Definition 2

A quantizer γ ( x ) 𝛾 𝑥 \gamma(x) italic_γ ( italic_x ) is antisymmetric if

γ ( x ) + γ ( - x ) = 1 , x . 𝛾 𝑥 𝛾 𝑥 1 for-all 𝑥 \displaystyle\gamma(x)+\gamma(-x)=1,\qquad\forall x. italic_γ ( italic_x ) + italic_γ ( - italic_x ) = 1 , ∀ italic_x . (15)

Definition 12.1 .

Let U q ( 𝔰 𝔩 2 ) subscript 𝑈 𝑞 𝔰 subscript 𝔩 2 U_{q}(\mathfrak{sl}_{2}) italic_U start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ( fraktur_s fraktur_l start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) denote the 𝕂 𝕂 \mathbb{K} blackboard_K -algebra with generators k ± 1 , e , f superscript 𝑘 plus-or-minus 1 𝑒 𝑓 k^{\pm 1},e,f italic_k start_POSTSUPERSCRIPT ± 1 end_POSTSUPERSCRIPT , italic_e , italic_f and relations

k k - 1 = k - 1 k = 1 , 𝑘 superscript 𝑘 1 superscript 𝑘 1 𝑘 1 \displaystyle\qquad kk^{-1}=k^{-1}k=1, italic_k italic_k start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT = italic_k start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT italic_k = 1 ,
k e = q 2 e k , k f = q - 2 f k , formulae-sequence 𝑘 𝑒 superscript 𝑞 2 𝑒 𝑘 𝑘 𝑓 superscript 𝑞 2 𝑓 𝑘 \displaystyle ke=q^{2}ek,\quad\quad kf=q^{-2}fk, italic_k italic_e = italic_q start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_e italic_k , italic_k italic_f = italic_q start_POSTSUPERSCRIPT - 2 end_POSTSUPERSCRIPT italic_f italic_k ,
e f - f e = k - k - 1 q - q - 1 . 𝑒 𝑓 𝑓 𝑒 𝑘 superscript 𝑘 1 𝑞 superscript 𝑞 1 \displaystyle\qquad ef-fe=\frac{k-k^{-1}}{q-q^{-1}}. italic_e italic_f - italic_f italic_e = divide start_ARG italic_k - italic_k start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT end_ARG start_ARG italic_q - italic_q start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT end_ARG .

Definition 2.8 .

A Hom-algebra A = ( A , μ , α ) 𝐴 𝐴 𝜇 𝛼 A=(A,\mu,\alpha) italic_A = ( italic_A , italic_μ , italic_α ) is called flexible if for any x , y A 𝑥 𝑦 𝐴 x,y\in A italic_x , italic_y ∈ italic_A

(2.2) μ ( μ ( x , y ) , α ( x ) ) = μ ( α ( x ) , μ ( y , x ) ) ) . fragments μ fragments ( μ fragments ( x , y ) , α fragments ( x ) ) μ fragments ( α fragments ( x ) , μ fragments ( y , x ) ) ) . \mu(\mu(x,y),\alpha(x))=\mu(\alpha(x),\mu(y,x))). italic_μ ( italic_μ ( italic_x , italic_y ) , italic_α ( italic_x ) ) = italic_μ ( italic_α ( italic_x ) , italic_μ ( italic_y , italic_x ) ) ) .

Definition 4.2 .

Define the map h ~ : : ~ \widetilde{h}:\mathbb{R}\to\mathbb{R} ~ start_ARG italic_h end_ARG : blackboard_R → blackboard_R by:

h ~ ( φ ) = ψ where arg [ h ( r e i φ ) ] = ψ ~ 𝜑 𝜓 where 𝑟 superscript 𝑒 𝑖 𝜑 𝜓 \widetilde{h}(\varphi)=\psi\mbox{ where }\arg[h(re^{i\varphi})]=\psi ~ start_ARG italic_h end_ARG ( italic_φ ) = italic_ψ where roman_arg [ italic_h ( italic_r italic_e start_POSTSUPERSCRIPT italic_i italic_φ end_POSTSUPERSCRIPT ) ] = italic_ψ

for any r > 0 𝑟 0 r>0 italic_r > 0 .


Definition 52 (Composition in 𝔊 𝔯 𝔞 𝔭 𝔥 M L L 𝔊 𝔯 𝔞 𝔭 subscript 𝔥 𝑀 𝐿 𝐿 \mathfrak{Graph}_{MLL}{} fraktur_G fraktur_r fraktur_a fraktur_p fraktur_h start_POSTSUBSCRIPT italic_M italic_L italic_L end_POSTSUBSCRIPT ) .

Given two morphisms 𝔣 𝔣 \mathfrak{f} fraktur_f and 𝔤 𝔤 \mathfrak{g} fraktur_g in 𝔐 𝔬 𝔯 [ 𝐀 , 𝐁 ] 𝔐 𝔬 𝔯 𝐀 𝐁 \mathfrak{Mor}[\mathbf{A},\mathbf{B}] fraktur_M fraktur_o fraktur_r [ bold_A , bold_B ] and 𝔐 𝔬 𝔯 [ 𝐁 , 𝐂 ] 𝔐 𝔬 𝔯 𝐁 𝐂 \mathfrak{Mor}[\mathbf{B},\mathbf{C}] fraktur_M fraktur_o fraktur_r [ bold_B , bold_C ] respectively, we define

𝔤 𝔣 = ν ( 𝔣 :: μ ( 𝔤 ) ) 𝔤 𝔣 𝜈 𝔣 :: 𝜇 𝔤 \mathfrak{g}\circ\mathfrak{f}=\nu(\mathfrak{f}\mathop{\dblcolon}\mu(\mathfrak{% g})) fraktur_g ∘ fraktur_f = italic_ν ( fraktur_f :: italic_μ ( fraktur_g ) )

Definition 2.2

A right brace is a set G 𝐺 G italic_G with two operations + + + and normal-⋅ \cdot such that ( G , + ) 𝐺 (G,+) ( italic_G , + ) is an abelian group, ( G , ) 𝐺 normal-⋅ (G,\cdot) ( italic_G , ⋅ ) is a group and

( a + b ) c + c = a c + b c , 𝑎 𝑏 𝑐 𝑐 𝑎 𝑐 𝑏 𝑐 (a+b)c+c=ac+bc, ( italic_a + italic_b ) italic_c + italic_c = italic_a italic_c + italic_b italic_c , (2)

for all a , b , c G 𝑎 𝑏 𝑐 𝐺 a,b,c\in G italic_a , italic_b , italic_c ∈ italic_G . We call ( G , + ) 𝐺 (G,+) ( italic_G , + ) the additive group and ( G , ) 𝐺 normal-⋅ (G,\cdot) ( italic_G , ⋅ ) the multiplicative group of the right brace.


