_POSTSUPERSCRIPT italic_k end_POSTSUPERSCRIPT ) , with p = p ~ + l ~ + N + k 2 - dim X 4 𝑝 normal-~ 𝑝 normal-~ 𝑙 𝑁 𝑘 2 dimension 𝑋 4 p=\tilde{p}+\tilde{l}+\frac{N+k}{2}-\frac{\dim X}{4} italic_p = ~ start_ARG italic_p end_ARG + ~ start_ARG italic_l end_ARG + divide start_ARG italic_N + italic_k end_ARG start_ARG 2 end_ARG - divide start_ARG roman_dim italic_X end_ARG start_ARG 4 end_ARG , l = - l ~ - k 2 𝑙 normal-~ 𝑙 𝑘 2 l=-\tilde{l}-\frac{k}{2} italic_l = - ~ start_ARG italic_l end_ARG - divide start_ARG italic_k end_ARG start_ARG 2 end_ARG , and ϕ ( x ; θ ; σ ) italic-ϕ 𝑥 𝜃 𝜎 \phi(x;\theta;\sigma) italic_ϕ ( italic_x ; italic_θ ; italic_σ ) is multiphase parametrizing ( Λ 0 , Λ 1 ) subscript normal-Λ 0 subscript normal-Λ 1 (\Lambda_{0},\Lambda_{1}) ( roman_Λ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , roman_Λ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) on a conic neighborhood of a point λ 0 Λ 0 Λ 1 subscript 𝜆 0 subscript normal-Λ 0 subscript normal-Λ 1 \lambda_{0}\in\Lambda_{0}\cap\Lambda_{1} italic_λ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ∈ roman_Λ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ∩ roman_Λ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT .


Definition 2.1 .

An algebra L 𝐿 L italic_L over a field F 𝐹 F italic_F is called a Leibniz algebra if for any x , y , z L 𝑥 𝑦 𝑧 𝐿 x,y,z\in L italic_x , italic_y , italic_z ∈ italic_L the Leibniz identity

[ [ x , y ] , z ] = [ [ x , z ] , y ] + [ x , [ y , z ] ] 𝑥 𝑦 𝑧 𝑥 𝑧 𝑦 𝑥 𝑦 𝑧 [[x,y],z]=[[x,z],y]+[x,[y,z]] [ [ italic_x , italic_y ] , italic_z ] = [ [ italic_x , italic_z ] , italic_y ] + [ italic_x , [ italic_y , italic_z ] ]

is satisfied, where [ - , - ] [-,-] [ - , - ] is the multiplication in L 𝐿 L italic_L .


Definition 3.1 .

For a q 𝑞 q italic_q -difference equation

a ( x ) u ( x q 2 ) + b ( x ) u ( x q ) + c ( x ) u ( x ) = 0 , 𝑎 𝑥 𝑢 𝑥 superscript 𝑞 2 𝑏 𝑥 𝑢 𝑥 𝑞 𝑐 𝑥 𝑢 𝑥 0 a(x)u(xq^{2})+b(x)u(xq)+c(x)u(x)=0, italic_a ( italic_x ) italic_u ( italic_x italic_q start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) + italic_b ( italic_x ) italic_u ( italic_x italic_q ) + italic_c ( italic_x ) italic_u ( italic_x ) = 0 ,

a shearing transformation is the following transformation:

x = t 2 , p = q , v ( t ) = u ( x ) . formulae-sequence 𝑥 superscript 𝑡 2 formulae-sequence 𝑝 𝑞 𝑣 𝑡 𝑢 𝑥 x=t^{2},\ p=\sqrt{q},\ v(t)=u(x). italic_x = italic_t start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT , italic_p = square-root start_ARG italic_q end_ARG , italic_v ( italic_t ) = italic_u ( italic_x ) .

The shearing transform of the q 𝑞 q italic_q -difference equation is given by

a ( t 2 ) v ( t p 2 ) + b ( t 2 ) v ( t p ) + c ( t 2 ) v ( t ) = 0 . 𝑎 superscript 𝑡 2 𝑣 𝑡 superscript 𝑝 2 𝑏 superscript 𝑡 2 𝑣 𝑡 𝑝 𝑐 superscript 𝑡 2 𝑣 𝑡 0 a(t^{2})v(tp^{2})+b(t^{2})v(tp)+c(t^{2})v(t)=0. italic_a ( italic_t start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) italic_v ( italic_t italic_p start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) + italic_b ( italic_t start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) italic_v ( italic_t italic_p ) + italic_c ( italic_t start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) italic_v ( italic_t ) = 0 .

