Definition 4.1 .

For Ο‡ ∈ Irr ⁒ ( G ) πœ’ Irr 𝐺 \chi\in{\rm Irr}(G) italic_Ο‡ ∈ roman_Irr ( italic_G ) , let K 𝐾 K italic_K be the largest factorial subgroup contained in ker ⁑ ( Ο‡ ) kernel πœ’ \ker(\chi) roman_ker ( italic_Ο‡ ) . We define the base of Ο‡ πœ’ \chi italic_Ο‡ to be the factorial complement of K 𝐾 K italic_K in G 𝐺 G italic_G , and the weight of Ο‡ πœ’ \chi italic_Ο‡ by

wt ⁒ ( Ο‡ ) = rank ⁒ ( base ⁒ ( Ο‡ ) ) . wt πœ’ rank base πœ’ {\rm wt}(\chi)={\rm rank}({\rm base}(\chi)). roman_wt ( italic_Ο‡ ) = roman_rank ( roman_base ( italic_Ο‡ ) ) .

Definition 5.2 .

A differential graded Lie algebra (DGLA) is a GLA 𝔀 𝔀 \mathfrak{g} fraktur_g together with a differential d : 𝔀 β†’ 𝔀 normal-: 𝑑 normal-β†’ 𝔀 𝔀 d:\mathfrak{g}\rightarrow\mathfrak{g} italic_d : fraktur_g β†’ fraktur_g , i.e. a linear operator of degree 1 which satisfies the Leibnitz rule

d ⁒ [ a , b ] = [ d ⁒ a , b ] + ( - 1 ) Ξ± ⁒ Ξ² ⁒ [ a , d ⁒ b ] a ∈ 𝔀 Ξ± , b ∈ 𝔀 Ξ² formulae-sequence 𝑑 π‘Ž 𝑏 𝑑 π‘Ž 𝑏 superscript 1 𝛼 𝛽 π‘Ž 𝑑 𝑏 formulae-sequence π‘Ž superscript 𝔀 𝛼 𝑏 superscript 𝔀 𝛽 d[a,b]=[da,b]+(-1)^{\alpha\beta}[a,db]\qquad a\in\mathfrak{g}^{\alpha},\quad b% \in\mathfrak{g}^{\beta} italic_d [ italic_a , italic_b ] = [ italic_d italic_a , italic_b ] + ( - 1 ) start_POSTSUPERSCRIPT italic_Ξ± italic_Ξ² end_POSTSUPERSCRIPT [ italic_a , italic_d italic_b ] italic_a ∈ fraktur_g start_POSTSUPERSCRIPT italic_Ξ± end_POSTSUPERSCRIPT , italic_b ∈ fraktur_g start_POSTSUPERSCRIPT italic_Ξ² end_POSTSUPERSCRIPT (30)

and d 2 = 0 superscript 𝑑 2 0 d^{2}=0 italic_d start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT = 0 .


Definition 1 .

( Semimetric ) Let 𝒡 𝒡 \mathcal{Z} caligraphic_Z be a non-empty set and let ρ : 𝒡 Γ— 𝒡 β†’ [ 0 , ∞ ) : 𝜌 β†’ 𝒡 𝒡 0 \rho:\mathcal{Z}\times\mathcal{Z}\to[0,\infty) italic_ρ : caligraphic_Z Γ— caligraphic_Z β†’ [ 0 , ∞ ) be a function such that βˆ€ z , z β€² ∈ 𝒡 for-all 𝑧 superscript 𝑧 β€² 𝒡 \forall z,z^{\prime}\in\mathcal{Z} βˆ€ italic_z , italic_z start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ∈ caligraphic_Z ,

  1. 1.

    ρ ⁒ ( z , z β€² ) = 0 𝜌 𝑧 superscript 𝑧 β€² 0 \rho(z,z^{\prime})=0 italic_ρ ( italic_z , italic_z start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ) = 0 if and only if z = z β€² 𝑧 superscript 𝑧 β€² z=z^{\prime} italic_z = italic_z start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT , and

  2. 2.

    ρ ⁒ ( z , z β€² ) = ρ ⁒ ( z β€² , z ) 𝜌 𝑧 superscript 𝑧 β€² 𝜌 superscript 𝑧 β€² 𝑧 \rho(z,z^{\prime})=\rho(z^{\prime},z) italic_ρ ( italic_z , italic_z start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ) = italic_ρ ( italic_z start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT , italic_z ) .

Then ( 𝒡 , ρ ) 𝒡 𝜌 (\mathcal{Z},\rho) ( caligraphic_Z , italic_ρ ) is said to be a semimetric space and ρ 𝜌 \rho italic_ρ is called a semimetric on 𝒡 𝒡 \mathcal{Z} caligraphic_Z .


2.2 Definition

A (Jordan) triple derivation is a linear map d 𝑑 d italic_d on a Jordan triple satisfying

d ⁒ { x , y , z } = { d ⁒ x , y , z } + { x , d ⁒ y , z } + { x , y , d ⁒ z } . 𝑑 π‘₯ 𝑦 𝑧 𝑑 π‘₯ 𝑦 𝑧 π‘₯ 𝑑 𝑦 𝑧 π‘₯ 𝑦 𝑑 𝑧 d\{x,y,z\}=\{dx,y,z\}+\{x,dy,z\}+\{x,y,dz\}. italic_d { italic_x , italic_y , italic_z } = { italic_d italic_x , italic_y , italic_z } + { italic_x , italic_d italic_y , italic_z } + { italic_x , italic_y , italic_d italic_z } .

Definition 1.18 .

The spectral mean a ⁒ ΞΌ ⁒ b π‘Ž πœ‡ 𝑏 a\mu b italic_a italic_ΞΌ italic_b of ( a , b ) ∈ π’ž π‘Ž 𝑏 π’ž (a,b)\in\mathcal{C} ( italic_a , italic_b ) ∈ caligraphic_C is P ( a - 1 ⁒ # ⁒ b ) 1 / 2 ⁒ a P superscript superscript π‘Ž 1 # 𝑏 1 2 π‘Ž \mathop{\text{P}}(a^{-1}\#b)^{1/2}a P ( italic_a start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT # italic_b ) start_POSTSUPERSCRIPT 1 / 2 end_POSTSUPERSCRIPT italic_a . It is the unique solution in J 𝐽 J italic_J of the equation

( a - 1 ⁒ # ⁒ b ) 1 / 2 = a - 1 ⁒ # ⁒ x . superscript superscript π‘Ž 1 # 𝑏 1 2 superscript π‘Ž 1 # π‘₯ (a^{-1}\#b)^{1/2}=a^{-1}\#x. ( italic_a start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT # italic_b ) start_POSTSUPERSCRIPT 1 / 2 end_POSTSUPERSCRIPT = italic_a start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT # italic_x .