Definition 7 .

(Invariance of ( 8 )) The integral functional ( 8 ) is said to be invariant under the one-parameter group of infinitesimal transformations

{ t ¯ = t + ε τ ( t , q ) + o ( ε ) , q ¯ ( t ) = q ( t ) + ε ξ ( t , q ) + o ( ε ) , cases ¯ 𝑡 𝑡 𝜀 𝜏 𝑡 𝑞 𝑜 𝜀 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 ¯ 𝑞 𝑡 𝑞 𝑡 𝜀 𝜉 𝑡 𝑞 𝑜 𝜀 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 \begin{cases}\bar{t}=t+\varepsilon\tau(t,q)+o(\varepsilon)\,,\\ \bar{q}(t)=q(t)+\varepsilon\xi(t,q)+o(\varepsilon)\,,\\ \end{cases} { start_ROW start_CELL ¯ start_ARG italic_t end_ARG = italic_t + italic_ε italic_τ ( italic_t , italic_q ) + italic_o ( italic_ε ) , end_CELL start_CELL end_CELL end_ROW start_ROW start_CELL ¯ start_ARG italic_q end_ARG ( italic_t ) = italic_q ( italic_t ) + italic_ε italic_ξ ( italic_t , italic_q ) + italic_o ( italic_ε ) , end_CELL start_CELL end_CELL end_ROW (16)

if

t a t b F ( t , q ( t ) , D t α a q ( t ) , λ ) 𝑑 t = t ¯ ( t a ) t ¯ ( t b ) F ( t ¯ , q ¯ ( t ¯ ) , D t α a q ¯ ( t ¯ ) , λ ) 𝑑 t ¯ superscript subscript subscript 𝑡 𝑎 subscript 𝑡 𝑏 𝐹 𝑡 𝑞 𝑡 subscript superscript subscript 𝐷 𝑡 𝛼 𝑎 𝑞 𝑡 𝜆 differential-d 𝑡 superscript subscript ¯ 𝑡 subscript 𝑡 𝑎 ¯ 𝑡 subscript 𝑡 𝑏 𝐹 ¯ 𝑡 ¯ 𝑞 ¯ 𝑡 subscript superscript subscript 𝐷 𝑡 𝛼 𝑎 ¯ 𝑞 ¯ 𝑡 𝜆 differential-d ¯ 𝑡 \int_{t_{a}}^{t_{b}}F\left(t,q(t),{{}_{a}D_{t}^{\alpha}q(t)},\lambda\right)dt=% \int_{\bar{t}(t_{a})}^{\bar{t}(t_{b})}F\left(\bar{t},\bar{q}(\bar{t}),{{}_{a}D% _{t}^{\alpha}\bar{q}(\bar{t})},\lambda\right)d\bar{t} ∫ start_POSTSUBSCRIPT italic_t start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT end_POSTSUPERSCRIPT italic_F ( italic_t , italic_q ( italic_t ) , start_FLOATSUBSCRIPT italic_a end_FLOATSUBSCRIPT italic_D start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_α end_POSTSUPERSCRIPT italic_q ( italic_t ) , italic_λ ) italic_d italic_t = ∫ start_POSTSUBSCRIPT ¯ start_ARG italic_t end_ARG ( italic_t start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT ) end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ¯ start_ARG italic_t end_ARG ( italic_t start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT ) end_POSTSUPERSCRIPT italic_F ( ¯ start_ARG italic_t end_ARG , ¯ start_ARG italic_q end_ARG ( ¯ start_ARG italic_t end_ARG ) , start_FLOATSUBSCRIPT italic_a end_FLOATSUBSCRIPT italic_D start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_α end_POSTSUPERSCRIPT ¯ start_ARG italic_q end_ARG ( ¯ start_ARG italic_t end_ARG ) , italic_λ ) italic_d ¯ start_ARG italic_t end_ARG

for any subinterval [ t a , t b ] [ a , b ] subscript 𝑡 𝑎 subscript 𝑡 𝑏 𝑎 𝑏 [{t_{a}},{t_{b}}]\subseteq[a,b] [ italic_t start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT , italic_t start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT ] ⊆ [ italic_a , italic_b ] .

Definition 11 .

(Variational invariance of ( 28 )) We say that the integral functional ( 28 ) is invariant under the one-parameter family of infinitesimal transformations