Definition 2.2 .

An MV-algebra is a BL-algebra satisfying

x = x . fragments x similar-to similar-to x . x=\sim\sim x. italic_x = ∼ ∼ italic_x . (inv)

A well known example of MV-algebra is the standard MV-algebra [ 0 , 1 ] Ł = [ 0 , 1 ] , * , , min , max , 0 , 1 subscript 0 1 Ł 0 1 normal-⇒ 0 1 [0,1]_{\text{\L}}=\\ \left\langle[0,1],*,\Rightarrow,\min,\max,0,1\right\rangle [ 0 , 1 ] start_POSTSUBSCRIPT Ł end_POSTSUBSCRIPT = ⟨ [ 0 , 1 ] , * , ⇒ , roman_min , roman_max , 0 , 1 ⟩ , where x * y = max ( 0 , x + y - 1 ) 𝑥 𝑦 0 𝑥 𝑦 1 x*y=\max(0,x+y-1) italic_x * italic_y = roman_max ( 0 , italic_x + italic_y - 1 ) and x y = min ( 1 , 1 - x + y ) normal-⇒ 𝑥 𝑦 1 1 𝑥 𝑦 x\Rightarrow y=\min(1,1-x+y) italic_x ⇒ italic_y = roman_min ( 1 , 1 - italic_x + italic_y ) .

Definition 2.5 ( [ Fer92 , BF00 ] ) .

A hoop is a structure 𝒜 = A , * , , 1 𝒜 𝐴 normal-⇒ 1 \mathcal{A}=\langle A,*,\Rightarrow,1\rangle caligraphic_A = ⟨ italic_A , * , ⇒ , 1 ⟩ such that A , * , 1 𝐴 1 \langle A,*,1\rangle ⟨ italic_A , * , 1 ⟩ is a commutative monoid, and normal-⇒ \Rightarrow is a binary operation such that

x x = 1 , x ( y z ) = ( x * y ) z and x * ( x y ) = y * ( y x ) . fragments x x 1 , x fragments ( y z ) fragments ( x y ) z italic- and italic- x fragments ( x y ) y fragments ( y x ) . x\Rightarrow x=1,\hskip 14.226378ptx\Rightarrow(y\Rightarrow z)=(x*y)% \Rightarrow z\hskip 14.226378pt\mathrm{and}\hskip 14.226378ptx*(x\Rightarrow y% )=y*(y\Rightarrow x). italic_x ⇒ italic_x = 1 , italic_x ⇒ ( italic_y ⇒ italic_z ) = ( italic_x * italic_y ) ⇒ italic_z roman_and italic_x * ( italic_x ⇒ italic_y ) = italic_y * ( italic_y ⇒ italic_x ) .

Definition 3 .

We say that the vector field X 𝑋 X italic_X has the Lipschitz periodic shadowing property ( X LipPerSh 𝑋 LipPerSh X\in\operatorname{LipPerSh} italic_X ∈ roman_LipPerSh ) if there exist d 0 subscript 𝑑 0 d_{0} italic_d start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT and > 0 0 {\cal L}>0 caligraphic_L > 0 such that if y : M : 𝑦 maps-to 𝑀 y:\mathds{R}\mapsto M italic_y : blackboard_R ↦ italic_M is a periodic d 𝑑 d italic_d - pseudotrajectory for d d 0 𝑑 subscript 𝑑 0 d\leq d_{0} italic_d ≤ italic_d start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , then y ( t ) 𝑦 𝑡 y(t) italic_y ( italic_t ) is d - limit-from 𝑑 {\cal L}d- caligraphic_L italic_d - shadowed by a periodic trajectory , that is, there exists a trajectory x ( t ) 𝑥 𝑡 x(t) italic_x ( italic_t ) of X 𝑋 X italic_X and an increasing homeomorphism α ( t ) 𝛼 𝑡 \alpha(t) italic_α ( italic_t ) of the real line satisfying inequalities ( 1 ) and ( 2 ) and such that

x ( t + ω ) = x ( t ) 𝑥 𝑡 𝜔 𝑥 𝑡 x(t+\omega)=x(t) italic_x ( italic_t + italic_ω ) = italic_x ( italic_t )

for some ω > 0 𝜔 0 \omega>0 italic_ω > 0 .

