Definition 1.1 .

A semitorsor is a set G ๐บ G italic_G together with a map G 3 โ†’ G normal-โ†’ superscript ๐บ 3 ๐บ G^{3}\to G italic_G start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT โ†’ italic_G , ( x , y , z ) โ†ฆ ( x โข y โข z ) maps-to ๐‘ฅ ๐‘ฆ ๐‘ง ๐‘ฅ ๐‘ฆ ๐‘ง (x,y,z)\mapsto(xyz) ( italic_x , italic_y , italic_z ) โ†ฆ ( italic_x italic_y italic_z ) such that the following identity, called the para-associative law , holds:

( x โข y โข ( z โข u โข v ) ) = ( x โข ( u โข z โข y ) โข v ) = ( ( x โข y โข z ) โข u โข v ) . ๐‘ฅ ๐‘ฆ ๐‘ง ๐‘ข ๐‘ฃ ๐‘ฅ ๐‘ข ๐‘ง ๐‘ฆ ๐‘ฃ ๐‘ฅ ๐‘ฆ ๐‘ง ๐‘ข ๐‘ฃ (xy(zuv))=(x(uzy)v)=((xyz)uv)\,. ( italic_x italic_y ( italic_z italic_u italic_v ) ) = ( italic_x ( italic_u italic_z italic_y ) italic_v ) = ( ( italic_x italic_y italic_z ) italic_u italic_v ) .

A torsor is a semitorsor in which, moreover, the following idempotent law holds:

( x โข x โข y ) = y = ( y โข x โข x ) . ๐‘ฅ ๐‘ฅ ๐‘ฆ ๐‘ฆ ๐‘ฆ ๐‘ฅ ๐‘ฅ (xxy)=y=(yxx)\,. ( italic_x italic_x italic_y ) = italic_y = ( italic_y italic_x italic_x ) .

Definition 1.3 .

The commutator in an algebra is the bilinear operation

[ a , b ] = a โข b - b โข a . ๐‘Ž ๐‘ ๐‘Ž ๐‘ ๐‘ ๐‘Ž [a,b]=ab-ba. [ italic_a , italic_b ] = italic_a italic_b - italic_b italic_a .

This operation is anticommutative : it satisfies [ a , b ] + [ b , a ] โ‰ก 0 ๐‘Ž ๐‘ ๐‘ ๐‘Ž 0 [a,b]+[b,a]\equiv 0 [ italic_a , italic_b ] + [ italic_b , italic_a ] โ‰ก 0 .

Definition 1.8 .

The anticommutator in an algebra is the bilinear operation

a โˆ˜ b = a โข b + b โข a ; ๐‘Ž ๐‘ ๐‘Ž ๐‘ ๐‘ ๐‘Ž a\circ b=ab+ba; italic_a โˆ˜ italic_b = italic_a italic_b + italic_b italic_a ;

we omit the scalar 1 2 1 2 \frac{1}{2} divide start_ARG 1 end_ARG start_ARG 2 end_ARG . This operation is commutative : it satisfies a โˆ˜ b - b โˆ˜ a โ‰ก 0 ๐‘Ž ๐‘ ๐‘ ๐‘Ž 0 a\circ b-b\circ a\equiv 0 italic_a โˆ˜ italic_b - italic_b โˆ˜ italic_a โ‰ก 0 .

Definition 2.6 .

The dicommutator in a dialgebra is the bilinear operation

โŸจ a , b โŸฉ = a โŠฃ b - b โŠข a . does-not-prove ๐‘Ž ๐‘ ๐‘Ž ๐‘ ๐‘ proves ๐‘Ž \langle a,b\rangle=a\dashv b-b\vdash a. โŸจ italic_a , italic_b โŸฉ = italic_a โŠฃ italic_b - italic_b โŠข italic_a .

In general, this operation is not anticommutative.

Definition 2.13 .

The antidicommutator in a dialgebra is the bilinear operation

a โ‹† b = a โŠฃ b + b โŠข a . does-not-prove โ‹† ๐‘Ž ๐‘ ๐‘Ž ๐‘ ๐‘ proves ๐‘Ž a\star b=a\dashv b+b\vdash a. italic_a โ‹† italic_b = italic_a โŠฃ italic_b + italic_b โŠข italic_a .

In general, this operation is not commutative.


Definition 1

รพ Let ๐‘ƒ๐ด - superscript ๐‘ƒ๐ด \mathit{PA}^{-} italic_PA start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT be the theory of discretely ordered commutative semirings with the least element. That is, ๐‘ƒ๐ด - superscript ๐‘ƒ๐ด \mathit{PA}^{-} italic_PA start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT is the first-order theory with equality in the language โŸจ 0 , 1 , + , โ‹… , โ‰ค โŸฉ 0 1 โ‹… \langle 0,1,{+},{\cdot},{\leq}\rangle โŸจ 0 , 1 , + , โ‹… , โ‰ค โŸฉ , axiomatized by