Definition 3.1 .

If Ξ½ ≀ ρ 𝜈 𝜌 \nu\leq\rho italic_Ξ½ ≀ italic_ρ are cardinals, then write

ρ [ ν ] = ρ superscript 𝜌 delimited-[] 𝜈 𝜌 {\rho}^{[{\nu}]}={\rho} italic_ρ start_POSTSUPERSCRIPT [ italic_ν ] end_POSTSUPERSCRIPT = italic_ρ

iff there is a family ℬ βŠ‚ [ ρ ] ≀ Ξ½ ℬ superscript delimited-[] 𝜌 absent 𝜈 {\mathcal{B}}\subset\bigl{[}{\rho}\bigr{]}^{\leq{\nu}} caligraphic_B βŠ‚ [ italic_ρ ] start_POSTSUPERSCRIPT ≀ italic_Ξ½ end_POSTSUPERSCRIPT of size ρ 𝜌 {\rho} italic_ρ such that for all u ∈ [ ρ ] Ξ½ 𝑒 superscript delimited-[] 𝜌 𝜈 u\in\bigl{[}{\rho}\bigr{]}^{\nu} italic_u ∈ [ italic_ρ ] start_POSTSUPERSCRIPT italic_Ξ½ end_POSTSUPERSCRIPT there is 𝒫 ∈ [ ℬ ] < Ξ½ 𝒫 superscript delimited-[] ℬ absent 𝜈 {\mathcal{P}}\in\bigl{[}{{\mathcal{B}}}\bigr{]}^{<{\nu}} caligraphic_P ∈ [ caligraphic_B ] start_POSTSUPERSCRIPT < italic_Ξ½ end_POSTSUPERSCRIPT such that u βŠ‚ βˆͺ 𝒫 𝑒 𝒫 u\subset\cup{\mathcal{P}} italic_u βŠ‚ βˆͺ caligraphic_P .


Definition 3.8 .

Two Freudenthal triple systems ( V , b , t ) 𝑉 𝑏 𝑑 (V,b,t) ( italic_V , italic_b , italic_t ) , ( V β€² , b β€² , t β€² ) superscript 𝑉 β€² superscript 𝑏 β€² superscript 𝑑 β€² (V^{\prime},b^{\prime},t^{\prime}) ( italic_V start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT , italic_b start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT , italic_t start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ) over a field K 𝐾 K italic_K are similar if there exists a K 𝐾 K italic_K -vector space isomorphism ψ : V β†’ V β€² : πœ“ β†’ 𝑉 superscript 𝑉 β€² \psi:V\rightarrow V^{\prime} italic_ψ : italic_V β†’ italic_V start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT and Ξ» ∈ K * πœ† superscript 𝐾 \lambda\in K^{*} italic_Ξ» ∈ italic_K start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT such that

t β€² ⁒ ( ψ ⁒ ( x ) , ψ ⁒ ( y ) , ψ ⁒ ( z ) ) = Ξ» ⁒ ψ ⁒ ( t ⁒ ( x , y , z ) ) . superscript 𝑑 β€² πœ“ π‘₯ πœ“ 𝑦 πœ“ 𝑧 πœ† πœ“ 𝑑 π‘₯ 𝑦 𝑧 t^{\prime}(\psi(x),\psi(y),\psi(z))=\lambda\psi(t(x,y,z)). italic_t start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ( italic_ψ ( italic_x ) , italic_ψ ( italic_y ) , italic_ψ ( italic_z ) ) = italic_Ξ» italic_ψ ( italic_t ( italic_x , italic_y , italic_z ) ) .

In [ F , Lemma 6.6] it is proven that this condition is equivalent with

{ b β€² ⁒ ( ψ ⁒ ( x ) , ψ ⁒ ( y ) ) = Ξ» ⁒ b ⁒ ( x , y ) ⁒ and b β€² ⁒ ( ψ ⁒ ( x ) , t β€² ⁒ ( ψ ⁒ ( x ) , ψ ⁒ ( x ) , ψ ⁒ ( x ) ) ) = Ξ» 2 ⁒ b ⁒ ( x , t ⁒ ( x , x , x ) ) . cases superscript 𝑏 β€² πœ“ π‘₯ πœ“ 𝑦 πœ† 𝑏 π‘₯ 𝑦 and π‘œπ‘‘β„Žπ‘’π‘Ÿπ‘€π‘–π‘ π‘’ superscript 𝑏 β€² πœ“ π‘₯ superscript 𝑑 β€² πœ“ π‘₯ πœ“ π‘₯ πœ“ π‘₯ superscript πœ† 2 𝑏 π‘₯ 𝑑 π‘₯ π‘₯ π‘₯ π‘œπ‘‘β„Žπ‘’π‘Ÿπ‘€π‘–π‘ π‘’ \begin{cases}b^{\prime}(\psi(x),\psi(y))=\lambda b(x,y)\ \text{ and }\\ b^{\prime}(\psi(x),t^{\prime}(\psi(x),\psi(x),\psi(x)))=\lambda^{2}b(x,t(x,x,x% )).\end{cases} { start_ROW start_CELL italic_b start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ( italic_ψ ( italic_x ) , italic_ψ ( italic_y ) ) = italic_Ξ» italic_b ( italic_x , italic_y ) and end_CELL start_CELL end_CELL end_ROW start_ROW start_CELL italic_b start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ( italic_ψ ( italic_x ) , italic_t start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ( italic_ψ ( italic_x ) , italic_ψ ( italic_x ) , italic_ψ ( italic_x ) ) ) = italic_Ξ» start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_b ( italic_x , italic_t ( italic_x , italic_x , italic_x ) ) . end_CELL start_CELL end_CELL end_ROW

The map ψ πœ“ \psi italic_ψ is then called a similarity with multiplier Ξ» πœ† \lambda italic_Ξ» . We say that two Freudenthal triple systems are isometric if they are similar with Ξ» = 1 πœ† 1 \lambda=1 italic_Ξ» = 1 ; in this case ψ πœ“ \psi italic_ψ is called an isometry .