The last equality implies that x ( t ) 𝑥 𝑡 x(t) italic_x ( italic_t ) is either a closed trajectory or a rest point of the flow ϕ italic-ϕ \phi italic_ϕ .


Definition 2.1 .

Let R ( 0 , ] 𝑅 0 R\in(0,\,\infty] italic_R ∈ ( 0 , ∞ ] be fixed. We denote by 𝔏 R subscript 𝔏 𝑅 \mathfrak{L}_{R} fraktur_L start_POSTSUBSCRIPT italic_R end_POSTSUBSCRIPT the class of smooth functions ϑ : normal-: italic-ϑ normal-→ \vartheta\colon\mathbb{R}\to\mathbb{R} italic_ϑ : blackboard_R → blackboard_R for which a quotient, and hence all quotients (see comment at the beginning of the Proof of Theorem 1 ) of independent solutions of

(2.5) y ′′ ( x ) + ϑ ( x ) y ( x ) = 0 superscript 𝑦 ′′ 𝑥 italic-ϑ 𝑥 𝑦 𝑥 0 y^{\prime\prime}(x)+\vartheta(x)\,y(x)\,=\,0 italic_y start_POSTSUPERSCRIPT ′ ′ end_POSTSUPERSCRIPT ( italic_x ) + italic_ϑ ( italic_x ) italic_y ( italic_x ) = 0

have meromorphic extensions to the R 𝑅 R italic_R -strip

{ z , | z | < R } formulae-sequence 𝑧 𝑧 𝑅 \{z\,\in\mathbb{C}\,,|\Im z|\,<\,R\,\} { italic_z ∈ blackboard_C , | roman_ℑ italic_z | < italic_R }

that are holomorphic and with non-vanishing imaginary part for 0 < z < R 0 𝑧 𝑅 0\,<\,\Im z\,<\,R 0 < roman_ℑ italic_z < italic_R .


1.1 Definition .

Let V 𝑉 V italic_V be a graded vector space, n 2 𝑛 2 n\geq 2 italic_n ≥ 2 , and μ : V n V : 𝜇 superscript 𝑉 tensor-product absent 𝑛 𝑉 \mu:{V}^{\otimes n}\to V italic_μ : italic_V start_POSTSUPERSCRIPT ⊗ italic_n end_POSTSUPERSCRIPT → italic_V a degree d 𝑑 d italic_d linear map. The couple A = ( V , μ ) 𝐴 𝑉 𝜇 A=(V,\mu) italic_A = ( italic_V , italic_μ ) is a degree d 𝑑 d italic_d totally associative n 𝑛 n italic_n -ary algebra if, for each 1 i , j n formulae-sequence 1 𝑖 𝑗 𝑛 1\leq i,j\leq n 1 ≤ italic_i , italic_j ≤ italic_n ,

(1) μ ( 1 1 i - 1 μ 1 1 n - i ) = μ ( 1 1 j - 1 μ 1 1 n - j ) , 𝜇 tensor-product superscript 1 1 tensor-product absent 𝑖 1 𝜇 superscript 1 1 tensor-product absent 𝑛 𝑖 𝜇 tensor-product superscript 1 1 tensor-product absent 𝑗 1 𝜇 superscript 1 1 tensor-product absent 𝑛 𝑗 \mu\left(\hbox{$1\hskip-3.0pt1$}^{\otimes i-1}\otimes\mu\otimes\hbox{$1\hskip-% 3.0pt1$}^{\otimes n-i}\right)=\mu\left(\hbox{$1\hskip-3.0pt1$}^{\otimes j-1}% \otimes\mu\otimes\hbox{$1\hskip-3.0pt1$}^{\otimes n-j}\right), italic_μ ( 1 1 start_POSTSUPERSCRIPT ⊗ italic_i - 1 end_POSTSUPERSCRIPT ⊗ italic_μ ⊗ 1 1 start_POSTSUPERSCRIPT ⊗ italic_n - italic_i end_POSTSUPERSCRIPT ) = italic_μ ( 1 1 start_POSTSUPERSCRIPT ⊗ italic_j - 1 end_POSTSUPERSCRIPT ⊗ italic_μ ⊗ 1 1 start_POSTSUPERSCRIPT ⊗ italic_n - italic_j end_POSTSUPERSCRIPT ) ,

where 1 1 : V V : 1 1 𝑉 𝑉 \hbox{$1\hskip-3.0pt1$}:V\to V 1 1 : italic_V → italic_V denotes the identity map.