(A1) x + 0 = x ๐‘ฅ 0 ๐‘ฅ \displaystyle x+0=x italic_x + 0 = italic_x
(A2) x + y = y + x ๐‘ฅ ๐‘ฆ ๐‘ฆ ๐‘ฅ \displaystyle x+y=y+x italic_x + italic_y = italic_y + italic_x
(A3) ( x + y ) + z = x + ( y + z ) ๐‘ฅ ๐‘ฆ ๐‘ง ๐‘ฅ ๐‘ฆ ๐‘ง \displaystyle(x+y)+z=x+(y+z) ( italic_x + italic_y ) + italic_z = italic_x + ( italic_y + italic_z )
(M1) x โ‹… 1 = x โ‹… ๐‘ฅ 1 ๐‘ฅ \displaystyle x\cdot 1=x italic_x โ‹… 1 = italic_x
(M2) x โ‹… y = y โ‹… x โ‹… ๐‘ฅ ๐‘ฆ โ‹… ๐‘ฆ ๐‘ฅ \displaystyle x\cdot y=y\cdot x italic_x โ‹… italic_y = italic_y โ‹… italic_x
(M3) ( x โ‹… y ) โ‹… z = x โ‹… ( y โ‹… z ) โ‹… โ‹… ๐‘ฅ ๐‘ฆ ๐‘ง โ‹… ๐‘ฅ โ‹… ๐‘ฆ ๐‘ง \displaystyle(x\cdot y)\cdot z=x\cdot(y\cdot z) ( italic_x โ‹… italic_y ) โ‹… italic_z = italic_x โ‹… ( italic_y โ‹… italic_z )
(AM) x โ‹… ( y + z ) = x โ‹… y + x โ‹… z โ‹… ๐‘ฅ ๐‘ฆ ๐‘ง โ‹… ๐‘ฅ ๐‘ฆ โ‹… ๐‘ฅ ๐‘ง \displaystyle x\cdot(y+z)=x\cdot y+x\cdot z italic_x โ‹… ( italic_y + italic_z ) = italic_x โ‹… italic_y + italic_x โ‹… italic_z
(O1) x โ‰ค y โˆจ y โ‰ค x ๐‘ฅ ๐‘ฆ ๐‘ฆ ๐‘ฅ \displaystyle x\leq y\lor y\leq x italic_x โ‰ค italic_y โˆจ italic_y โ‰ค italic_x
(O2) ( x โ‰ค y โˆง y โ‰ค z ) โ†’ x โ‰ค z fragments fragments ( x y y z ) โ†’ x z \displaystyle(x\leq y\land y\leq z)\to x\leq z ( italic_x โ‰ค italic_y โˆง italic_y โ‰ค italic_z ) โ†’ italic_x โ‰ค italic_z
(S1) x + 1 โ‰ฐ x not-less-than-nor-greater-than ๐‘ฅ 1 ๐‘ฅ \displaystyle x+1\nleq x italic_x + 1 โ‰ฐ italic_x
(S2) x โ‰ค y โ†’ ( x = y โˆจ x + 1 โ‰ค y ) fragments x y โ†’ fragments ( x y x 1 y ) \displaystyle x\leq y\to(x=y\lor x+1\leq y) italic_x โ‰ค italic_y โ†’ ( italic_x = italic_y โˆจ italic_x + 1 โ‰ค italic_y )
(OA) x โ‰ค y โ†’ x + z โ‰ค y + z ๐‘ฅ ๐‘ฆ โ†’ ๐‘ฅ ๐‘ง ๐‘ฆ ๐‘ง \displaystyle x\leq y\to x+z\leq y+z italic_x โ‰ค italic_y โ†’ italic_x + italic_z โ‰ค italic_y + italic_z
(OM) x โ‰ค y โ†’ x โ‹… z โ‰ค y โ‹… z ๐‘ฅ ๐‘ฆ โ†’ โ‹… ๐‘ฅ ๐‘ง โ‹… ๐‘ฆ ๐‘ง \displaystyle x\leq y\to x\cdot z\leq y\cdot z italic_x โ‰ค italic_y โ†’ italic_x โ‹… italic_z โ‰ค italic_y โ‹… italic_z

Let x < y ๐‘ฅ ๐‘ฆ x<y italic_x < italic_y abbreviate x โ‰ค y โˆง x โ‰  y ๐‘ฅ ๐‘ฆ ๐‘ฅ ๐‘ฆ x\leq y\land x\neq y italic_x โ‰ค italic_y โˆง italic_x โ‰  italic_y .

Note that many authors (e.g., Kaye [ 2 ] or Krajรญฤek [ 3 ] ) use a stronger definition of ๐‘ƒ๐ด - superscript ๐‘ƒ๐ด \mathit{PA}^{-} italic_PA start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT , namely as the theory of nonnegative parts of discretely ordered rings, which includes the subtraction axiom x โ‰ค y โ†’ โˆƒ z ( z + x = y ) fragments x y โ†’ z fragments ( z x y ) x\leq y\to\exists z\,(z+x=y) italic_x โ‰ค italic_y โ†’ โˆƒ italic_z ( italic_z + italic_x = italic_y ) . In contrast, our version of ๐‘ƒ๐ด - superscript ๐‘ƒ๐ด \mathit{PA}^{-} italic_PA start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT is a universal theory, hence it does not even prove the existence of predecessors (e.g., the semiring โ„• โข [ x ] โ„• delimited-[] ๐‘ฅ \mathbb{N}[x] blackboard_N [ italic_x ] of polynomials with nonnegative integer coefficients, ordered lexicographically, is a model of ๐‘ƒ๐ด - superscript ๐‘ƒ๐ด \mathit{PA}^{-} italic_PA start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT ).

Sequentiality can be defined in several ways. For definiteness, we will follow the (relatively restrictive) definition of Pudlรกk [ 5 ] : a theory T ๐‘‡ T italic_T is sequential if it contains Robinsonโ€™s arithmetic Q ๐‘„ Q italic_Q relativized to some formula N โข ( x ) ๐‘ ๐‘ฅ N(x) italic_N ( italic_x ) , and there is a formula ฮฒ โข ( x , i , w ) ๐›ฝ ๐‘ฅ ๐‘– ๐‘ค \beta(x,i,w) italic_ฮฒ ( italic_x , italic_i , italic_w ) (whose intended meaning is that x ๐‘ฅ x italic_x is the i ๐‘– i italic_i th element of a sequence w ๐‘ค w italic_w ) such that T ๐‘‡ T italic_T proves

โˆ€ w , x , k โˆƒ w โ€ฒ โˆ€ i , y [ ( N ( k ) โˆง i โ‰ค k ) โ†’ [ ฮฒ ( y , i , w โ€ฒ ) โ†” ( ( i < k โˆง ฮฒ ( y , i , w ) ) โˆจ ( i = k โˆง y = x ) ) ] ] . fragments for-all w , x , k superscript ๐‘ค โ€ฒ for-all i , y fragments [ fragments ( N fragments ( k ) i k ) โ†’ fragments [ ฮฒ fragments ( y , i , superscript ๐‘ค โ€ฒ ) โ†” fragments ( fragments ( i k ฮฒ fragments ( y , i , w ) ) fragments ( i k y x ) ) ] ] . \forall w,x,k\,\exists w^{\prime}\,\forall i,y\,[(N(k)\land i\leq k)\to[\,% \beta(y,i,w^{\prime})\leftrightarrow((i<k\land\beta(y,i,w))\lor(i=k\land y=x))% ]]. โˆ€ italic_w , italic_x , italic_k โˆƒ italic_w start_POSTSUPERSCRIPT โ€ฒ end_POSTSUPERSCRIPT โˆ€ italic_i , italic_y [ ( italic_N ( italic_k ) โˆง italic_i โ‰ค italic_k ) โ†’ [ italic_ฮฒ ( italic_y , italic_i , italic_w start_POSTSUPERSCRIPT โ€ฒ end_POSTSUPERSCRIPT ) โ†” ( ( italic_i < italic_k โˆง italic_ฮฒ ( italic_y , italic_i , italic_w ) ) โˆจ ( italic_i = italic_k โˆง italic_y = italic_x ) ) ] ] .