{ t ¯ = t + ε τ ( t , q ( t ) , u ( t ) , p ( t ) ) + o ( ε ) , q ¯ ( t ) = q ( t ) + ε ξ ( t , q ( t ) , u ( t ) , p ( t ) ) + o ( ε ) , u ¯ ( t ) = u ( t ) + ε ϱ ( t , q ( t ) , u ( t ) , p ( t ) ) + o ( ε ) , p ¯ ( t ) = p ( t ) + ε ς ( t , q ( t ) , u ( t ) , p ( t ) ) + o ( ε ) , cases ¯ 𝑡 𝑡 𝜀 𝜏 𝑡 𝑞 𝑡 𝑢 𝑡 𝑝 𝑡 𝑜 𝜀 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 ¯ 𝑞 𝑡 𝑞 𝑡 𝜀 𝜉 𝑡 𝑞 𝑡 𝑢 𝑡 𝑝 𝑡 𝑜 𝜀 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 ¯ 𝑢 𝑡 𝑢 𝑡 𝜀 italic-ϱ 𝑡 𝑞 𝑡 𝑢 𝑡 𝑝 𝑡 𝑜 𝜀 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 ¯ 𝑝 𝑡 𝑝 𝑡 𝜀 𝜍 𝑡 𝑞 𝑡 𝑢 𝑡 𝑝 𝑡 𝑜 𝜀 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 \begin{cases}\bar{t}=t+\varepsilon\tau(t,q(t),u(t),p(t))+o(\varepsilon)\,,\\ \bar{q}(t)=q(t)+\varepsilon\xi(t,q(t),u(t),p(t))+o(\varepsilon)\,,\\ \bar{u}(t)=u(t)+\varepsilon\varrho(t,q(t),u(t),p(t))+o(\varepsilon)\,,\\ \bar{p}(t)=p(t)+\varepsilon\varsigma(t,q(t),u(t),p(t))+o(\varepsilon)\,,\\ \end{cases} { start_ROW start_CELL ¯ start_ARG italic_t end_ARG = italic_t + italic_ε italic_τ ( italic_t , italic_q ( italic_t ) , italic_u ( italic_t ) , italic_p ( italic_t ) ) + italic_o ( italic_ε ) , end_CELL start_CELL end_CELL end_ROW start_ROW start_CELL ¯ start_ARG italic_q end_ARG ( italic_t ) = italic_q ( italic_t ) + italic_ε italic_ξ ( italic_t , italic_q ( italic_t ) , italic_u ( italic_t ) , italic_p ( italic_t ) ) + italic_o ( italic_ε ) , end_CELL start_CELL end_CELL end_ROW start_ROW start_CELL ¯ start_ARG italic_u end_ARG ( italic_t ) = italic_u ( italic_t ) + italic_ε italic_ϱ ( italic_t , italic_q ( italic_t ) , italic_u ( italic_t ) , italic_p ( italic_t ) ) + italic_o ( italic_ε ) , end_CELL start_CELL end_CELL end_ROW start_ROW start_CELL ¯ start_ARG italic_p end_ARG ( italic_t ) = italic_p ( italic_t ) + italic_ε italic_ς ( italic_t , italic_q ( italic_t ) , italic_u ( italic_t ) , italic_p ( italic_t ) ) + italic_o ( italic_ε ) , end_CELL start_CELL end_CELL end_ROW (29)

if

[ ( t ¯ , q ¯ ( t ¯ ) , u ¯ ( t ¯ ) , p ¯ ( t ¯ ) , λ ) - p ¯ ( t ¯ ) D t ¯ α a ¯ q ¯ ( t ¯ ) ] d t ¯ = [ ( t , q ( t ) , u ( t ) , p ( t ) , λ ) - p ( t ) D t α a q ( t ) ] d t . delimited-[] ¯ 𝑡 ¯ 𝑞 ¯ 𝑡 ¯ 𝑢 ¯ 𝑡 ¯ 𝑝 ¯ 𝑡 𝜆 ¯ 𝑝 ¯ 𝑡 subscript superscript subscript 𝐷 ¯ 𝑡 𝛼 ¯ 𝑎 ¯ 𝑞 ¯ 𝑡 𝑑 ¯ 𝑡 delimited-[] 𝑡 𝑞 𝑡 𝑢 𝑡 𝑝 𝑡 𝜆 𝑝 𝑡 subscript superscript subscript 𝐷 𝑡 𝛼 𝑎 𝑞 𝑡 𝑑 𝑡 \left[{\cal H}(\bar{t},\bar{q}(\bar{t}),\bar{u}(\bar{t}),\bar{p}(\bar{t}),% \lambda)-\bar{p}(\bar{t})\cdot{{}_{\bar{a}}D_{\bar{t}}}^{\alpha}\bar{q}(\bar{t% })\right]d\bar{t}=\left[{\cal H}(t,q(t),u(t),p(t),\lambda)-p(t)\cdot{{}_{a}D_{% t}^{\alpha}}q(t)\right]dt\,. [ caligraphic_H ( ¯ start_ARG italic_t end_ARG , ¯ start_ARG italic_q end_ARG ( ¯ start_ARG italic_t end_ARG ) , ¯ start_ARG italic_u end_ARG ( ¯ start_ARG italic_t end_ARG ) , ¯ start_ARG italic_p end_ARG ( ¯ start_ARG italic_t end_ARG ) , italic_λ ) - ¯ start_ARG italic_p end_ARG ( ¯ start_ARG italic_t end_ARG ) ⋅ start_FLOATSUBSCRIPT ¯ start_ARG italic_a end_ARG end_FLOATSUBSCRIPT italic_D start_POSTSUBSCRIPT ¯ start_ARG italic_t end_ARG end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_α end_POSTSUPERSCRIPT ¯ start_ARG italic_q end_ARG ( ¯ start_ARG italic_t end_ARG ) ] italic_d ¯ start_ARG italic_t end_ARG = [ caligraphic_H ( italic_t , italic_q ( italic_t ) , italic_u ( italic_t ) , italic_p ( italic_t ) , italic_λ ) - italic_p ( italic_t ) ⋅ start_FLOATSUBSCRIPT italic_a end_FLOATSUBSCRIPT italic_D start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_α end_POSTSUPERSCRIPT italic_q ( italic_t ) ] italic_d italic_t . (30)

Definition 2.6 .

Let 𝒞 𝒞 \mathcal{C} caligraphic_C be a groupoid and k 𝑘 k italic_k a field. We define the groupoid algebra k [ 𝒞 ] 𝑘 delimited-[] 𝒞 k[\mathcal{C}] italic_k [ caligraphic_C ] to be the k 𝑘 k italic_k -algebra which is spanned as a vector space by the morphisms in 𝒞 𝒞 \mathcal{C} caligraphic_C , and whose product is defined on generators by

f g = { f g if this composition makes sense, 0 otherwise. 𝑓 𝑔 cases 𝑓 𝑔 if this composition makes sense, 0 otherwise. f\ast g=\begin{cases}f\circ g&\text{if this composition makes sense,}\\ 0&\text{otherwise.}\end{cases} italic_f ∗ italic_g = { start_ROW start_CELL italic_f ∘ italic_g end_CELL start_CELL if this composition makes sense, end_CELL end_ROW start_ROW start_CELL 0 end_CELL start_CELL otherwise. end_CELL end_ROW

This is extended bilinearly.

