Definition 6.1 .

[ CFM , Definition 1.1] Let K 𝐾 K italic_K be a Hopf algebra and A 𝐴 A italic_A be a right K 𝐾 K italic_K -comodule algebra with structure ρ : A β†’ A βŠ— K : 𝜌 β†’ 𝐴 tensor-product 𝐴 𝐾 \rho:A\rightarrow A\otimes K italic_ρ : italic_A β†’ italic_A βŠ— italic_K . Let B = A c ⁒ o ⁒ K 𝐡 superscript 𝐴 𝑐 π‘œ 𝐾 B=A^{coK} italic_B = italic_A start_POSTSUPERSCRIPT italic_c italic_o italic_K end_POSTSUPERSCRIPT . We say that B βŠ‚ A 𝐡 𝐴 B\subset A italic_B βŠ‚ italic_A is a (right) K 𝐾 K italic_K -Galois extension if the map Ξ² : A βŠ— B A β†’ A βŠ— K : 𝛽 β†’ subscript tensor-product 𝐡 𝐴 𝐴 tensor-product 𝐴 𝐾 \beta:A\otimes_{B}A\to A\otimes K italic_Ξ² : italic_A βŠ— start_POSTSUBSCRIPT italic_B end_POSTSUBSCRIPT italic_A β†’ italic_A βŠ— italic_K given by

Ξ² ⁒ ( a βŠ— b ) = ( a βŠ— 1 ) ⁒ ρ ⁒ ( b ) 𝛽 tensor-product π‘Ž 𝑏 tensor-product π‘Ž 1 𝜌 𝑏 \beta(a\otimes b)=(a\otimes 1)\rho(b) italic_Ξ² ( italic_a βŠ— italic_b ) = ( italic_a βŠ— 1 ) italic_ρ ( italic_b )

is surjective.


Definition 1.17 .

The subriemannian distance, also called Carnot-CarathΓ©odory distance, between two points x π‘₯ x italic_x and y 𝑦 y italic_y on a subriemannian manifold is given by

d ⁒ ( x , y ) = inf ⁑ l ⁒ ( Ξ³ ) , 𝑑 π‘₯ 𝑦 infimum 𝑙 𝛾 d(x,y)=\inf l(\gamma), italic_d ( italic_x , italic_y ) = roman_inf italic_l ( italic_Ξ³ ) ,

where the infimum is taken over all horizontal curves that connect x π‘₯ x italic_x to y 𝑦 y italic_y . The distance is infinite if there is no such curve. The subriemannian ball of radius Ο΅ italic-Ο΅ \epsilon italic_Ο΅ centered at x ∈ M π‘₯ 𝑀 x\in M italic_x ∈ italic_M is denoted by

B ⁒ ( Ο΅ , x ) = { y ∈ M : d ⁒ ( x , y ) < Ο΅ } . 𝐡 italic-Ο΅ π‘₯ conditional-set 𝑦 𝑀 𝑑 π‘₯ 𝑦 italic-Ο΅ B(\epsilon,x)=\{y\in M:d(x,y)<\epsilon\}. italic_B ( italic_Ο΅ , italic_x ) = { italic_y ∈ italic_M : italic_d ( italic_x , italic_y ) < italic_Ο΅ } .

Definition 4 (Divergence operator) .

For any measurable u : E Γ— 𝒳 β†’ ℝ : 𝑒 β†’ 𝐸 𝒳 ℝ u:E\times{\mathcal{X}}\rightarrow{\mathbb{R}} italic_u : italic_E Γ— caligraphic_X β†’ blackboard_R such that 𝔼 ⁒ [ ∫ | u ⁒ ( y , ΞΎ ) | ⁒ c ⁒ ( y , ΞΎ ) ⁒ Ξ» ⁒ ( d ⁒ y ) ] < ∞ 𝔼 delimited-[] 𝑒 𝑦 πœ‰ 𝑐 𝑦 πœ‰ πœ† 𝑑 𝑦 {\mathbb{E}}[\int|u(y,\xi)|\,c(y,\xi)\,\lambda(dy)]<\infty blackboard_E [ ∫ | italic_u ( italic_y , italic_ΞΎ ) | italic_c ( italic_y , italic_ΞΎ ) italic_Ξ» ( italic_d italic_y ) ] < ∞ , we define Ξ΄ ⁒ ( u ) 𝛿 𝑒 \delta(u) italic_Ξ΄ ( italic_u ) as