A definable set is called inductive if it contains 0 0 and is closed under successor, and it is a cut if it is furthermore downward closed.


Definition .

Pseudo-quaternions ๐•‚ ๐•‚ \mathbb{K} blackboard_K (kwaternions) are numbers of type

q = a + b โข ๐ข + c โข ๐ฃ + d โข ๐ค ๐‘ž ๐‘Ž ๐‘ ๐ข ๐‘ ๐ฃ ๐‘‘ ๐ค q=a+b\mathbf{i}+c\mathbf{j}+d\mathbf{k} italic_q = italic_a + italic_b bold_i + italic_c bold_j + italic_d bold_k (3.1)

where a , b , c , d โˆˆ โ„ ๐‘Ž ๐‘ ๐‘ ๐‘‘ โ„ a,b,c,d\in\mathbb{R} italic_a , italic_b , italic_c , italic_d โˆˆ blackboard_R and where ๐ข ๐ข \mathbf{i} bold_i , ๐ฃ ๐ฃ \mathbf{j} bold_j , ๐ค ๐ค \mathbf{k} bold_k are independent โ€œimaginary unitsโ€. Addition in ๐•‚ ๐•‚ \mathbb{K} blackboard_K is defined the usual way. Multiplication is determined by the following rules for the โ€œimaginary unitsโ€:

๐ข 2 superscript ๐ข 2 \displaystyle\mathbf{i}^{2} bold_i start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT = 1 absent 1 \displaystyle=1 = 1 ๐ข๐ฃ ๐ข๐ฃ \displaystyle\qquad\mathbf{ij} bold_ij = ๐ค absent ๐ค \displaystyle=\mathbf{k} = bold_k (3.2)
๐ฃ 2 superscript ๐ฃ 2 \displaystyle\mathbf{j}^{2} bold_j start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT = 1 absent 1 \displaystyle=1 = 1 ๐ฃ๐ค ๐ฃ๐ค \displaystyle\qquad\mathbf{jk} bold_jk = - ๐ข absent ๐ข \displaystyle=-\mathbf{i} = - bold_i
๐ค 2 superscript ๐ค 2 \displaystyle\mathbf{k}^{2} bold_k start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT = - 1 absent 1 \displaystyle=-1 = - 1 ๐ค๐ข ๐ค๐ข \displaystyle\qquad\mathbf{ki} bold_ki = - ๐ฃ absent ๐ฃ \displaystyle=-\mathbf{j} = - bold_j

plus the anticommutation rules for any pair of distinct imaginary units: ๐ข๐ฃ = - ๐ฃ๐ข ๐ข๐ฃ ๐ฃ๐ข \mathbf{ij}=-\mathbf{ji} bold_ij = - bold_ji , ๐ฃ๐ค = - ๐ค๐ฃ ๐ฃ๐ค ๐ค๐ฃ \mathbf{jk}=-\mathbf{kj} bold_jk = - bold_kj , and ๐ค๐ข = - ๐ข๐ค ๐ค๐ข ๐ข๐ค \mathbf{ki}=-\mathbf{ik} bold_ki = - bold_ik . [The rules are easy to remember: the minus sign appears only when ๐ค ๐ค \mathbf{k} bold_k is involved in the product].

Definition 4.2 .

For two vectors u = [ m , n ] T ๐‘ข superscript ๐‘š ๐‘› ๐‘‡ u=[m,n]^{T} italic_u = [ italic_m , italic_n ] start_POSTSUPERSCRIPT italic_T end_POSTSUPERSCRIPT and w = [ m โ€ฒ , n โ€ฒ ] T ๐‘ค superscript superscript ๐‘š โ€ฒ superscript ๐‘› โ€ฒ ๐‘‡ w=[m^{\prime},n^{\prime}]^{T} italic_w = [ italic_m start_POSTSUPERSCRIPT โ€ฒ end_POSTSUPERSCRIPT , italic_n start_POSTSUPERSCRIPT โ€ฒ end_POSTSUPERSCRIPT ] start_POSTSUPERSCRIPT italic_T end_POSTSUPERSCRIPT , the value of the symplectic form ฯ‰ ๐œ” \omega italic_ฯ‰ is defined as

ฯ‰ โข ( u , w ) = m โข n โ€ฒ - n โข m โ€ฒ . ๐œ” ๐‘ข ๐‘ค ๐‘š superscript ๐‘› โ€ฒ ๐‘› superscript ๐‘š โ€ฒ \omega(u,w)=mn^{\prime}-nm^{\prime}. italic_ฯ‰ ( italic_u , italic_w ) = italic_m italic_n start_POSTSUPERSCRIPT โ€ฒ end_POSTSUPERSCRIPT - italic_n italic_m start_POSTSUPERSCRIPT โ€ฒ end_POSTSUPERSCRIPT . (4.3)

Conjugation A โˆ— superscript ๐ด โˆ— A^{\ast} italic_A start_POSTSUPERSCRIPT โˆ— end_POSTSUPERSCRIPT of a matrix A ๐ด A italic_A representing an endomorphism in ๐„ ๐„ \mathbf{E} bold_E is the adjugate matrix, namely

if โข A = [ a b c d ] โข then โข A โˆ— = [ d - b - c a ] if ๐ด delimited-[] ๐‘Ž ๐‘ missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression ๐‘ ๐‘‘ missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression then superscript ๐ด โˆ— delimited-[] ๐‘‘ ๐‘ missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression ๐‘ ๐‘Ž missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression \hbox{if }A=\left[{{\begin{array}[]{*{20}c}a&b\\ c&d\\ \end{array}}}\right]\hbox{ then }A^{\ast}=\left[{{\begin{array}[]{*{20}c}d&{-b% }\\ {-c}&a\\ \end{array}}}\right] if italic_A = [ start_ARRAY start_ROW start_CELL italic_a end_CELL start_CELL italic_b end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL end_ROW start_ROW start_CELL italic_c end_CELL start_CELL italic_d end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL end_ROW end_ARRAY ] then italic_A start_POSTSUPERSCRIPT โˆ— end_POSTSUPERSCRIPT = [ start_ARRAY start_ROW start_CELL italic_d end_CELL start_CELL - italic_b end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL end_ROW start_ROW start_CELL - italic_c end_CELL start_CELL italic_a end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL end_ROW end_ARRAY ] (4.4)