Definition 3.5 .

Let A 𝐴 A italic_A be a random operator mapping each element of the probability space ( Ξ© , π’œ , β„™ ) Ξ© π’œ β„™ (\Omega,\mathcal{A},\mathbb{P}) ( roman_Ξ© , caligraphic_A , blackboard_P ) to an linear operator on the Hilbert space β„‹ β„‹ \mathcal{H} caligraphic_H . Then A 𝐴 A italic_A is called metrically transitive , if there exists a group 𝒯 𝒯 \mathcal{T} caligraphic_T of measure preserving automorphisms of ( Ξ© , π’œ , β„™ ) Ξ© π’œ β„™ (\Omega,\mathcal{A},\mathbb{P}) ( roman_Ξ© , caligraphic_A , blackboard_P ) , a group of unitary operators 𝒰 := { U T ∣ T ∈ 𝒯 } assign 𝒰 conditional-set subscript π‘ˆ 𝑇 𝑇 𝒯 \mathcal{U}:=\{U_{T}\mid T\in\mathcal{T}\} caligraphic_U := { italic_U start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT ∣ italic_T ∈ caligraphic_T } on β„‹ β„‹ \mathcal{H} caligraphic_H and a homomorphism from 𝒯 𝒯 \mathcal{T} caligraphic_T to 𝒰 𝒰 \mathcal{U} caligraphic_U such that

B ∈ π’œ ⁒ such that ⁒ T ⁒ B = B ⁒ for all ⁒ T ∈ 𝒯 β‡’ β„™ ⁒ ( B ) ∈ { 0 , 1 } formulae-sequence 𝐡 π’œ such that 𝑇 𝐡 𝐡 for all 𝑇 𝒯 β‡’ β„™ 𝐡 0 1 B\in\mathcal{A}\text{ such that }TB=B\text{ for all }T\in\mathcal{T}\quad% \Rightarrow\quad\mathbb{P}(B)\in\{0,1\} italic_B ∈ caligraphic_A such that italic_T italic_B = italic_B for all italic_T ∈ caligraphic_T β‡’ blackboard_P ( italic_B ) ∈ { 0 , 1 } (3.8)

and one has for all Ο‰ ∈ Ξ© πœ” Ξ© \omega\in\Omega italic_Ο‰ ∈ roman_Ξ© and all T ∈ 𝒯 𝑇 𝒯 T\in\mathcal{T} italic_T ∈ caligraphic_T the relation

A ⁒ ( T ⁒ Ο‰ ) = U T ⁒ A ⁒ ( Ο‰ ) ⁒ U T - 1 . 𝐴 𝑇 πœ” subscript π‘ˆ 𝑇 𝐴 πœ” superscript subscript π‘ˆ 𝑇 1 A(T\omega)=U_{T}A(\omega)U_{T}^{-1}. italic_A ( italic_T italic_Ο‰ ) = italic_U start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT italic_A ( italic_Ο‰ ) italic_U start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT . (3.9)

Definition 13 (The bracket) .

For any Lyndon word l 𝑙 l italic_l , the bracketed form [ l ] delimited-[] 𝑙 [l] [ italic_l ] , is defined as follows:

[ l ] = [ [ u ] , [ v ] ] delimited-[] 𝑙 delimited-[] 𝑒 delimited-[] 𝑣 [l]=[[u],[v]] [ italic_l ] = [ [ italic_u ] , [ italic_v ] ]

with [ x 0 ] = x 0 delimited-[] subscript π‘₯ 0 subscript π‘₯ 0 [x_{0}]=x_{0} [ italic_x start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ] = italic_x start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , [ x 1 ] = x 1 delimited-[] subscript π‘₯ 1 subscript π‘₯ 1 [x_{1}]=x_{1} [ italic_x start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ] = italic_x start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT and [ x 0 , x 1 ] = x 0 ⁒ x 1 - x 1 ⁒ x 0 subscript π‘₯ 0 subscript π‘₯ 1 subscript π‘₯ 0 subscript π‘₯ 1 subscript π‘₯ 1 subscript π‘₯ 0 [x_{0},x_{1}]=x_{0}x_{1}-x_{1}x_{0} [ italic_x start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , italic_x start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ] = italic_x start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT italic_x start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT - italic_x start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_x start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT and for l = u ⁒ v 𝑙 𝑒 𝑣 l=uv italic_l = italic_u italic_v , where u , v 𝑒 𝑣 u,v italic_u , italic_v are Lyndon words and v 𝑣 v italic_v is the longest Lyndon word such that l = u ⁒ v 𝑙 𝑒 𝑣 l=uv italic_l = italic_u italic_v .


Definition 2 .

A path is a list of element names n . n β€² . n β€²β€² . β‹― formulae-sequence 𝑛 superscript 𝑛 normal-β€² superscript 𝑛 normal-β€²β€² normal-β‹― n.n^{\prime}.n^{\prime\prime}.\cdots italic_n . italic_n start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT . italic_n start_POSTSUPERSCRIPT β€² β€² end_POSTSUPERSCRIPT . β‹― . The predicate e ⁒ x ⁒ i ⁒ s ⁒ t ⁒ s ⁒ ( p , S ) 𝑒 π‘₯ 𝑖 𝑠 𝑑 𝑠 𝑝 𝑆 exists(p,S) italic_e italic_x italic_i italic_s italic_t italic_s ( italic_p , italic_S ) for a path p 𝑝 p italic_p and a file system S 𝑆 S italic_S is defined recursively as follow:

e ⁒ x ⁒ i ⁒ s ⁒ t ⁒ s ⁒ ( βˆ… , c ) = t ⁒ r ⁒ u ⁒ e 𝑒 π‘₯ 𝑖 𝑠 𝑑 𝑠 𝑐 𝑑 π‘Ÿ 𝑒 𝑒 \displaystyle exists(\varnothing,c)=true italic_e italic_x italic_i italic_s italic_t italic_s ( βˆ… , italic_c ) = italic_t italic_r italic_u italic_e
t ⁒ y ⁒ p ⁒ e ⁒ ( c ) = d ⁒ i ⁒ r ⁒ e ⁒ c ⁒ t ⁒ o ⁒ r ⁒ y ∧ βˆƒ ( n β€² , c β€² ) ∈ c 𝑑 𝑦 𝑝 𝑒 𝑐 𝑑 𝑖 π‘Ÿ 𝑒 𝑐 𝑑 π‘œ π‘Ÿ 𝑦 superscript 𝑛 β€² superscript 𝑐 β€² 𝑐 \displaystyle type(c)=directory\wedge\exists(n^{\prime},c^{\prime})\in c italic_t italic_y italic_p italic_e ( italic_c ) = italic_d italic_i italic_r italic_e italic_c italic_t italic_o italic_r italic_y ∧ βˆƒ ( italic_n start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT , italic_c start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ) ∈ italic_c ⟹ \displaystyle\implies ⟹ e x i s t s ( n β€² . p , ( n , c ) ) = e x i s t s ( p , c β€² ) fragments e x i s t s fragments ( superscript 𝑛 β€² . p , fragments ( n , c ) ) e x i s t s fragments ( p , superscript 𝑐 β€² ) \displaystyle exists(n^{\prime}.p,(n,c))=exists(p,c^{\prime}) italic_e italic_x italic_i italic_s italic_t italic_s ( italic_n start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT . italic_p , ( italic_n , italic_c ) ) = italic_e italic_x italic_i italic_s italic_t italic_s ( italic_p , italic_c start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT )
e ⁒ l ⁒ s ⁒ e 𝑒 𝑙 𝑠 𝑒 \displaystyle else italic_e italic_l italic_s italic_e ⟹ \displaystyle\implies ⟹ e x i s t s ( n β€² . p , ( n , c ) ) = f a l s e fragments e x i s t s fragments ( superscript 𝑛 β€² . p , fragments ( n , c ) ) f a l s e \displaystyle exists(n^{\prime}.p,(n,c))=false italic_e italic_x italic_i italic_s italic_t italic_s ( italic_n start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT . italic_p , ( italic_n , italic_c ) ) = italic_f italic_a italic_l italic_s italic_e

The function c ⁒ o ⁒ n ⁒ t ⁒ e ⁒ n ⁒ t ⁒ ( p , S ) 𝑐 π‘œ 𝑛 𝑑 𝑒 𝑛 𝑑 𝑝 𝑆 content(p,S) italic_c italic_o italic_n italic_t italic_e italic_n italic_t ( italic_p , italic_S ) returns the content of the element at path p 𝑝 p italic_p in S 𝑆 S italic_S . The predicate p ⁒ r ⁒ e ⁒ f ⁒ i ⁒ x ⁒ ( p β€² , p ) 𝑝 π‘Ÿ 𝑒 𝑓 𝑖 π‘₯ superscript 𝑝 normal-β€² 𝑝 prefix(p^{\prime},p) italic_p italic_r italic_e italic_f italic_i italic_x ( italic_p start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT , italic_p ) is true if and only if the list p β€² superscript 𝑝 normal-β€² p^{\prime} italic_p start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT is a non-strict prefix of the list p 𝑝 p italic_p .


Definition 1

Given g : 𝒳 Γ— 𝒴 β†’ 𝒳 normal-: 𝑔 normal-β†’ 𝒳 𝒴 𝒳 g:\mathcal{X}\times\mathcal{Y}\to\mathcal{X} italic_g : caligraphic_X Γ— caligraphic_Y β†’ caligraphic_X , the system

x ^ + = g ⁒ ( x ^ , y ) superscript ^ π‘₯ 𝑔 ^ π‘₯ 𝑦 \displaystyle\hat{x}^{+}=g(\hat{x},\,y) ^ start_ARG italic_x end_ARG start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT = italic_g ( ^ start_ARG italic_x end_ARG , italic_y )

is said to be a deadbeat observer for the systemΒ ( 3 ) if there exists an integer p β‰₯ 1 𝑝 1 p\geq 1 italic_p β‰₯ 1 such that, for all initial conditions, the solutions of the arrayΒ ( 3.1 ) satisfy x ^ ⁒ ( k ) = x ⁒ ( k ) normal-^ π‘₯ π‘˜ π‘₯ π‘˜ \hat{x}(k)=x(k) ^ start_ARG italic_x end_ARG ( italic_k ) = italic_x ( italic_k ) for all k β‰₯ p π‘˜ 𝑝 k\geq p italic_k β‰₯ italic_p . The integer p 𝑝 p italic_p then is called a deadbeat horizon .


Definition 3.1 .

Let Q 𝑄 Q italic_Q be a graph. The Brauer monoid BrM ⁒ ( Q ) BrM 𝑄 {\rm BrM}(Q) roman_BrM ( italic_Q ) is the monoid generated by the symbols R i subscript 𝑅 𝑖 R_{i} italic_R start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT and E i subscript 𝐸 𝑖 E_{i} italic_E start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT , for each node i 𝑖 i italic_i of Q 𝑄 Q italic_Q and Ξ΄ 𝛿 \delta italic_Ξ΄ , Ξ΄ - 1 superscript 𝛿 1 \delta^{-1} italic_Ξ΄ start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT subject to the following relation, where ∼ similar-to \sim ∼ denotes adjacency between nodes of Q 𝑄 Q italic_Q .