Ξ΄ ⁒ ( u ) = ∫ u ⁒ ( y , ΞΎ \ y ) ⁒ Ξ½ ⁒ ( d ⁒ y ) = ∫ u ⁒ ( y , ΞΎ \ y ) ⁒ ΞΎ ⁒ ( d ⁒ y ) - ∫ u ⁒ ( y , ΞΎ ) ⁒ c ⁒ ( y , ΞΎ ) ⁒ Ξ» ⁒ ( d ⁒ y ) . 𝛿 𝑒 𝑒 𝑦 \ πœ‰ 𝑦 𝜈 d 𝑦 𝑒 𝑦 \ πœ‰ 𝑦 πœ‰ d 𝑦 𝑒 𝑦 πœ‰ 𝑐 𝑦 πœ‰ πœ† d 𝑦 \delta(u)=\int u(y,\xi\,\backslash\,y)\,\nu({\text{d}}y)=\int u(y,\xi\,% \backslash\,y)\,\xi({\text{d}}y)-\int u(y,\xi)\,c(y,\xi)\,\lambda({\text{d}}y). italic_Ξ΄ ( italic_u ) = ∫ italic_u ( italic_y , italic_ΞΎ \ italic_y ) italic_Ξ½ ( d italic_y ) = ∫ italic_u ( italic_y , italic_ΞΎ \ italic_y ) italic_ΞΎ ( d italic_y ) - ∫ italic_u ( italic_y , italic_ΞΎ ) italic_c ( italic_y , italic_ΞΎ ) italic_Ξ» ( d italic_y ) .

Definition 3.2 .

Let G = G - ⁒ G 0 ⁒ G + 𝐺 superscript 𝐺 superscript 𝐺 0 superscript 𝐺 G=G^{-}G^{0}G^{+} italic_G = italic_G start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT italic_G start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT italic_G start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT and H = H - ⁒ H 0 ⁒ H + 𝐻 superscript 𝐻 superscript 𝐻 0 superscript 𝐻 H=H^{-}H^{0}H^{+} italic_H = italic_H start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT italic_H start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT italic_H start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT be pretriangulated and f : G β†’ H : 𝑓 β†’ 𝐺 𝐻 f:G\rightarrow H italic_f : italic_G β†’ italic_H a group homomorphism. Then f 𝑓 f italic_f is said to be triangulated , if for all Ξ± ∈ { - , 0 , + } 𝛼 0 \alpha\in\{-,0,+\} italic_Ξ± ∈ { - , 0 , + } the restriction of f 𝑓 f italic_f to G Ξ± superscript 𝐺 𝛼 G^{\alpha} italic_G start_POSTSUPERSCRIPT italic_Ξ± end_POSTSUPERSCRIPT factors through H Ξ± superscript 𝐻 𝛼 H^{\alpha} italic_H start_POSTSUPERSCRIPT italic_Ξ± end_POSTSUPERSCRIPT .

We denote this factorization by f Ξ± : G Ξ± β†’ H Ξ± : superscript 𝑓 𝛼 β†’ superscript 𝐺 𝛼 superscript 𝐻 𝛼 f^{\alpha}:G^{\alpha}\rightarrow H^{\alpha} italic_f start_POSTSUPERSCRIPT italic_Ξ± end_POSTSUPERSCRIPT : italic_G start_POSTSUPERSCRIPT italic_Ξ± end_POSTSUPERSCRIPT β†’ italic_H start_POSTSUPERSCRIPT italic_Ξ± end_POSTSUPERSCRIPT and we write

f = f - ⁒ f 0 ⁒ f + 𝑓 superscript 𝑓 superscript 𝑓 0 superscript 𝑓 f=f^{-}f^{0}f^{+} italic_f = italic_f start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT italic_f start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT italic_f start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT

Definition 2.2.1 .