Conjugation of vectors in ๐„ ๐„ \mathbf{E} bold_E is a map into the dual space, expressed in terms of matrices as

[ m n ] โˆ— = [ - n m ] . superscript delimited-[] ๐‘š missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression ๐‘› missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression โˆ— delimited-[] ๐‘› ๐‘š missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression \left[{{\begin{array}[]{*{20}c}m\\ n\\ \end{array}}}\right]^{\ast}\quad=\quad\left[{{\begin{array}[]{*{20}c}{-n}&m\\ \end{array}}}\right]\,. [ start_ARRAY start_ROW start_CELL italic_m end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL end_ROW start_ROW start_CELL italic_n end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL end_ROW end_ARRAY ] start_POSTSUPERSCRIPT โˆ— end_POSTSUPERSCRIPT = [ start_ARRAY start_ROW start_CELL - italic_n end_CELL start_CELL italic_m end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL end_ROW end_ARRAY ] . (4.5)

Now, the symplectic product may be performed via matrix multiplication: ฯ‰ โข ( u , w ) = u โˆ— โข w ๐œ” ๐‘ข ๐‘ค superscript ๐‘ข โˆ— ๐‘ค \omega(u,w)=u^{\ast}w italic_ฯ‰ ( italic_u , italic_w ) = italic_u start_POSTSUPERSCRIPT โˆ— end_POSTSUPERSCRIPT italic_w . The map defined by ( 4.5 ) is the symplectic conjugation of the spinor. Also, note that A โข A * = A * โข A = det โก ( A ) โข I ๐ด superscript ๐ด superscript ๐ด ๐ด ๐ด ๐ผ AA^{*}=A^{*}A=\det(A)I italic_A italic_A start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT = italic_A start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT italic_A = roman_det ( italic_A ) italic_I .


Definition 1 .

ฯ• italic-ฯ• \phi italic_ฯ• is zero-preserving if

ฯ• โข ( โˆ… ) = 0 . italic-ฯ• 0 \phi(\emptyset)=0\,. italic_ฯ• ( โˆ… ) = 0 . (4)
Definition 2 .

ฯ• italic-ฯ• \phi italic_ฯ• is unital if

ฯ• โข ( ๐Ÿ ) = 1 . italic-ฯ• 1 1 \phi({{\mathbf{1}}})=1\,. italic_ฯ• ( bold_1 ) = 1 . (5)
Definition 5 .

ฯ• italic-ฯ• \phi italic_ฯ• is MP if

ฯ• ( A โ†’ B ) = 1 , ฯ• ( A ) = 1 โ‡’ ฯ• ( B ) = 1 , โˆ€ A , B โˆˆ ๐”„ . fragments ฯ• fragments ( A โ†’ B ) 1 , ฯ• fragments ( A ) 1 โ‡’ ฯ• fragments ( B ) 1 , for-all A , B A . \phi(A\to B)=1\,,\ \phi(A)=1\;\Rightarrow\;\phi(B)=1,\ \ \ \forall A,B\in% \mathfrak{A}\,. italic_ฯ• ( italic_A โ†’ italic_B ) = 1 , italic_ฯ• ( italic_A ) = 1 โ‡’ italic_ฯ• ( italic_B ) = 1 , โˆ€ italic_A , italic_B โˆˆ fraktur_A . (9)
Definition 6 .

ฯ• italic-ฯ• \phi italic_ฯ• is C1 if

ฯ• โข ( A ) = 1 โ‡’ ฯ• โข ( ๐Ÿ + A ) = 0 , โˆ€ A โˆˆ ๐”„ . formulae-sequence italic-ฯ• ๐ด 1 โ‡’ italic-ฯ• 1 ๐ด 0 for-all ๐ด ๐”„ \phi(A)=1\;\Rightarrow\;\phi({\mathbf{1}}+A)=0,\ \ \ \forall A\in\mathfrak{A}. italic_ฯ• ( italic_A ) = 1 โ‡’ italic_ฯ• ( bold_1 + italic_A ) = 0 , โˆ€ italic_A โˆˆ fraktur_A . (10)
Definition 7 .

ฯ• italic-ฯ• \phi italic_ฯ• is C2 if

ฯ• โข ( A ) = 0 โ‡’ ฯ• โข ( ๐Ÿ + A ) = 1 , โˆ€ A โˆˆ ๐”„ . formulae-sequence italic-ฯ• ๐ด 0 โ‡’ italic-ฯ• 1 ๐ด 1 for-all ๐ด ๐”„ \phi(A)=0\;\Rightarrow\;\phi({\mathbf{1}}+A)=1,\ \ \ \forall A\in\mathfrak{A}. italic_ฯ• ( italic_A ) = 0 โ‡’ italic_ฯ• ( bold_1 + italic_A ) = 1 , โˆ€ italic_A โˆˆ fraktur_A . (11)
Definition 8 .

A co-event ฯ• italic-ฯ• \phi italic_ฯ• is preclusive if

ฮผ โข ( A ) = 0 โ‡’ ฯ• โข ( A ) = 0 , โˆ€ A โˆˆ ๐”„ . formulae-sequence ๐œ‡ ๐ด 0 โ‡’ italic-ฯ• ๐ด 0 for-all ๐ด ๐”„ \mu(A)=0\Rightarrow\phi(A)=0,\ \ \ \forall A\in\mathfrak{A}\,. italic_ฮผ ( italic_A ) = 0 โ‡’ italic_ฯ• ( italic_A ) = 0 , โˆ€ italic_A โˆˆ fraktur_A . (13)

Definition 2.1 .