Ξ΄ ⁒ Ξ΄ - 1 = 1 𝛿 superscript 𝛿 1 1 \delta\delta^{-1}=1 italic_Ξ΄ italic_Ξ΄ start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT = 1 (3.1)
R i 2 = 1 superscript subscript 𝑅 𝑖 2 1 R_{i}^{2}=1 italic_R start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT = 1 (3.2)
R i ⁒ E i = E i ⁒ R i = E i subscript 𝑅 𝑖 subscript 𝐸 𝑖 subscript 𝐸 𝑖 subscript 𝑅 𝑖 subscript 𝐸 𝑖 R_{i}E_{i}=E_{i}R_{i}=E_{i} italic_R start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT italic_E start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT = italic_E start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT italic_R start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT = italic_E start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT (3.3)
E i 2 = Ξ΄ ⁒ E i superscript subscript 𝐸 𝑖 2 𝛿 subscript 𝐸 𝑖 E_{i}^{2}=\delta E_{i} italic_E start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT = italic_Ξ΄ italic_E start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT (3.4)
R i ⁒ R j = R j ⁒ R i , for ⁒ i ≁ j formulae-sequence subscript 𝑅 𝑖 subscript 𝑅 𝑗 subscript 𝑅 𝑗 subscript 𝑅 𝑖 not-similar-to for 𝑖 𝑗 R_{i}R_{j}=R_{j}R_{i},\,\,\mbox{for}\,\it{i\nsim j} italic_R start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT italic_R start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT = italic_R start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT italic_R start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT , for italic_i ≁ italic_j (3.5)
E i ⁒ R j = R j ⁒ E i , for ⁒ i ≁ j formulae-sequence subscript 𝐸 𝑖 subscript 𝑅 𝑗 subscript 𝑅 𝑗 subscript 𝐸 𝑖 not-similar-to for 𝑖 𝑗 E_{i}R_{j}=R_{j}E_{i},\,\,\mbox{for}\,\it{i\nsim j} italic_E start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT italic_R start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT = italic_R start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT italic_E start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT , for italic_i ≁ italic_j (3.6)
E i ⁒ E j = E j ⁒ E i , for ⁒ i ≁ j formulae-sequence subscript 𝐸 𝑖 subscript 𝐸 𝑗 subscript 𝐸 𝑗 subscript 𝐸 𝑖 not-similar-to for 𝑖 𝑗 E_{i}E_{j}=E_{j}E_{i},\,\,\mbox{for}\,\it{i\nsim j} italic_E start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT italic_E start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT = italic_E start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT italic_E start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT , for italic_i ≁ italic_j (3.7)
R i ⁒ R j ⁒ R i = R j ⁒ R i ⁒ R j , for ⁒ i ∼ j formulae-sequence subscript 𝑅 𝑖 subscript 𝑅 𝑗 subscript 𝑅 𝑖 subscript 𝑅 𝑗 subscript 𝑅 𝑖 subscript 𝑅 𝑗 similar-to for 𝑖 𝑗 R_{i}R_{j}R_{i}=R_{j}R_{i}R_{j},\,\,\mbox{for}\,\it{i\sim j} italic_R start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT italic_R start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT italic_R start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT = italic_R start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT italic_R start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT italic_R start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT , for italic_i ∼ italic_j (3.8)
R j ⁒ R i ⁒ E j = E i ⁒ E j , for ⁒ i ∼ j formulae-sequence subscript 𝑅 𝑗 subscript 𝑅 𝑖 subscript 𝐸 𝑗 subscript 𝐸 𝑖 subscript 𝐸 𝑗 similar-to for 𝑖 𝑗 R_{j}R_{i}E_{j}=E_{i}E_{j},\,\,\mbox{for}\,\it{i\sim j} italic_R start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT italic_R start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT italic_E start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT = italic_E start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT italic_E start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT , for italic_i ∼ italic_j (3.9)
R i ⁒ E j ⁒ R i = R j ⁒ E i ⁒ R j , for ⁒ i ∼ j formulae-sequence subscript 𝑅 𝑖 subscript 𝐸 𝑗 subscript 𝑅 𝑖 subscript 𝑅 𝑗 subscript 𝐸 𝑖 subscript 𝑅 𝑗 similar-to for 𝑖 𝑗 R_{i}E_{j}R_{i}=R_{j}E_{i}R_{j},\,\,\mbox{for}\,\it{i\sim j} italic_R start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT italic_E start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT italic_R start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT = italic_R start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT italic_E start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT italic_R start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT , for italic_i ∼ italic_j (3.10)

The Brauer algebra Br ⁒ ( Q ) Br 𝑄 {\rm Br}(Q) roman_Br ( italic_Q ) is the the free β„€ β„€ \mathbb{Z} blackboard_Z -algebra for Brauer monoid BrM ⁒ ( Q ) BrM 𝑄 {\rm BrM}(Q) roman_BrM ( italic_Q ) .


Definition 3.13 .

Let us now define a product y β‹… x β‹… 𝑦 π‘₯ y\cdot x italic_y β‹… italic_x by

[ y β‹… x 0 0 0 ] = 2 ⁒ { [ x 0 0 0 ] ⁒ [ 0 v 0 0 ] ⁒ [ 0 y 0 0 ] } delimited-[] β‹… 𝑦 π‘₯ 0 0 0 2 delimited-[] π‘₯ 0 0 0 delimited-[] 0 𝑣 0 0 delimited-[] 0 𝑦 0 0 \left[\begin{array}[]{cc}y\cdot x&0\\ 0&0\end{array}\right]=2\left\{\left[\begin{array}[]{cc}x&0\\ 0&0\end{array}\right]\left[\begin{array}[]{cc}0&v\\ 0&0\end{array}\right]\left[\begin{array}[]{cc}0&y\\ 0&0\end{array}\right]\right\} [ start_ARRAY start_ROW start_CELL italic_y β‹… italic_x end_CELL start_CELL 0 end_CELL end_ROW start_ROW start_CELL 0 end_CELL start_CELL 0 end_CELL end_ROW end_ARRAY ] = 2 { [ start_ARRAY start_ROW start_CELL italic_x end_CELL start_CELL 0 end_CELL end_ROW start_ROW start_CELL 0 end_CELL start_CELL 0 end_CELL end_ROW end_ARRAY ] [ start_ARRAY start_ROW start_CELL 0 end_CELL start_CELL italic_v end_CELL end_ROW start_ROW start_CELL 0 end_CELL start_CELL 0 end_CELL end_ROW end_ARRAY ] [ start_ARRAY start_ROW start_CELL 0 end_CELL start_CELL italic_y end_CELL end_ROW start_ROW start_CELL 0 end_CELL start_CELL 0 end_CELL end_ROW end_ARRAY ] }

and denote the corresponding matrix product by X β‹… Y β‹… 𝑋 π‘Œ X\cdot Y italic_X β‹… italic_Y . That is, if X = [ x i ⁒ j ] 𝑋 delimited-[] subscript π‘₯ 𝑖 𝑗 X=[x_{ij}] italic_X = [ italic_x start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT ] and Y = [ y i ⁒ j ] π‘Œ delimited-[] subscript 𝑦 𝑖 𝑗 Y=[y_{ij}] italic_Y = [ italic_y start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT ] , then X β‹… Y = [ z i ⁒ j ] β‹… 𝑋 π‘Œ delimited-[] subscript 𝑧 𝑖 𝑗 X\cdot Y=[z_{ij}] italic_X β‹… italic_Y = [ italic_z start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT ] where

z i ⁒ j = βˆ‘ k x i ⁒ k β‹… y k ⁒ j . subscript 𝑧 𝑖 𝑗 subscript π‘˜ β‹… subscript π‘₯ 𝑖 π‘˜ subscript 𝑦 π‘˜ 𝑗 z_{ij}=\sum_{k}x_{ik}\cdot y_{kj}. italic_z start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT = βˆ‘ start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT italic_x start_POSTSUBSCRIPT italic_i italic_k end_POSTSUBSCRIPT β‹… italic_y start_POSTSUBSCRIPT italic_k italic_j end_POSTSUBSCRIPT .

