Definition \thechapter .2 (Wedge Product) .

Let ( X , π’Ÿ ) 𝑋 π’Ÿ (X,\mathcal{D}) ( italic_X , caligraphic_D ) be a diffeological space, and let Ξ± ∈ Ξ© k ⁒ ( X ) 𝛼 superscript Ξ© π‘˜ 𝑋 \alpha\in\Omega^{k}(X) italic_Ξ± ∈ roman_Ξ© start_POSTSUPERSCRIPT italic_k end_POSTSUPERSCRIPT ( italic_X ) and Ξ² ∈ Ξ© l ⁒ ( X ) 𝛽 superscript Ξ© 𝑙 𝑋 \beta\in\Omega^{l}(X) italic_Ξ² ∈ roman_Ξ© start_POSTSUPERSCRIPT italic_l end_POSTSUPERSCRIPT ( italic_X ) . Then define the wedge product of Ξ± 𝛼 \alpha italic_Ξ± and Ξ² 𝛽 \beta italic_Ξ² , denoted Ξ± ∧ Ξ² 𝛼 𝛽 \alpha\wedge\beta italic_Ξ± ∧ italic_Ξ² , to be the ( k + l ) π‘˜ 𝑙 (k+l) ( italic_k + italic_l ) -form defined by

( Ξ± ∧ Ξ² ) ⁒ ( p ) = Ξ± ⁒ ( p ) ∧ Ξ² ⁒ ( p ) 𝛼 𝛽 𝑝 𝛼 𝑝 𝛽 𝑝 (\alpha\wedge\beta)(p)=\alpha(p)\wedge\beta(p) ( italic_Ξ± ∧ italic_Ξ² ) ( italic_p ) = italic_Ξ± ( italic_p ) ∧ italic_Ξ² ( italic_p )

for all plots p ∈ π’Ÿ 𝑝 π’Ÿ p\in\mathcal{D} italic_p ∈ caligraphic_D . Then Ξ© * ⁒ ( X ) = βŠ• k = 0 ∞ Ξ© k ⁒ ( X ) superscript Ξ© 𝑋 superscript subscript direct-sum π‘˜ 0 superscript Ξ© π‘˜ 𝑋 \Omega^{*}(X)=\bigoplus_{k=0}^{\infty}\Omega^{k}(X) roman_Ξ© start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT ( italic_X ) = βŠ• start_POSTSUBSCRIPT italic_k = 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT roman_Ξ© start_POSTSUPERSCRIPT italic_k end_POSTSUPERSCRIPT ( italic_X ) is an exterior algebra.

Definition \thechapter .5 (Exterior Derivative of Diffeological Forms) .

Let ( X , π’Ÿ ) 𝑋 π’Ÿ (X,\mathcal{D}) ( italic_X , caligraphic_D ) be a diffeological space, and let Ξ± 𝛼 \alpha italic_Ξ± be a k π‘˜ k italic_k -form on it. Define the exterior derivative of Ξ± 𝛼 \alpha italic_Ξ± , denoted d ⁒ Ξ± 𝑑 𝛼 d\alpha italic_d italic_Ξ± , by

p * ⁒ ( d ⁒ Ξ± ) = d ⁒ ( p * ⁒ Ξ± ) superscript 𝑝 𝑑 𝛼 𝑑 superscript 𝑝 𝛼 p^{*}(d\alpha)=d(p^{*}\alpha) italic_p start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT ( italic_d italic_Ξ± ) = italic_d ( italic_p start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT italic_Ξ± )

for any plot p ∈ π’Ÿ 𝑝 π’Ÿ p\in\mathcal{D} italic_p ∈ caligraphic_D . The exterior derivative commutes with pullback, and all of the usual formulae involving pullbacks, the exterior derivative, and the wedge product hold. We thus have the de Rham complex ( Ξ© * ⁒ ( X ) , d ) superscript Ξ© 𝑋 𝑑 (\Omega^{*}(X),d) ( roman_Ξ© start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT ( italic_X ) , italic_d ) .

Definition \thechapter .1 (Zariski Tangent Bundle) .

Given a point x ∈ S π‘₯ 𝑆 x\in S italic_x ∈ italic_S , a derivation of C ∞ ⁒ ( S ) superscript 𝐢 𝑆 {C^{\infty}}(S) italic_C start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT ( italic_S ) at x π‘₯ x italic_x is a linear map v : C ∞ ⁒ ( S ) β†’ ℝ : 𝑣 β†’ superscript 𝐢 𝑆 ℝ v:{C^{\infty}}(S)\to{\mathbb{R}} italic_v : italic_C start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT ( italic_S ) β†’ blackboard_R that satisfies Leibniz’ rule: for all f , g ∈ C ∞ ⁒ ( S ) 𝑓 𝑔 superscript 𝐢 𝑆 f,g\in{C^{\infty}}(S) italic_f , italic_g ∈ italic_C start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT ( italic_S ) ,

v ⁒ ( f ⁒ g ) = f ⁒ ( x ) ⁒ v ⁒ ( g ) + g ⁒ ( x ) ⁒ v ⁒ ( f ) . 𝑣 𝑓 𝑔 𝑓 π‘₯ 𝑣 𝑔 𝑔 π‘₯ 𝑣 𝑓 v(fg)=f(x)v(g)+g(x)v(f). italic_v ( italic_f italic_g ) = italic_f ( italic_x ) italic_v ( italic_g ) + italic_g ( italic_x ) italic_v ( italic_f ) .

The set of all derivations of C ∞ ⁒ ( S ) superscript 𝐢 𝑆 {C^{\infty}}(S) italic_C start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT ( italic_S ) at x π‘₯ x italic_x forms a vector space, called the (Zariski) tangent space of x π‘₯ x italic_x , and is denoted T x ⁒ S subscript 𝑇 π‘₯ 𝑆 T_{x}S italic_T start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT italic_S . Define the (Zariski) tangent bundle T ⁒ S 𝑇 𝑆 TS italic_T italic_S to be the (disjoint) union

T ⁒ S := ⋃ x ∈ S T x ⁒ S . assign 𝑇 𝑆 subscript π‘₯ 𝑆 subscript 𝑇 π‘₯ 𝑆 TS:=\bigcup_{x\in S}T_{x}S. italic_T italic_S := ⋃ start_POSTSUBSCRIPT italic_x ∈ italic_S end_POSTSUBSCRIPT italic_T start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT italic_S .

Denote the canonical projection T ⁒ S β†’ S β†’ 𝑇 𝑆 𝑆 TS\to S italic_T italic_S β†’ italic_S by Ο„ 𝜏 \tau italic_Ο„ .

Definition \thechapter .37 .

A Poisson bracket on a differential structure β„± β„± \mathcal{F} caligraphic_F on a differential space X 𝑋 X italic_X is a Lie bracket { , } fragments { , } {\{,\}} { , } satisfying for any f , g , h ∈ β„± 𝑓 𝑔 β„Ž β„± f,g,h\in\mathcal{F} italic_f , italic_g , italic_h ∈ caligraphic_F :

{ f , g ⁒ h } = h ⁒ { f , g } + g ⁒ { f , h } . 𝑓 𝑔 β„Ž β„Ž 𝑓 𝑔 𝑔 𝑓 β„Ž {\{f,gh\}}=h{\{f,g\}}+g{\{f,h\}}. { italic_f , italic_g italic_h } = italic_h { italic_f , italic_g } + italic_g { italic_f , italic_h } .