Setting ฯต = 0 italic-ฯต 0 \epsilon=0 italic_ฯต = 0 in ( 2 ) gives

x โ€ฒ = f โข ( x , y , 0 ) , y โ€ฒ = 0 , superscript ๐‘ฅ โ€ฒ ๐‘“ ๐‘ฅ ๐‘ฆ 0 superscript ๐‘ฆ โ€ฒ 0 \begin{array}[]{lcl}x^{\prime}&=&f(x,y,0),\\ y^{\prime}&=&0,\\ \end{array} start_ARRAY start_ROW start_CELL italic_x start_POSTSUPERSCRIPT โ€ฒ end_POSTSUPERSCRIPT end_CELL start_CELL = end_CELL start_CELL italic_f ( italic_x , italic_y , 0 ) , end_CELL end_ROW start_ROW start_CELL italic_y start_POSTSUPERSCRIPT โ€ฒ end_POSTSUPERSCRIPT end_CELL start_CELL = end_CELL start_CELL 0 , end_CELL end_ROW end_ARRAY (3)

which is system of ODEs parametrized by the slow variables y ๐‘ฆ y italic_y . We call ( 3 ) the fast subsystem or layer equations . The associated flow is called the fast flow .

Definition 2.2 .

Considering the singular limit ฯต = 0 italic-ฯต 0 \epsilon=0 italic_ฯต = 0 for ( 1 ) yields:

0 = f โข ( x , y , 0 ) , y ห™ = g โข ( x , y , 0 ) . 0 ๐‘“ ๐‘ฅ ๐‘ฆ 0 ห™ ๐‘ฆ ๐‘” ๐‘ฅ ๐‘ฆ 0 \begin{array}[]{lcl}0&=&f(x,y,0),\\ \dot{y}&=&g(x,y,0).\\ \end{array} start_ARRAY start_ROW start_CELL 0 end_CELL start_CELL = end_CELL start_CELL italic_f ( italic_x , italic_y , 0 ) , end_CELL end_ROW start_ROW start_CELL ห™ start_ARG italic_y end_ARG end_CELL start_CELL = end_CELL start_CELL italic_g ( italic_x , italic_y , 0 ) . end_CELL end_ROW end_ARRAY (4)

System ( 4 ) is a differential-algebraic equation (DAE) called slow subsystem or reduced system . The associated flow is called the slow flow .


Definition 5.3 .

Let A ๐ด A italic_A and B ๐ต B italic_B be subgroups of S X subscript ๐‘† ๐‘‹ S_{X} italic_S start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT and S Y subscript ๐‘† ๐‘Œ S_{Y} italic_S start_POSTSUBSCRIPT italic_Y end_POSTSUBSCRIPT , respectively, where X ๐‘‹ X italic_X and Y ๐‘Œ Y italic_Y are finite disjoint sets. Then we define an action of the group A ร— B ๐ด ๐ต A\times B italic_A ร— italic_B on the set Y X superscript ๐‘Œ ๐‘‹ Y^{X} italic_Y start_POSTSUPERSCRIPT italic_X end_POSTSUPERSCRIPT of functions from X ๐‘‹ X italic_X to Y ๐‘Œ Y italic_Y in the following way: the image of f โˆˆ Y X ๐‘“ superscript ๐‘Œ ๐‘‹ f\in Y^{X} italic_f โˆˆ italic_Y start_POSTSUPERSCRIPT italic_X end_POSTSUPERSCRIPT under ( ฮฑ , ฮฒ ) โˆˆ A ร— B ๐›ผ ๐›ฝ ๐ด ๐ต (\alpha,\beta)\in A\times B ( italic_ฮฑ , italic_ฮฒ ) โˆˆ italic_A ร— italic_B is given by

f ( ฮฑ , ฮฒ ) โข ( x ) = ( f โข ( x ฮฑ ) ) ฮฒ superscript ๐‘“ ๐›ผ ๐›ฝ ๐‘ฅ superscript ๐‘“ superscript ๐‘ฅ ๐›ผ ๐›ฝ f^{(\alpha,\beta)}(x)=\left(f\left(x^{\alpha}\right)\right)^{\beta} italic_f start_POSTSUPERSCRIPT ( italic_ฮฑ , italic_ฮฒ ) end_POSTSUPERSCRIPT ( italic_x ) = ( italic_f ( italic_x start_POSTSUPERSCRIPT italic_ฮฑ end_POSTSUPERSCRIPT ) ) start_POSTSUPERSCRIPT italic_ฮฒ end_POSTSUPERSCRIPT

for all x โˆˆ X ๐‘ฅ ๐‘‹ x\in X italic_x โˆˆ italic_X . We will refer to A ร— B ๐ด ๐ต A\times B italic_A ร— italic_B with this action as a power group .


Definition 1 .

A preLie algebra is a vector space L ๐ฟ L italic_L equipped with a bilinear map โ†ถ normal-โ†ถ \curvearrowleft โ†ถ such that, for all x , y , z ๐‘ฅ ๐‘ฆ ๐‘ง x,y,z italic_x , italic_y , italic_z in L ๐ฟ L italic_L :

( x โ†ถ y ) โ†ถ z - x โ†ถ ( y โ†ถ z ) = ( x โ†ถ z ) โ†ถ y - x โ†ถ ( z โ†ถ y ) . fragments fragments ( x โ†ถ y ) โ†ถ z x โ†ถ fragments ( y โ†ถ z ) fragments ( x โ†ถ z ) โ†ถ y x โ†ถ fragments ( z โ†ถ y ) . (x\curvearrowleft y)\curvearrowleft z-x\curvearrowleft(y\curvearrowleft z)=(x% \curvearrowleft z)\curvearrowleft y-x\curvearrowleft(z\curvearrowleft y). ( italic_x โ†ถ italic_y ) โ†ถ italic_z - italic_x โ†ถ ( italic_y โ†ถ italic_z ) = ( italic_x โ†ถ italic_z ) โ†ถ italic_y - italic_x โ†ถ ( italic_z โ†ถ italic_y ) .

Definition 2.1 .

An algebra ( L , [ โ‹… , โ‹… ] ) ๐ฟ normal-โ‹… normal-โ‹… (L,[\cdot,\cdot]) ( italic_L , [ โ‹… , โ‹… ] ) over a field F ๐น F italic_F is called a Leibniz algebra if for any x , y , z โˆˆ L ๐‘ฅ ๐‘ฆ ๐‘ง ๐ฟ x,y,z\in L italic_x , italic_y , italic_z โˆˆ italic_L the so-called Leibniz identity

[ x , [ y , z ] ] = [ [ x , y ] , z ] - [ [ x , z ] , y ] ๐‘ฅ ๐‘ฆ ๐‘ง ๐‘ฅ ๐‘ฆ ๐‘ง ๐‘ฅ ๐‘ง ๐‘ฆ [x,[y,z]]=[[x,y],z]-[[x,z],y] [ italic_x , [ italic_y , italic_z ] ] = [ [ italic_x , italic_y ] , italic_z ] - [ [ italic_x , italic_z ] , italic_y ]

holds true.