Definition 2.1 (pinning) .

Let f : [ q ] d β†’ 𝔽 normal-: 𝑓 normal-β†’ superscript delimited-[] π‘ž 𝑑 𝔽 f:[q]^{d}\rightarrow\mathbb{F} italic_f : [ italic_q ] start_POSTSUPERSCRIPT italic_d end_POSTSUPERSCRIPT β†’ blackboard_F be a d 𝑑 d italic_d -ary symmetric function. Let 0 ≀ k ≀ d 0 π‘˜ 𝑑 0\leq k\leq d 0 ≀ italic_k ≀ italic_d and Ο„ ∈ [ q ] k 𝜏 superscript delimited-[] π‘ž π‘˜ \tau\in[q]^{k} italic_Ο„ ∈ [ italic_q ] start_POSTSUPERSCRIPT italic_k end_POSTSUPERSCRIPT . We define that Pin Ο„ ⁒ ( f ) = g subscript Pin 𝜏 𝑓 𝑔 \mbox{{Pin}}_{{\tau}}\left({f}\right)=g Pin start_POSTSUBSCRIPT italic_Ο„ end_POSTSUBSCRIPT ( italic_f ) = italic_g where g : [ q ] d - k β†’ 𝔽 normal-: 𝑔 normal-β†’ superscript delimited-[] π‘ž 𝑑 π‘˜ 𝔽 g:[q]^{d-k}\rightarrow\mathbb{F} italic_g : [ italic_q ] start_POSTSUPERSCRIPT italic_d - italic_k end_POSTSUPERSCRIPT β†’ blackboard_F is a ( d - k ) 𝑑 π‘˜ (d-k) ( italic_d - italic_k ) -ary symmetric function such that

βˆ€ Οƒ ∈ [ q ] d - k , g ⁒ ( Οƒ ) = f ⁒ ( Οƒ ⁒ ( 1 ) , … , Οƒ ⁒ ( d - k ) , Ο„ ⁒ ( 1 ) , … , Ο„ ⁒ ( k ) ) . formulae-sequence for-all 𝜎 superscript delimited-[] π‘ž 𝑑 π‘˜ 𝑔 𝜎 𝑓 𝜎 1 … 𝜎 𝑑 π‘˜ 𝜏 1 … 𝜏 π‘˜ \forall\sigma\in[q]^{d-k},\quad g(\sigma)=f(\sigma(1),\ldots,\sigma(d-k),\tau(% 1),\ldots,\tau(k)). βˆ€ italic_Οƒ ∈ [ italic_q ] start_POSTSUPERSCRIPT italic_d - italic_k end_POSTSUPERSCRIPT , italic_g ( italic_Οƒ ) = italic_f ( italic_Οƒ ( 1 ) , … , italic_Οƒ ( italic_d - italic_k ) , italic_Ο„ ( 1 ) , … , italic_Ο„ ( italic_k ) ) .

Specifically, when k = 0 π‘˜ 0 k=0 italic_k = 0 the resulting function g = f 𝑔 𝑓 g=f italic_g = italic_f ; and when k = d π‘˜ 𝑑 k=d italic_k = italic_d , the resulting function g 𝑔 g italic_g is a trivial function f ⁒ ( Οƒ ) 𝑓 𝜎 f(\sigma) italic_f ( italic_Οƒ ) .


Definition 1 .

Let L = 𝔽 q 𝐿 subscript 𝔽 π‘ž L=\mathbb{F}_{q} italic_L = blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT , with q = p n π‘ž superscript 𝑝 𝑛 q=p^{n} italic_q = italic_p start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT for some positive integer n 𝑛 n italic_n . A function f : L β†’ L : 𝑓 β†’ 𝐿 𝐿 f:L\rightarrow L italic_f : italic_L β†’ italic_L is said to be almost perfect nonlinear (APN) on L 𝐿 L italic_L if for all a , b ∈ L π‘Ž 𝑏 𝐿 a,b\in L italic_a , italic_b ∈ italic_L , a β‰  0 π‘Ž 0 a\neq 0 italic_a β‰  0 , the equation

f ⁒ ( x + a ) - f ⁒ ( x ) = b 𝑓 π‘₯ π‘Ž 𝑓 π‘₯ 𝑏 f(x+a)-f(x)=b italic_f ( italic_x + italic_a ) - italic_f ( italic_x ) = italic_b (1)

has at most 2 solutions.


Definition 1 .

A bilinear map ΞΌ : U Γ— H β†’ H normal-: πœ‡ normal-β†’ π‘ˆ 𝐻 𝐻 \mu\colon U\times H\to H italic_ΞΌ : italic_U Γ— italic_H β†’ italic_H is called a composition of Ο† πœ‘ \varphi italic_Ο† and Ξ» πœ† \lambda italic_Ξ» if for any u ∈ U 𝑒 π‘ˆ u\in U italic_u ∈ italic_U and any h ∈ H β„Ž 𝐻 h\in H italic_h ∈ italic_H the equality

(4) Ο† ⁒ ( ΞΌ ⁒ ( u , h ) ) = Ξ» ⁒ ( u ) ⁒ Ο† ⁒ ( h ) πœ‘ πœ‡ 𝑒 β„Ž πœ† 𝑒 πœ‘ β„Ž \varphi(\mu(u,h))=\lambda(u)\varphi(h) italic_Ο† ( italic_ΞΌ ( italic_u , italic_h ) ) = italic_Ξ» ( italic_u ) italic_Ο† ( italic_h )

holds.


Definition 4.11 .