Definition 3.1 .

Suppose a finite group G 𝐺 G italic_G acts on a category 𝒞 𝒞 \mathcal{C} caligraphic_C . We define the semidirect product 𝒞 G right-normal-factor-semidirect-product 𝒞 𝐺 \mathcal{C}\rtimes G caligraphic_C ⋊ italic_G to be the category with the same objects as 𝒞 𝒞 \mathcal{C} caligraphic_C , and whose morphisms x y 𝑥 𝑦 x\to y italic_x → italic_y are pairs ( ϕ , g ) italic-ϕ 𝑔 (\phi,g) ( italic_ϕ , italic_g ) where g G 𝑔 𝐺 g\in G italic_g ∈ italic_G and ϕ Hom 𝒞 ( x , y g ) italic-ϕ subscript Hom 𝒞 𝑥 𝑦 𝑔 \phi\in\operatorname{Hom}_{\mathcal{C}}(x,yg) italic_ϕ ∈ roman_Hom start_POSTSUBSCRIPT caligraphic_C end_POSTSUBSCRIPT ( italic_x , italic_y italic_g ) . The composition is defined by

( ϕ , g ) ( ψ , h ) = ( ( ϕ h ) ψ , g h ) . italic-ϕ 𝑔 𝜓 italic-ϕ 𝜓 𝑔 (\phi,g)\circ(\psi,h)=((\phi h)\circ\psi,g\cdot h). ( italic_ϕ , italic_g ) ∘ ( italic_ψ , italic_h ) = ( ( italic_ϕ italic_h ) ∘ italic_ψ , italic_g ⋅ italic_h ) .

Definition 2.1 .

A Courant algebroid on a smooth manifold M 𝑀 M italic_M consists of a vector bundle E M 𝐸 𝑀 E\to M italic_E → italic_M , \mathbb{R} blackboard_R -bilinear bracket [ , ] : Γ ( E ) Γ ( E ) Γ ( E ) fragments fragments [ , ] : Γ fragments ( E ) tensor-product Γ fragments ( E ) Γ fragments ( E ) [\,,\,]:\Gamma(E)\otimes\Gamma(E)\to\Gamma(E) [ , ] : roman_Γ ( italic_E ) ⊗ roman_Γ ( italic_E ) → roman_Γ ( italic_E ) called the Dorfman bracket , non-degenerate bilinear form , fragments , \langle\,,\,\rangle ⟨ , ⟩ and a bundle map ρ : E T M : 𝜌 𝐸 𝑇 𝑀 \rho:E\to TM italic_ρ : italic_E → italic_T italic_M called the anchor such that for all a , b , c Γ ( E ) 𝑎 𝑏 𝑐 Γ 𝐸 a,b,c\in\Gamma(E) italic_a , italic_b , italic_c ∈ roman_Γ ( italic_E ) and f 𝒞 ( M ) 𝑓 superscript 𝒞 𝑀 f\in\mathcal{C}^{\infty}(M) italic_f ∈ caligraphic_C start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT ( italic_M ) , we have

where [ ρ ( a ) , ρ ( b ) ] 𝜌 𝑎 𝜌 𝑏 [\rho(a),\rho(b)] [ italic_ρ ( italic_a ) , italic_ρ ( italic_b ) ] is the Lie bracket of vector fields and d 𝑑 d italic_d is the operator d : 𝒞 ( M ) Γ ( E ) : 𝑑 superscript 𝒞 𝑀 Γ 𝐸 d:\mathcal{C}^{\infty}(M)\to\Gamma(E) italic_d : caligraphic_C start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT ( italic_M ) → roman_Γ ( italic_E ) defined by d f , a = 1 2 ρ ( a ) ( f ) 𝑑 𝑓 𝑎 1 2 𝜌 𝑎 𝑓 \langle df,a\rangle=\frac{1}{2}\rho(a)(f) ⟨ italic_d italic_f , italic_a ⟩ = divide start_ARG 1 end_ARG start_ARG 2 end_ARG italic_ρ ( italic_a ) ( italic_f ) .

A Courant algebroid E M 𝐸 𝑀 E\to M italic_E → italic_M is exact if the sequence

\xymatrix 0 \ar [ r ] & T * M \ar [ r ] - 1 2 ρ * & E \ar [ r ] - ρ & T M \ar [ r ] & 0 \xymatrix 0 \ar delimited-[] 𝑟 & superscript 𝑇 𝑀 \ar superscript delimited-[] 𝑟 1 2 superscript 𝜌 & 𝐸 \ar superscript delimited-[] 𝑟 𝜌 & 𝑇 𝑀 \ar delimited-[] 𝑟 & 0 \xymatrix{0\ar[r]&T^{*}M\ar[r]^{-}{\frac{1}{2}\rho^{*}}&E\ar[r]^{-}\rho&TM\ar[% r]&0} 0 [ italic_r ] & italic_T start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT italic_M [ italic_r ] start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT divide start_ARG 1 end_ARG start_ARG 2 end_ARG italic_ρ start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT & italic_E [ italic_r ] start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT italic_ρ & italic_T italic_M [ italic_r ] & 0

is exact. Here ρ * superscript 𝜌 \rho^{*} italic_ρ start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT is the transpose T * M E * superscript 𝑇 𝑀 superscript 𝐸 T^{*}M\to E^{*} italic_T start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT italic_M → italic_E start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT of ρ 𝜌 \rho italic_ρ followed by the identification of E 𝐸 E italic_E and E * superscript 𝐸 E^{*} italic_E start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT using the pairing.