Definition 3.6 (Characteristic mapping) .

Let u ๐‘ข u italic_u and v ๐‘ฃ v italic_v be two distinct points, and the line ( u , v ) ๐‘ข ๐‘ฃ (u,v) ( italic_u , italic_v ) join the points p ๐‘ p italic_p and q ๐‘ž q italic_q . We call q ( fragments q normal-( q( italic_q ( or p ) fragments p normal-) p) italic_p ) the characteristic mapping point of p ( fragments p normal-( p( italic_p ( or q ) fragments q normal-) q) italic_q ) with respect to the basic points u ๐‘ข u italic_u and v ๐‘ฃ v italic_v if

[ u , v ; p , q ] = 1 , ๐‘ข ๐‘ฃ ๐‘ ๐‘ž 1 [u,v;p,q]=1, [ italic_u , italic_v ; italic_p , italic_q ] = 1 ,

and denote q = ฯ‡ ( u , v ) โข ( p ) ๐‘ž subscript ๐œ’ ๐‘ข ๐‘ฃ ๐‘ q=\chi_{(u,v)}(p) italic_q = italic_ฯ‡ start_POSTSUBSCRIPT ( italic_u , italic_v ) end_POSTSUBSCRIPT ( italic_p ) (or p = ฯ‡ ( u , v ) โข ( q ) ๐‘ subscript ๐œ’ ๐‘ข ๐‘ฃ ๐‘ž p=\chi_{(u,v)}(q) italic_p = italic_ฯ‡ start_POSTSUBSCRIPT ( italic_u , italic_v ) end_POSTSUBSCRIPT ( italic_q ) ).


Definition 1.2 .

Given two words w ๐‘ค w italic_w and w โ€ฒ superscript ๐‘ค normal-โ€ฒ w^{\prime} italic_w start_POSTSUPERSCRIPT โ€ฒ end_POSTSUPERSCRIPT in โ„™ * superscript โ„™ {{\mathbb{P}}}^{*} blackboard_P start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT , w ๐‘ค w italic_w is said to be below w โ€ฒ superscript ๐‘ค normal-โ€ฒ w^{\prime} italic_w start_POSTSUPERSCRIPT โ€ฒ end_POSTSUPERSCRIPT if every letter in w ๐‘ค w italic_w is smaller than every letter in w โ€ฒ superscript ๐‘ค normal-โ€ฒ w^{\prime} italic_w start_POSTSUPERSCRIPT โ€ฒ end_POSTSUPERSCRIPT . The partial order โ‰ช much-less-than \ll โ‰ช on โ„™ * superscript โ„™ {{\mathbb{P}}}^{*} blackboard_P start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT is defined as follows:

w โ‰ช w โ€ฒ โ‡” w = w โ€ฒ or w is below w โ€ฒ . iff much-less-than ๐‘ค superscript ๐‘ค โ€ฒ w = w โ€ฒ or w is below w โ€ฒ . \displaystyle w\ll w^{\prime}\iff\text{$w=w^{\prime}$ or $w$ is below $w^{% \prime}$.} italic_w โ‰ช italic_w start_POSTSUPERSCRIPT โ€ฒ end_POSTSUPERSCRIPT โ‡” italic_w = italic_w start_POSTSUPERSCRIPT โ€ฒ end_POSTSUPERSCRIPT or italic_w is below italic_w start_POSTSUPERSCRIPT โ€ฒ end_POSTSUPERSCRIPT . (1.1)

Two words w ๐‘ค w italic_w and w โ€ฒ superscript ๐‘ค normal-โ€ฒ w^{\prime} italic_w start_POSTSUPERSCRIPT โ€ฒ end_POSTSUPERSCRIPT are said to be comparable if w โ‰ช w โ€ฒ much-less-than ๐‘ค superscript ๐‘ค normal-โ€ฒ w\ll w^{\prime} italic_w โ‰ช italic_w start_POSTSUPERSCRIPT โ€ฒ end_POSTSUPERSCRIPT or w โ‰ซ w โ€ฒ much-greater-than ๐‘ค superscript ๐‘ค normal-โ€ฒ w\gg w^{\prime} italic_w โ‰ซ italic_w start_POSTSUPERSCRIPT โ€ฒ end_POSTSUPERSCRIPT , otherwise they are incomparable.


Definition A.2 .

Let X ๐‘‹ X italic_X and X โ€ฒ superscript ๐‘‹ normal-โ€ฒ X^{\prime} italic_X start_POSTSUPERSCRIPT โ€ฒ end_POSTSUPERSCRIPT be two torsors under the action of G ๐บ G italic_G . A map f : X โ†’ X โ€ฒ normal-: ๐‘“ normal-โ†’ ๐‘‹ superscript ๐‘‹ normal-โ€ฒ f:X\to X^{\prime} italic_f : italic_X โ†’ italic_X start_POSTSUPERSCRIPT โ€ฒ end_POSTSUPERSCRIPT is a G ๐บ G italic_G -morphism of torsors if it is G ๐บ G italic_G -equivariant, i.e. for any x โˆˆ X ๐‘ฅ ๐‘‹ x\in X italic_x โˆˆ italic_X and any g โˆˆ g ๐‘” ๐‘” g\in g italic_g โˆˆ italic_g ,

f โข ( g โ‹… x ) = g โ‹… f โข ( x ) . ๐‘“ โ‹… ๐‘” ๐‘ฅ โ‹… ๐‘” ๐‘“ ๐‘ฅ f(g\cdot x)=g\cdot f(x)\;. italic_f ( italic_g โ‹… italic_x ) = italic_g โ‹… italic_f ( italic_x ) .