Let D 𝐷 D italic_D be commutative ring. 2.5 2.5 2.5 This section is written on the base of the section [ 7 ]- LABEL:8433-5163-English-section:_Algebra_over_Ring . A 𝐴 A italic_A is an algebra over ring D 𝐷 D italic_D or D 𝐷 D italic_D -algebra , if A 𝐴 A italic_A is D 𝐷 D italic_D -module and we defined product 2.6 2.6 2.6 I follow the definition given in [ 15 ], p. 1, [ 11 ], p. 4. The statement which is true for any D 𝐷 D italic_D -module, is true also for D 𝐷 D italic_D -algebra. in A 𝐴 A italic_A

(2.2.1) a ⁒ b = f ∘ ( a , b ) π‘Ž 𝑏 𝑓 π‘Ž 𝑏 ab=f\circ(a,b) italic_a italic_b = italic_f ∘ ( italic_a , italic_b )

where f 𝑓 f italic_f is bilinear map

f : A Γ— A β†’ A : 𝑓 β†’ 𝐴 𝐴 𝐴 f:A\times A\rightarrow A italic_f : italic_A Γ— italic_A β†’ italic_A

If A 𝐴 A italic_A is free D 𝐷 D italic_D -module, then A 𝐴 A italic_A is called free algebra over ring D 𝐷 D italic_D . ∎

Definition 2.2.5 .

The commutator

[ a , b ] = a ⁒ b - b ⁒ a π‘Ž 𝑏 π‘Ž 𝑏 𝑏 π‘Ž {\color[rgb]{.4,0,.9}[a,b]}=ab-ba [ italic_a , italic_b ] = italic_a italic_b - italic_b italic_a

measures commutativity in D 𝐷 D italic_D -algebra A 𝐴 A italic_A . D 𝐷 D italic_D -algebra A 𝐴 A italic_A is called commutative , if

[ a , b ] = 0 π‘Ž 𝑏 0 [a,b]=0 [ italic_a , italic_b ] = 0

∎

Definition 2.2.6 .

The associator

(2.2.4) ( a , b , c ) = ( a ⁒ b ) ⁒ c - a ⁒ ( b ⁒ c ) π‘Ž 𝑏 𝑐 π‘Ž 𝑏 𝑐 π‘Ž 𝑏 𝑐 {\color[rgb]{.4,0,.9}(a,b,c)}=(ab)c-a(bc) ( italic_a , italic_b , italic_c ) = ( italic_a italic_b ) italic_c - italic_a ( italic_b italic_c )

measures associativity in D 𝐷 D italic_D -algebra A 𝐴 A italic_A . D 𝐷 D italic_D -algebra A 𝐴 A italic_A is called associative , if

( a , b , c ) = 0 π‘Ž 𝑏 𝑐 0 (a,b,c)=0 ( italic_a , italic_b , italic_c ) = 0

∎

Definition 3.1.1 .