Definition 32 (Composition in 𝔊 𝔯 𝔞 𝔭 𝔥 M L L 𝔊 𝔯 𝔞 𝔭 subscript 𝔥 𝑀 𝐿 𝐿 \mathfrak{Graph}_{MLL} fraktur_G fraktur_r fraktur_a fraktur_p fraktur_h start_POSTSUBSCRIPT italic_M italic_L italic_L end_POSTSUBSCRIPT ) .

Given two morphisms 𝔣 𝔣 \mathfrak{f} fraktur_f and 𝔤 𝔤 \mathfrak{g} fraktur_g in 𝔐 𝔬 𝔯 [ 𝐀 , 𝐁 ] 𝔐 𝔬 𝔯 𝐀 𝐁 \mathfrak{Mor}[\mathbf{A},\mathbf{B}] fraktur_M fraktur_o fraktur_r [ bold_A , bold_B ] and 𝔐 𝔬 𝔯 [ 𝐁 , 𝐂 ] 𝔐 𝔬 𝔯 𝐁 𝐂 \mathfrak{Mor}[\mathbf{B},\mathbf{C}] fraktur_M fraktur_o fraktur_r [ bold_B , bold_C ] respectively, we define

𝔤 𝔣 = ν ( 𝔣 :: μ ( 𝔤 ) ) 𝔤 𝔣 𝜈 𝔣 :: 𝜇 𝔤 \mathfrak{g}\circ\mathfrak{f}=\nu(\mathfrak{f}\mathop{\dblcolon}\mu(\mathfrak{% g})) fraktur_g ∘ fraktur_f = italic_ν ( fraktur_f :: italic_μ ( fraktur_g ) )

Definition A.1 (Algebra) .

Let 𝒜 𝒜 {\cal A} caligraphic_A be a vector space over the field {\mathbb{C}} blackboard_C equipped with an inner operation : 𝒜 × 𝒜 𝒜 fragments : A A A \cdot:{\cal A}\times{\cal A}\longrightarrow{\cal A} ⋅ : caligraphic_A × caligraphic_A ⟶ caligraphic_A which associates x y 𝑥 𝑦 x\cdot y italic_x ⋅ italic_y (or simply x y 𝑥 𝑦 xy italic_x italic_y ) to each pair x , y 𝒜 𝑥 𝑦 𝒜 x,y\in{\cal A} italic_x , italic_y ∈ caligraphic_A . 𝒜 𝒜 {\cal A} caligraphic_A is an algebra if this operation is distributive and associative, i.e., if for all x , y , z 𝒜 𝑥 𝑦 𝑧 𝒜 x,y,z\in{\cal A} italic_x , italic_y , italic_z ∈ caligraphic_A and all a , b 𝑎 𝑏 a,b\in{\mathbb{C}} italic_a , italic_b ∈ blackboard_C holds:


Definition 2.5 (Linear function [ 7 ] )

A function 𝐟 : IR p IR q normal-: 𝐟 normal-→ superscript normal-IR 𝑝 superscript normal-IR 𝑞 \bm{f}:\mathrm{I\kern-1.72ptR}^{p}\to\mathrm{I\kern-1.72ptR}^{q} bold_italic_f : roman_IR start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT → roman_IR start_POSTSUPERSCRIPT italic_q end_POSTSUPERSCRIPT is linear if for all 𝐱 , 𝐲 IR p 𝐱 𝐲 superscript normal-IR 𝑝 \bm{x},\bm{y}\in\mathrm{I\kern-1.72ptR}^{p} bold_italic_x , bold_italic_y ∈ roman_IR start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT and α , β IR 𝛼 𝛽 normal-IR \alpha,\beta\in\mathrm{I\kern-1.72ptR} italic_α , italic_β ∈ roman_IR it satisfies the condition

𝒇 ( α 𝒙 + β 𝒚 ) = α 𝒇 ( 𝒙 ) + β 𝒇 ( 𝒚 ) . 𝒇 𝛼 𝒙 𝛽 𝒚 𝛼 𝒇 𝒙 𝛽 𝒇 𝒚 \bm{f}(\alpha\bm{x}+\beta\bm{y})=\alpha\bm{f}(\bm{x})+\beta\bm{f}(\bm{y}). bold_italic_f ( italic_α bold_italic_x + italic_β bold_italic_y ) = italic_α bold_italic_f ( bold_italic_x ) + italic_β bold_italic_f ( bold_italic_y ) . (2.6)

Definition 3.1.1 .

A Lie Algebra , 𝔤 𝔤 \mathfrak{g} fraktur_g , is a vector space with a bilinear operator [ , ] : 𝔤 × 𝔤 𝔤 : 𝔤 𝔤 𝔤 [\cdot,\cdot]:\mathfrak{g}\times\mathfrak{g}\rightarrow\mathfrak{g} [ ⋅ , ⋅ ] : fraktur_g × fraktur_g → fraktur_g , called the Lie bracket satisfying:


Definition 4.2.1 .

Let g ( t ) 𝑔 𝑡 g(t) italic_g ( italic_t ) be a solution of the normalized Ricci flow ( 4.2 ) on a surface M 𝑀 M italic_M . We say that g ( t ) 𝑔 𝑡 g(t) italic_g ( italic_t ) is a self-similar solution if there exists a 1 1 1 1 -parameter family φ ( t ) 𝜑 𝑡 \varphi(t) italic_φ ( italic_t ) of conformal diffeomorphisms such that

g ( t ) = [ φ ( t ) ] * g ( 0 ) . 𝑔 𝑡 superscript delimited-[] 𝜑 𝑡 𝑔 0 g(t)=[\varphi(t)]^{*}g(0). italic_g ( italic_t ) = [ italic_φ ( italic_t ) ] start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT italic_g ( 0 ) . (4.10)

Definition 4 .