In other words, we ask for the following diagram to be commutative :

\xymatrix โข G ร— X โข \ar โข [ r โข r ] ฮณ โข \ar โข [ d ] id G ร— f โข & โข & โข X โข \ar โข [ d ] f โข G ร— X โข \ar โข [ r โข r ] ฮณ โ€ฒ โข & โข & โข X โ€ฒ \xymatrix ๐บ ๐‘‹ \ar superscript delimited-[] ๐‘Ÿ ๐‘Ÿ ๐›พ \ar subscript delimited-[] ๐‘‘ subscript id ๐บ ๐‘“ & & ๐‘‹ \ar superscript delimited-[] ๐‘‘ ๐‘“ ๐บ ๐‘‹ \ar subscript delimited-[] ๐‘Ÿ ๐‘Ÿ superscript ๐›พ โ€ฒ & & superscript ๐‘‹ โ€ฒ \xymatrix{G\times X\ar[rr]^{\gamma}\ar[d]_{{\rm id}_{G}\times f}&&X\ar[d]^{f}% \\ G\times X\ar[rr]_{\gamma^{\prime}}&&X^{\prime}} italic_G ร— italic_X [ italic_r italic_r ] start_POSTSUPERSCRIPT italic_ฮณ end_POSTSUPERSCRIPT [ italic_d ] start_POSTSUBSCRIPT roman_id start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT ร— italic_f end_POSTSUBSCRIPT & & italic_X [ italic_d ] start_POSTSUPERSCRIPT italic_f end_POSTSUPERSCRIPT italic_G ร— italic_X [ italic_r italic_r ] start_POSTSUBSCRIPT italic_ฮณ start_POSTSUPERSCRIPT โ€ฒ end_POSTSUPERSCRIPT end_POSTSUBSCRIPT & & italic_X start_POSTSUPERSCRIPT โ€ฒ end_POSTSUPERSCRIPT

Definition A.4 .

Let G ๐บ G italic_G be a group, let p : ๐’œ โ†’ ๐’ณ : ๐‘ โ†’ ๐’œ ๐’ณ p:\mathscr{A}\to\mathcal{X} italic_p : script_A โ†’ caligraphic_X be a Fell bundle over a groupoid, and let q : โ„ฐ โ†’ ฮฉ : ๐‘ž โ†’ โ„ฐ ฮฉ q:\mathscr{E}\to\Omega italic_q : script_E โ†’ roman_ฮฉ be a Banach bundle. Suppose G ๐บ G italic_G acts on ๐’œ ๐’œ \mathscr{A} script_A by Fell-bundle automorphisms, and that both G ๐บ G italic_G and ๐’œ ๐’œ \mathscr{A} script_A act on โ„ฐ โ„ฐ \mathscr{E} script_E (with G ๐บ G italic_G acting by isometric isomorphisms, and ๐’œ ๐’œ \mathscr{A} script_A acting as in [ 17 ] ), with all actions being on the left. We say that the actions of G ๐บ G italic_G and ๐’œ ๐’œ \mathscr{A} script_A on โ„ฐ โ„ฐ \mathscr{E} script_E are covariant if

s โ‹… ( a โ‹… e ) = ( s โ‹… a ) โ‹… ( s โ‹… e ) if s โข ( a ) = ฯ โข ( q โข ( e ) ) . formulae-sequence โ‹… ๐‘  โ‹… ๐‘Ž ๐‘’ โ‹… โ‹… ๐‘  ๐‘Ž โ‹… ๐‘  ๐‘’ if ๐‘  ๐‘Ž ๐œŒ ๐‘ž ๐‘’ s\cdot(a\cdot e)=(s\cdot a)\cdot(s\cdot e)\quad\text{if}\quad s(a)=\rho(q(e)). italic_s โ‹… ( italic_a โ‹… italic_e ) = ( italic_s โ‹… italic_a ) โ‹… ( italic_s โ‹… italic_e ) if italic_s ( italic_a ) = italic_ฯ ( italic_q ( italic_e ) ) .

Definition 2.1

By ฮ“ โ™ฏ superscript normal-ฮ“ normal-โ™ฏ \Gamma^{\sharp} roman_ฮ“ start_POSTSUPERSCRIPT โ™ฏ end_POSTSUPERSCRIPT we denote the alphabet ฮ“ โˆช { โ™ฏ } normal-ฮ“ normal-โ™ฏ \Gamma\cup\{\sharp\} roman_ฮ“ โˆช { โ™ฏ } where โ™ฏ normal-โ™ฏ \sharp โ™ฏ is a special symbol not in ฮ“ normal-ฮ“ \Gamma roman_ฮ“ . Let p ๐‘ p italic_p be any d ๐‘‘ d italic_d -picture of domain [ n ] d superscript delimited-[] ๐‘› ๐‘‘ [n]^{d} [ italic_n ] start_POSTSUPERSCRIPT italic_d end_POSTSUPERSCRIPT on ฮ“ normal-ฮ“ \Gamma roman_ฮ“ . The bordered d ๐‘‘ d italic_d -picture of p ๐‘ p italic_p , denoted by p โ™ฏ superscript ๐‘ normal-โ™ฏ p^{\sharp} italic_p start_POSTSUPERSCRIPT โ™ฏ end_POSTSUPERSCRIPT , is the d ๐‘‘ d italic_d -picture p โ™ฏ : [ 0 , n + 1 ] d โ†’ ฮ“ โ™ฏ normal-: superscript ๐‘ normal-โ™ฏ normal-โ†’ superscript 0 ๐‘› 1 ๐‘‘ superscript normal-ฮ“ normal-โ™ฏ p^{\sharp}:[0,n+1]^{d}\to\Gamma^{\sharp} italic_p start_POSTSUPERSCRIPT โ™ฏ end_POSTSUPERSCRIPT : [ 0 , italic_n + 1 ] start_POSTSUPERSCRIPT italic_d end_POSTSUPERSCRIPT โ†’ roman_ฮ“ start_POSTSUPERSCRIPT โ™ฏ end_POSTSUPERSCRIPT defined by

p โ™ฏ โข ( a ) = { p โข ( a ) โข if โข a โˆˆ d โข o โข m โข ( p ) ; โ™ฏ โข otherwise . superscript ๐‘ โ™ฏ ๐‘Ž cases ๐‘ ๐‘Ž if ๐‘Ž ๐‘‘ ๐‘œ ๐‘š ๐‘ โ™ฏ otherwise p^{\sharp}(a)=\left\{\begin{array}[]{l}p(a)\textrm{ if }a\in dom(p);\\ \sharp\textrm{ otherwise}.\end{array}\right. italic_p start_POSTSUPERSCRIPT โ™ฏ end_POSTSUPERSCRIPT ( italic_a ) = { start_ARRAY start_ROW start_CELL italic_p ( italic_a ) if italic_a โˆˆ italic_d italic_o italic_m ( italic_p ) ; end_CELL end_ROW start_ROW start_CELL โ™ฏ otherwise . end_CELL end_ROW end_ARRAY

Here, "otherwise" means that a ๐‘Ž a italic_a is on the border of p โ™ฏ superscript ๐‘ normal-โ™ฏ p^{\sharp} italic_p start_POSTSUPERSCRIPT โ™ฏ end_POSTSUPERSCRIPT , that is, some component a i subscript ๐‘Ž ๐‘– a_{i} italic_a start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT of a ๐‘Ž a italic_a is 0 0 or n + 1 ๐‘› 1 n+1 italic_n + 1 .