For π›Œ = ( Ξ» ( 1 ) , Ξ» ( 2 ) , β‹― , Ξ» ( β„“ ) ) ∈ Ξ  β„“ π›Œ superscript πœ† 1 superscript πœ† 2 normal-β‹― superscript πœ† normal-β„“ superscript normal-Ξ  normal-β„“ \boldsymbol{\lambda}=(\lambda^{(1)},\lambda^{(2)},\cdots,\lambda^{(\ell)})\in% \Pi^{\ell} bold_italic_Ξ» = ( italic_Ξ» start_POSTSUPERSCRIPT ( 1 ) end_POSTSUPERSCRIPT , italic_Ξ» start_POSTSUPERSCRIPT ( 2 ) end_POSTSUPERSCRIPT , β‹― , italic_Ξ» start_POSTSUPERSCRIPT ( roman_β„“ ) end_POSTSUPERSCRIPT ) ∈ roman_Ξ  start_POSTSUPERSCRIPT roman_β„“ end_POSTSUPERSCRIPT , we define π›Œ ~ normal-~ π›Œ \widetilde{\boldsymbol{\lambda}} ~ start_ARG bold_italic_Ξ» end_ARG , π›Œ Λ‡ ∈ Ξ  β„“ normal-Λ‡ π›Œ superscript normal-Ξ  normal-β„“ \check{\boldsymbol{\lambda}}\in\Pi^{\ell} roman_Λ‡ start_ARG bold_italic_Ξ» end_ARG ∈ roman_Ξ  start_POSTSUPERSCRIPT roman_β„“ end_POSTSUPERSCRIPT by

𝝀 ~ = ( Ξ» ( 1 ) ~ , Ξ» ( 2 ) ~ , β‹― , Ξ» ( β„“ ) ~ ) , 𝝀 Λ‡ = ( Ξ» ( 1 ) Λ‡ , Ξ» ( 2 ) Λ‡ , β‹― , Ξ» ( β„“ ) Λ‡ ) , fragments ~ 𝝀 fragments ( ~ superscript πœ† 1 , ~ superscript πœ† 2 , β‹― , ~ superscript πœ† β„“ ) italic- , Λ‡ 𝝀 fragments ( Λ‡ superscript πœ† 1 , Λ‡ superscript πœ† 2 , β‹― , Λ‡ superscript πœ† β„“ ) italic- , \displaystyle\widetilde{\boldsymbol{\lambda}}=(\widetilde{\lambda^{(1)}},% \widetilde{\lambda^{(2)}},\cdots,\widetilde{\lambda^{(\ell)}})\quad,\quad% \check{\boldsymbol{\lambda}}=(\check{\lambda^{(1)}},\check{\lambda^{(2)}},% \cdots,\check{\lambda^{(\ell)}})\quad, ~ start_ARG bold_italic_Ξ» end_ARG = ( ~ start_ARG italic_Ξ» start_POSTSUPERSCRIPT ( 1 ) end_POSTSUPERSCRIPT end_ARG , ~ start_ARG italic_Ξ» start_POSTSUPERSCRIPT ( 2 ) end_POSTSUPERSCRIPT end_ARG , β‹― , ~ start_ARG italic_Ξ» start_POSTSUPERSCRIPT ( roman_β„“ ) end_POSTSUPERSCRIPT end_ARG ) , roman_Λ‡ start_ARG bold_italic_Ξ» end_ARG = ( roman_Λ‡ start_ARG italic_Ξ» start_POSTSUPERSCRIPT ( 1 ) end_POSTSUPERSCRIPT end_ARG , roman_Λ‡ start_ARG italic_Ξ» start_POSTSUPERSCRIPT ( 2 ) end_POSTSUPERSCRIPT end_ARG , β‹― , roman_Λ‡ start_ARG italic_Ξ» start_POSTSUPERSCRIPT ( roman_β„“ ) end_POSTSUPERSCRIPT end_ARG ) ,

where Ξ» ( i ) = Ξ» ( i ) ~ + n ⁒ Ξ» ( i ) Λ‡ superscript πœ† 𝑖 normal-~ superscript πœ† 𝑖 𝑛 normal-Λ‡ superscript πœ† 𝑖 \lambda^{(i)}=\widetilde{\lambda^{(i)}}+n\check{\lambda^{(i)}} italic_Ξ» start_POSTSUPERSCRIPT ( italic_i ) end_POSTSUPERSCRIPT = ~ start_ARG italic_Ξ» start_POSTSUPERSCRIPT ( italic_i ) end_POSTSUPERSCRIPT end_ARG + italic_n roman_Λ‡ start_ARG italic_Ξ» start_POSTSUPERSCRIPT ( italic_i ) end_POSTSUPERSCRIPT end_ARG and Ξ» ( i ) ~ normal-~ superscript πœ† 𝑖 \widetilde{\lambda^{(i)}} ~ start_ARG italic_Ξ» start_POSTSUPERSCRIPT ( italic_i ) end_POSTSUPERSCRIPT end_ARG is n 𝑛 n italic_n -restricted. (See Definition 3.5 .) And we define

S 𝝀 = ∏ i = 1 β„“ S Ξ» ( i ) ⁒ [ i ] = S Ξ» ( 1 ) ⁒ [ 1 ] ⁒ S Ξ» ( 2 ) ⁒ [ 2 ] ⁒ β‹― ⁒ S Ξ» ( β„“ ) ⁒ [ β„“ ] . subscript 𝑆 𝝀 superscript subscript product 𝑖 1 β„“ subscript 𝑆 superscript πœ† 𝑖 delimited-[] 𝑖 subscript 𝑆 superscript πœ† 1 delimited-[] 1 subscript 𝑆 superscript πœ† 2 delimited-[] 2 β‹― subscript 𝑆 superscript πœ† β„“ delimited-[] β„“ S_{\boldsymbol{\lambda}}=\prod_{i=1}^{\ell}S_{\lambda^{(i)}}[i]=S_{\lambda^{(1% )}}[1]S_{\lambda^{(2)}}[2]\cdots S_{\lambda^{(\ell)}}[\ell]. italic_S start_POSTSUBSCRIPT bold_italic_Ξ» end_POSTSUBSCRIPT = ∏ start_POSTSUBSCRIPT italic_i = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT roman_β„“ end_POSTSUPERSCRIPT italic_S start_POSTSUBSCRIPT italic_Ξ» start_POSTSUPERSCRIPT ( italic_i ) end_POSTSUPERSCRIPT end_POSTSUBSCRIPT [ italic_i ] = italic_S start_POSTSUBSCRIPT italic_Ξ» start_POSTSUPERSCRIPT ( 1 ) end_POSTSUPERSCRIPT end_POSTSUBSCRIPT [ 1 ] italic_S start_POSTSUBSCRIPT italic_Ξ» start_POSTSUPERSCRIPT ( 2 ) end_POSTSUPERSCRIPT end_POSTSUBSCRIPT [ 2 ] β‹― italic_S start_POSTSUBSCRIPT italic_Ξ» start_POSTSUPERSCRIPT ( roman_β„“ ) end_POSTSUPERSCRIPT end_POSTSUBSCRIPT [ roman_β„“ ] .