We will describe the mapping of Proposition 2 with the following bijection f : [ 0 , 3 ] [ 0 , 3 ] : 𝑓 0 3 0 3 f:[0,3]\rightarrow[0,3] italic_f : [ 0 , 3 ] → [ 0 , 3 ] between indices of the set of Bell states:

f ( 0 ) = 2 , f ( 1 ) = 3 , f ( 2 ) = 0 , f ( 3 ) = 1 . formulae-sequence 𝑓 0 2 formulae-sequence 𝑓 1 3 formulae-sequence 𝑓 2 0 𝑓 3 1 f(0)=2,\;f(1)=3,\;f(2)=0,\;f(3)=1. italic_f ( 0 ) = 2 , italic_f ( 1 ) = 3 , italic_f ( 2 ) = 0 , italic_f ( 3 ) = 1 .

Definition 2.1 (Lipschitz Algebra) .

Let ( X , ρ ) 𝑋 𝜌 (X,\rho) ( italic_X , italic_ρ ) be a metric space. We denote the collection of bounded Lipschitz functions on ( X , ρ ) 𝑋 𝜌 (X,\rho) ( italic_X , italic_ρ ) with values in {\mathbb{R}} blackboard_R by Lip ( X ) superscript Lip 𝑋 {\rm Lip}^{\infty}(X) roman_Lip start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT ( italic_X ) . The set Lip ( X ) superscript Lip 𝑋 {\rm Lip}^{\infty}(X) roman_Lip start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT ( italic_X ) is a real algebra where multiplication is defined as follows: if f , g Lip ( X ) 𝑓 𝑔 superscript Lip 𝑋 f,g\in{\rm Lip}^{\infty}(X) italic_f , italic_g ∈ roman_Lip start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT ( italic_X ) ,

(2.2) ( f g ) ( x ) = ( f ( x ) ) ( g ( x ) ) . 𝑓 𝑔 𝑥 𝑓 𝑥 𝑔 𝑥 (fg)(x)=(f(x))(g(x)). ( italic_f italic_g ) ( italic_x ) = ( italic_f ( italic_x ) ) ( italic_g ( italic_x ) ) .
Definition 7.1 (pointed Lipschitz Algebra) .

Let ( X , ρ , x 0 ) 𝑋 𝜌 subscript 𝑥 0 (X,\rho,x_{0}) ( italic_X , italic_ρ , italic_x start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) be a pointed metric space, i.e. a metric space with a basepoint x 0 subscript 𝑥 0 x_{0} italic_x start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT . We denote the collection of real-valued Lipschitz functions on ( X , ρ ) 𝑋 𝜌 (X,\rho) ( italic_X , italic_ρ ) which vanish at x 0 subscript 𝑥 0 x_{0} italic_x start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT by Lip 0 ( X , x 0 ) subscript Lip 0 𝑋 subscript 𝑥 0 {\rm Lip}_{0}(X,x_{0}) roman_Lip start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_X , italic_x start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) . The set Lip 0 ( X , x 0 ) subscript Lip 0 𝑋 subscript 𝑥 0 {\rm Lip}_{0}(X,x_{0}) roman_Lip start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_X , italic_x start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) is a real algebra where multiplication is defined as follows: if f , g Lip 0 ( X , x 0 ) 𝑓 𝑔 subscript Lip 0 𝑋 subscript 𝑥 0 f,g\in{\rm Lip}_{0}(X,x_{0}) italic_f , italic_g ∈ roman_Lip start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_X , italic_x start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) ,

(7.2) ( f g ) ( x ) = ( f ( x ) ) ( g ( x ) ) . 𝑓 𝑔 𝑥 𝑓 𝑥 𝑔 𝑥 (fg)(x)=(f(x))(g(x)). ( italic_f italic_g ) ( italic_x ) = ( italic_f ( italic_x ) ) ( italic_g ( italic_x ) ) .

For f Lip 0 ( X , x 0 ) 𝑓 subscript Lip 0 𝑋 subscript 𝑥 0 f\in{\rm Lip}_{0}(X,x_{0}) italic_f ∈ roman_Lip start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_X , italic_x start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) we define the norm

(7.3) f Lip 0 ( X , x 0 ) = 𝐋 ( f ) . subscript norm 𝑓 subscript Lip 0 𝑋 subscript 𝑥 0 𝐋 𝑓 {{\|f\|}}_{{\rm Lip}_{0}(X,x_{0})}={\bf L}(f). ∥ italic_f ∥ start_POSTSUBSCRIPT roman_Lip start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_X , italic_x start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) end_POSTSUBSCRIPT = bold_L ( italic_f ) .

This gives ( Lip 0 ( X , x 0 ) , Lip 0 ( X , x 0 ) ) fragments ( subscript Lip 0 fragments ( X , subscript 𝑥 0 ) , parallel-to subscript parallel-to subscript Lip 0 𝑋 subscript 𝑥 0 ) ({\rm Lip}_{0}(X,x_{0}),{{\|\cdot\|}}_{{\rm Lip}_{0}(X,x_{0})}) ( roman_Lip start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_X , italic_x start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) , ∥ ⋅ ∥ start_POSTSUBSCRIPT roman_Lip start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_X , italic_x start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) end_POSTSUBSCRIPT ) the structure of a Banach algebra [ Wea99 , sec. 4.1] .


Definition 5.1 .

A weak BCC-algebra G 𝐺 G italic_G is called branchwise implicative , if

x y x = x 𝑥 𝑦 𝑥 𝑥 x\cdot yx=x italic_x ⋅ italic_y italic_x = italic_x

holds for all x , y 𝑥 𝑦 x,y italic_x , italic_y belonging to the same branch of G 𝐺 G italic_G .

Definition 6.1 .

A weak BCC-algebra G 𝐺 G italic_G is called φ 𝜑 \varphi italic_φ -implicative , if it satisfies the identity

(21) x y = x y y ( 0 0 y ) , 𝑥 𝑦 𝑥 𝑦 𝑦 0 0 𝑦 xy=xy\cdot y(0\cdot 0y), italic_x italic_y = italic_x italic_y ⋅ italic_y ( 0 ⋅ 0 italic_y ) ,

i.e.,

x y = x y y φ 2 ( y ) . 𝑥 𝑦 𝑥 𝑦 𝑦 superscript 𝜑 2 𝑦 xy=xy\cdot y\varphi^{2}(y). italic_x italic_y = italic_x italic_y ⋅ italic_y italic_φ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_y ) .