Definition 4.12

To each d ๐‘‘ d italic_d -picture p ๐‘ p italic_p of length n ๐‘› n italic_n , one associates its squared d ๐‘‘ d italic_d -picture denoted p = superscript ๐‘ p^{=} italic_p start_POSTSUPERSCRIPT = end_POSTSUPERSCRIPT of domain [ n ] d superscript delimited-[] ๐‘› ๐‘‘ [n]^{d} [ italic_n ] start_POSTSUPERSCRIPT italic_d end_POSTSUPERSCRIPT obtained by putting the new special symbol โ–ก normal-โ–ก \square โ–ก in each additional cell. Formally,

p = โข ( a ) = { p โข ( a ) โข if โข a โˆˆ d โข o โข m โข ( p ) ; โ–ก โข otherwise . superscript ๐‘ ๐‘Ž cases ๐‘ ๐‘Ž if ๐‘Ž ๐‘‘ ๐‘œ ๐‘š ๐‘ โ–ก otherwise p^{=}(a)=\left\{\begin{array}[]{l}p(a)\textrm{ if }a\in dom(p);\\ \square\textrm{ otherwise}.\end{array}\right. italic_p start_POSTSUPERSCRIPT = end_POSTSUPERSCRIPT ( italic_a ) = { start_ARRAY start_ROW start_CELL italic_p ( italic_a ) if italic_a โˆˆ italic_d italic_o italic_m ( italic_p ) ; end_CELL end_ROW start_ROW start_CELL โ–ก otherwise . end_CELL end_ROW end_ARRAY

To any d ๐‘‘ d italic_d -picture language L ๐ฟ L italic_L one associates its squared d ๐‘‘ d italic_d -picture language

L = = { p = : p โˆˆ L } . superscript ๐ฟ conditional-set superscript ๐‘ ๐‘ ๐ฟ L^{=}=\{p^{=}:p\in L\}. italic_L start_POSTSUPERSCRIPT = end_POSTSUPERSCRIPT = { italic_p start_POSTSUPERSCRIPT = end_POSTSUPERSCRIPT : italic_p โˆˆ italic_L } .

Definition 2.24

A structure ( X , + , 0 , โ†” , โ‹… , 1 ) ๐‘‹ 0 โ†” โ‹… 1 (X,+,0,\mathop{\leftrightarrow},\cdot,1) ( italic_X , + , 0 , โ†” , โ‹… , 1 ) is a disring when ( X , + , 0 , โ†” ) ๐‘‹ 0 โ†” (X,+,0,\mathop{\leftrightarrow}) ( italic_X , + , 0 , โ†” ) is a disgroup, ( X , + , 0 , โ‹… , 1 ) ๐‘‹ 0 โ‹… 1 (X,+,0,\cdot,1) ( italic_X , + , 0 , โ‹… , 1 ) a unital commutative semiring, and for โ†” โ†” \mathop{\leftrightarrow} โ†” the additional property

holds for all a , b , x โˆˆ X ๐‘Ž ๐‘ ๐‘ฅ ๐‘‹ a,b,x\in X italic_a , italic_b , italic_x โˆˆ italic_X . The order of operations is to first evaluate โ‹… โ‹… \cdot โ‹… , then โ†” โ†” \mathop{\leftrightarrow} โ†” , then + + + .

Definition 7.8

A structure ( X , + : X ร— X โ†’ X , โ†” : X ร— X โ†’ X , 0 , โ‹… : ๐”ป ร— X โ†’ X fragments ( X , : X X โ†’ X , โ†” : X X โ†’ X , 0 , โ‹… : D X โ†’ X (X,+\colon X\times X\to X,\mathop{\leftrightarrow}\colon X\times X\to X,0,% \cdot\colon\mathbb{D}\times X\to X ( italic_X , + : italic_X ร— italic_X โ†’ italic_X , โ†” : italic_X ร— italic_X โ†’ italic_X , 0 , โ‹… : blackboard_D ร— italic_X โ†’ italic_X is a module over a disring ๐”ป ๐”ป \mathbb{D} blackboard_D when ( X , + , โ†” , 0 ) ๐‘‹ โ†” 0 (X,+,\mathop{\leftrightarrow},0) ( italic_X , + , โ†” , 0 ) is a disgroup and the following holds for all x , y โˆˆ X ๐‘ฅ ๐‘ฆ ๐‘‹ x,y\in X italic_x , italic_y โˆˆ italic_X , ฮป , ฮผ โˆˆ ๐”ป ๐œ† ๐œ‡ ๐”ป \lambda,\mu\in\mathbb{D} italic_ฮป , italic_ฮผ โˆˆ blackboard_D :

Furthermore, if the disring ๐”ป ๐”ป \mathbb{D} blackboard_D is ordered, we define that the module ( X , + , โ†” , 0 , โ‹… , โˆฅ โ€” โˆฅ ) ๐‘‹ โ†” 0 โ‹… norm โ€” (X,+,\mathop{\leftrightarrow},0,\cdot,\|{\text{{---}}}\|) ( italic_X , + , โ†” , 0 , โ‹… , โˆฅ โ€” โˆฅ ) is normed when the operation โˆฅ โ€” โˆฅ : X โ†’ ๐”ป : norm โ€” โ†’ ๐‘‹ ๐”ป \|{\text{{---}}}\|\colon X\to\mathbb{D} โˆฅ โ€” โˆฅ : italic_X โ†’ blackboard_D has the properties