Definition 3.3 .

We say that a polynomial mapping F : 𝔸 n β†’ 𝔸 k : 𝐹 β†’ superscript 𝔸 𝑛 superscript 𝔸 π‘˜ F:\mathbb{A}^{n}\to\mathbb{A}^{k} italic_F : blackboard_A start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT β†’ blackboard_A start_POSTSUPERSCRIPT italic_k end_POSTSUPERSCRIPT is Newton non-degenerate at infinity , resp. Newton strongly non-degenerate at infinity, if for any vector 𝐩 ∈ β„€ n βˆ– { 0 } 𝐩 superscript β„€ 𝑛 0 \mathbf{p}\in{\mathbb{Z}}^{n}\setminus\{0\} bold_p ∈ blackboard_Z start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT βˆ– { 0 } with p < 0 𝑝 0 p<0 italic_p < 0 and such that N 𝐩 β‰  βˆ… subscript N 𝐩 \mathrm{N}_{\mathbf{p}}\not=\emptyset roman_N start_POSTSUBSCRIPT bold_p end_POSTSUBSCRIPT β‰  βˆ… , the following condition is satisfied:

( * ) Sing ⁒ F β–³ 𝐩 ∩ { x ∈ 𝔸 n ∣ f β–³ 𝐩 j ⁒ ( x ) = 0 , βˆ€ j ∈ N 𝐩 } ∩ ( 𝔸 * ) n = βˆ… , Sing subscript 𝐹 subscript β–³ 𝐩 conditional-set x superscript 𝔸 𝑛 formulae-sequence subscript 𝑓 superscript subscript β–³ 𝐩 𝑗 x 0 for-all 𝑗 subscript N 𝐩 superscript superscript 𝔸 𝑛 ( * ) roman_Sing italic_F start_POSTSUBSCRIPT β–³ start_POSTSUBSCRIPT bold_p end_POSTSUBSCRIPT end_POSTSUBSCRIPT ∩ { roman_x ∈ blackboard_A start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT ∣ italic_f start_POSTSUBSCRIPT β–³ start_POSTSUBSCRIPT bold_p end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_j end_POSTSUPERSCRIPT end_POSTSUBSCRIPT ( roman_x ) = 0 , βˆ€ italic_j ∈ roman_N start_POSTSUBSCRIPT bold_p end_POSTSUBSCRIPT } ∩ ( blackboard_A start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT = βˆ… ,

respectively

( * * ) Sing F β–³ 𝐩 ∩ ( 𝔸 * ) n = βˆ… . fragments fragments ( ) italic- Sing subscript 𝐹 subscript β–³ 𝐩 superscript fragments ( superscript 𝔸 ) 𝑛 . ( * * ) roman_Sing italic_F start_POSTSUBSCRIPT β–³ start_POSTSUBSCRIPT bold_p end_POSTSUBSCRIPT end_POSTSUBSCRIPT ∩ ( blackboard_A start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT = βˆ… .

DΓ©finition 6 .

Soit β„‹ β„‹ {\mathcal{H}} caligraphic_H une algΓ¨bre de Hopf et π’œ π’œ {\mathcal{A}} caligraphic_A une algΓ¨bre commutative. On dit que Ο† : β„‹ β†’ π’œ normal-: πœ‘ normal-β†’ β„‹ π’œ \varphi:{\mathcal{H}}\rightarrow{\mathcal{A}} italic_Ο† : caligraphic_H β†’ caligraphic_A est un caractΓ¨re si Ο† ⁒ ( 𝟏 ) = 𝟏 πœ‘ 𝟏 𝟏 \varphi(\hbox{\bf 1})=\hbox{\bf 1} italic_Ο† ( 1 ) = 1 et pour tout x π‘₯ x italic_x , y ∈ β„‹ 𝑦 β„‹ y\in{\mathcal{H}} italic_y ∈ caligraphic_H on a : Ο† ⁒ ( x ⁒ y ) = Ο† ⁒ ( x ) ⁒ Ο† ⁒ ( y ) πœ‘ π‘₯ 𝑦 πœ‘ π‘₯ πœ‘ 𝑦 \varphi(xy)=\varphi(x)\varphi(y) italic_Ο† ( italic_x italic_y ) = italic_Ο† ( italic_x ) italic_Ο† ( italic_y ) , et on dit que Ο† : β„‹ β†’ π’œ normal-: πœ‘ normal-β†’ β„‹ π’œ \varphi:{\mathcal{H}}\rightarrow{\mathcal{A}} italic_Ο† : caligraphic_H β†’ caligraphic_A est un caractΓ¨re infinitΓ©simal si Ο† ⁒ ( 𝟏 ) = 0 πœ‘ 𝟏 0 \varphi(\hbox{\bf 1})=0 italic_Ο† ( 1 ) = 0 et pour tout x π‘₯ x italic_x , y ∈ β„‹ 𝑦 β„‹ y\in{\mathcal{H}} italic_y ∈ caligraphic_H on a :

Ο† ⁒ ( x ⁒ y ) = Ο† ⁒ ( x ) ⁒ e ⁒ ( y ) + e ⁒ ( x ) ⁒ Ο† ⁒ ( y ) , πœ‘ π‘₯ 𝑦 πœ‘ π‘₯ 𝑒 𝑦 𝑒 π‘₯ πœ‘ 𝑦 \varphi(xy)=\varphi(x)e(y)+e(x)\varphi(y), italic_Ο† ( italic_x italic_y ) = italic_Ο† ( italic_x ) italic_e ( italic_y ) + italic_e ( italic_x ) italic_Ο† ( italic_y ) ,

oΓΉ e = u ∘ Ξ΅ 𝑒 𝑒 πœ€ e=u\circ\varepsilon italic_e = italic_u ∘ italic_Ξ΅ .