If ( 21 ) is satisfied only by elements belonging to the same branch, then we say that this weak BCC-algebra is branchwise φ 𝜑 \varphi italic_φ -implicative .

Definition 6.2 .

A weak BCC-algebra G 𝐺 G italic_G is called weakly positive implicative , if it satisfies the identity

(22) x y z = ( x z z ) y z . 𝑥 𝑦 𝑧 𝑥 𝑧 𝑧 𝑦 𝑧 xy\cdot z=(xz\cdot z)\cdot yz. italic_x italic_y ⋅ italic_z = ( italic_x italic_z ⋅ italic_z ) ⋅ italic_y italic_z .

If ( 22 ) is satisfied only by elements belonging to the same branch, then we say that this weak BCC-algebra is branchwise weakly positive implicative .


Definition 11 .

(a) A Hilbert–Lie algebra 𝔨 𝔨 {\mathfrak{k}} fraktur_k is a real Lie algebra endowed with the structure of a real Hilbert space such that the scalar product is invariant under the adjoint action, i.e.,

[ x , y ] , z = x , [ y , z ] for x , y , z 𝔨 . formulae-sequence 𝑥 𝑦 𝑧 𝑥 𝑦 𝑧 for 𝑥 𝑦 𝑧 𝔨 \langle[x,y],z\rangle=\langle x,[y,z]\rangle\quad\mbox{ for }\quad x,y,z\in{% \mathfrak{k}}. ⟨ [ italic_x , italic_y ] , italic_z ⟩ = ⟨ italic_x , [ italic_y , italic_z ] ⟩ for italic_x , italic_y , italic_z ∈ fraktur_k .

From the Closed Graph Theorem and the Uniform Boundedness Principle one derives that the bracket 𝔨 × 𝔨 𝔨 𝔨 𝔨 𝔨 {\mathfrak{k}}\times{\mathfrak{k}}\to{\mathfrak{k}} fraktur_k × fraktur_k → fraktur_k is continuous with respect to the norm topology on 𝔨 𝔨 {\mathfrak{k}} fraktur_k (cf. [ Sch60 , p. 70] ). A Hilbert–Lie algebra 𝔨 𝔨 {\mathfrak{k}} fraktur_k is called simple if { 0 } 0 \{0\} { 0 } and 𝔨 𝔨 {\mathfrak{k}} fraktur_k are the only closed ideals.


Definition 1.1

A right quasigroup is a set X 𝑋 X italic_X with a binary operation \circ such that for each a , b X 𝑎 𝑏 𝑋 a,b\in X italic_a , italic_b ∈ italic_X there exists a unique x X 𝑥 𝑋 x\in X italic_x ∈ italic_X such that a x = b 𝑎 𝑥 𝑏 a\,\circ\,x\,=\,b italic_a ∘ italic_x = italic_b . We write the solution of this equation x = a b 𝑥 normal-∙ 𝑎 𝑏 x\,=\,a\,\bullet\,b italic_x = italic_a ∙ italic_b .

An idempotent right quasigroup (irq) is a right quasigroup ( X , ) 𝑋 (X,\circ) ( italic_X , ∘ ) such that for any x X 𝑥 𝑋 x\in X italic_x ∈ italic_X x x = x 𝑥 𝑥 𝑥 x\,\circ\,x\,=\,x italic_x ∘ italic_x = italic_x . Equivalently, it can be seen as a set X 𝑋 X italic_X endowed with two operations \circ and normal-∙ \bullet , which satisfy the following axioms: for any x , y X 𝑥 𝑦 𝑋 x,y\in X italic_x , italic_y ∈ italic_X

  1. (R1)

    x x = x x = x 𝑥 𝑥 𝑥 𝑥 𝑥 \displaystyle x\,\circ\,x\,=\,x\,\bullet\,x\,=\,x italic_x ∘ italic_x = italic_x ∙ italic_x = italic_x

  2. (R2)

    x ( x y ) = x ( x y ) = y 𝑥 𝑥 𝑦 𝑥 𝑥 𝑦 𝑦 \displaystyle x\,\circ\,\left(x\,\bullet\,y\right)\,=\,x\,\bullet\,\left(x\,% \circ\,y\right)\,=\,y italic_x ∘ ( italic_x ∙ italic_y ) = italic_x ∙ ( italic_x ∘ italic_y ) = italic_y


Definition 2.1 .

A Killing inner metric is an inner metric h h italic_h such that

h ( [ ξ , γ ] , η ) + h ( γ , [ ξ , η ] ) = 0 𝜉 𝛾 𝜂 𝛾 𝜉 𝜂 0 h([\xi,\gamma],\eta)+h(\gamma,[\xi,\eta])=0 italic_h ( [ italic_ξ , italic_γ ] , italic_η ) + italic_h ( italic_γ , [ italic_ξ , italic_η ] ) = 0

for any γ , η , ξ 𝖫 𝛾 𝜂 𝜉 𝖫 \gamma,\eta,\xi\in{{\mathbf{\mathsf{L}}}} italic_γ , italic_η , italic_ξ ∈ sansserif_L .

A locally constant inner metric is an inner metric h h italic_h such that the local components h a b subscript 𝑎 𝑏 h_{ab} italic_h start_POSTSUBSCRIPT italic_a italic_b end_POSTSUBSCRIPT of h h italic_h are constant functions in any local trivializations of 𝖠 𝖠 {{\mathbf{\mathsf{A}}}} sansserif_A .


Definition 2.7 .

A linear transformation d 𝑑 d italic_d of a Leibniz algebra L 𝐿 L italic_L is called a derivation if for any x , y L 𝑥 𝑦 𝐿 x,y\in L italic_x , italic_y ∈ italic_L

d ( [ x , y ] ) = [ d ( x ) , y ] + [ x , d ( y ) ] . 𝑑 𝑥 𝑦 𝑑 𝑥 𝑦 𝑥 𝑑 𝑦 d([x,y])=[d(x),y]+[x,d(y)]. italic_d ( [ italic_x , italic_y ] ) = [ italic_d ( italic_x ) , italic_y ] + [ italic_x , italic_d ( italic_y ) ] .

Definition 4.5 .

Let q ¯ = ( q ( 1 ) , , q ( s ) ) normal-¯ 𝑞 𝑞 1 normal-… 𝑞 superscript 𝑠 normal-′ \bar{q}=(q(1),\ldots,q(s^{\prime})) ¯ start_ARG italic_q end_ARG = ( italic_q ( 1 ) , … , italic_q ( italic_s start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) ) , r ¯ = ( r ( 1 ) , , r ( s ) ) 0 s normal-¯ 𝑟 𝑟 1 normal-… 𝑟 superscript 𝑠 normal-′ subscript superscript superscript 𝑠 normal-′ absent 0 \bar{r}=(r(1),\ldots,r(s^{\prime}))\in{\mathbb{Z}}^{s^{\prime}}_{\geq 0} ¯ start_ARG italic_r end_ARG = ( italic_r ( 1 ) , … , italic_r ( italic_s start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) ) ∈ blackboard_Z start_POSTSUPERSCRIPT italic_s start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT end_POSTSUPERSCRIPT start_POSTSUBSCRIPT ≥ 0 end_POSTSUBSCRIPT , we define the following function σ : { 1 , , s } 0 normal-: 𝜎 normal-→ 1 normal-… superscript 𝑠 normal-′ subscript absent 0 \sigma:\{1,\ldots,s^{\prime}\}\rightarrow{\mathbb{Z}}_{\geq 0} italic_σ : { 1 , … , italic_s start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT } → blackboard_Z start_POSTSUBSCRIPT ≥ 0 end_POSTSUBSCRIPT

σ ( i ) = q ( i ) + r ( i ) . 𝜎 𝑖 𝑞 𝑖 𝑟 𝑖 \sigma(i)=q(i)+r(i). italic_σ ( italic_i ) = italic_q ( italic_i ) + italic_r ( italic_i ) .

Definition 10.1 .

Let x , z α β 𝑥 𝑧 𝛼 𝛽 x,z\in\alpha\cap\beta italic_x , italic_z ∈ italic_α ∩ italic_β . A broken ( α , β ) 𝛼 𝛽 (\alpha,\beta) ( italic_α , italic_β ) -heart from x 𝑥 x italic_x to z 𝑧 z italic_z is a triple

h = ( u , y , v ) 𝑢 𝑦 𝑣 h=(u,y,v) italic_h = ( italic_u , italic_y , italic_v )

such that y α β 𝑦 𝛼 𝛽 y\in\alpha\cap\beta italic_y ∈ italic_α ∩ italic_β , u 𝑢 u italic_u is a smooth ( α , β ) 𝛼 𝛽 (\alpha,\beta) ( italic_α , italic_β ) -lune from x 𝑥 x italic_x to y 𝑦 y italic_y , and v 𝑣 v italic_v is a smooth ( α , β ) 𝛼 𝛽 (\alpha,\beta) ( italic_α , italic_β ) -lune from y 𝑦 y italic_y to z 𝑧 z italic_z . The point y 𝑦 y italic_y is called the midpoint of the heart. By Theorem 6.8 the broken ( α , β ) 𝛼 𝛽 (\alpha,\beta) ( italic_α , italic_β ) -heart h h italic_h is uniquely determined by the septuple

Λ h := ( x , y , z , u ( 𝔻 ) , v ( 𝔻 ) , u ( 𝔻 S 1 ) , v ( 𝔻 S 1 ) ) . assign subscript Λ 𝑥 𝑦 𝑧 𝑢 𝔻 𝑣 𝔻 𝑢 𝔻 superscript 𝑆 1 𝑣 𝔻 superscript 𝑆 1 \Lambda_{h}:=(x,y,z,u({\mathbb{D}}\cap{\mathbb{R}}),v({\mathbb{D}}\cap{\mathbb% {R}}),u({\mathbb{D}}\cap S^{1}),v({\mathbb{D}}\cap S^{1})). roman_Λ start_POSTSUBSCRIPT italic_h end_POSTSUBSCRIPT := ( italic_x , italic_y , italic_z , italic_u ( blackboard_D ∩ blackboard_R ) , italic_v ( blackboard_D ∩ blackboard_R ) , italic_u ( blackboard_D ∩ italic_S start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT ) , italic_v ( blackboard_D ∩ italic_S start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT ) ) .

Two broken ( α , β ) 𝛼 𝛽 (\alpha,\beta) ( italic_α , italic_β ) -hearts h = ( u , y , z ) 𝑢 𝑦 𝑧 h=(u,y,z) italic_h = ( italic_u , italic_y , italic_z ) and h = ( u , y , z ) superscript superscript 𝑢 superscript 𝑦 superscript 𝑧 h^{\prime}=(u^{\prime},y^{\prime},z^{\prime}) italic_h start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT = ( italic_u start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT , italic_y start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT , italic_z start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) from x 𝑥 x italic_x to z 𝑧 z italic_z are called equivalent if y = y superscript 𝑦 𝑦 y^{\prime}=y italic_y start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT = italic_y , u superscript 𝑢 u^{\prime} italic_u start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT is equivalent to u 𝑢 u italic_u , and v superscript 𝑣 v^{\prime} italic_v start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT is equivalent to v 𝑣 v italic_v . The equivalence class of h h italic_h is denoted by [ h ] = ( [ u ] , y , [ v ] ) delimited-[] delimited-[] 𝑢 𝑦 delimited-[] 𝑣 [h]=([u],y,[v]) [ italic_h ] = ( [ italic_u ] , italic_y , [ italic_v ] ) . The set of equivalence classes of broken ( α , β ) 𝛼 𝛽 (\alpha,\beta) ( italic_α , italic_β ) -hearts from x 𝑥 x italic_x to z 𝑧 z italic_z will be denoted by ( x , z ) 𝑥 𝑧 {\mathcal{H}}(x,z) caligraphic_H ( italic_x , italic_z ) .