Let D 𝐷 D italic_D be a ring. 3.1 3.1 3.1 [ 2 ], page 89. The set Z ⁒ ( D ) 𝑍 𝐷 {\color[rgb]{.4,0,.9}Z(D)} italic_Z ( italic_D ) of elements a ∈ D π‘Ž 𝐷 a\in D italic_a ∈ italic_D such that

(3.1.1) a ⁒ x = x ⁒ a π‘Ž π‘₯ π‘₯ π‘Ž ax=xa italic_a italic_x = italic_x italic_a

for all x ∈ D π‘₯ 𝐷 x\in D italic_x ∈ italic_D , is called center of ring D 𝐷 D italic_D . ∎


Definition 2

We say that a harmonic map ψ : S 2 β†’ β„‚ ⁒ P n normal-: πœ“ normal-β†’ superscript 𝑆 2 β„‚ superscript 𝑃 𝑛 \psi:S^{2}\to{\mathbb{C}}P^{n} italic_ψ : italic_S start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT β†’ blackboard_C italic_P start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT has \boldsymbol ⁒ S 1 \boldsymbol superscript 𝑆 1 {\boldsymbol S^{1}} italic_S start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT -symmetry if there exists non-trivial S 1 superscript 𝑆 1 S^{1} italic_S start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT -actions on S 2 superscript 𝑆 2 S^{2} italic_S start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT and β„‚ ⁒ P n β„‚ superscript 𝑃 𝑛 {\mathbb{C}}P^{n} blackboard_C italic_P start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT , where the action on β„‚ ⁒ P n β„‚ superscript 𝑃 𝑛 {\mathbb{C}}P^{n} blackboard_C italic_P start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT is by holomorphic isometries, such that for all z ∈ S 2 𝑧 superscript 𝑆 2 z\in S^{2} italic_z ∈ italic_S start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ,

ψ ⁒ ( e i ⁒ ΞΈ ⁒ z ) = e i ⁒ ΞΈ ⁒ ψ ⁒ ( z ) . πœ“ superscript 𝑒 𝑖 πœƒ 𝑧 superscript 𝑒 𝑖 πœƒ πœ“ 𝑧 \psi(e^{i\theta}z)=e^{i\theta}\psi(z). italic_ψ ( italic_e start_POSTSUPERSCRIPT italic_i italic_ΞΈ end_POSTSUPERSCRIPT italic_z ) = italic_e start_POSTSUPERSCRIPT italic_i italic_ΞΈ end_POSTSUPERSCRIPT italic_ψ ( italic_z ) .

Definition 5.2

The pipe surface of radius r π‘Ÿ r italic_r of a parameterized curve c ( t ) normal-t (t) ( italic_t ) , where t ∈ [ 0 , 1 ] 𝑑 0 1 t\in[0,1] italic_t ∈ [ 0 , 1 ] is given by

p ⁒ ( t , ΞΈ ) = c ⁒ ( t ) + r ⁒ [ c ⁒ o ⁒ s ⁒ ( ΞΈ ) ⁒ n ⁒ ( t ) + s ⁒ i ⁒ n ⁒ ( ΞΈ ) ⁒ b ⁒ ( t ) ] , p 𝑑 πœƒ c 𝑑 π‘Ÿ delimited-[] 𝑐 π‘œ 𝑠 πœƒ n 𝑑 𝑠 𝑖 𝑛 πœƒ b 𝑑 \textbf{ p}(t,\theta)=\textbf{ c}(t)+r[cos(\theta)\textbf{ n}(t)+sin(\theta)% \textbf{ b}(t)], p ( italic_t , italic_ΞΈ ) = c ( italic_t ) + italic_r [ italic_c italic_o italic_s ( italic_ΞΈ ) n ( italic_t ) + italic_s italic_i italic_n ( italic_ΞΈ ) b ( italic_t ) ] ,

where ΞΈ ∈ [ 0 , 2 ⁒ Ο€ ] πœƒ 0 2 πœ‹ \theta\in[0,2\pi] italic_ΞΈ ∈ [ 0 , 2 italic_Ο€ ] and n ⁒ ( t ) n 𝑑 \textbf{ n}(t) n ( italic_t ) and b ⁒ ( t ) b 𝑑 \textbf{ b}(t) b ( italic_t ) are, respectively, the normal and bi-normal vectors at the point 𝐜 ⁒ ( t ) 𝐜 𝑑 \textbf{c}(t) c ( italic_t ) , as given by the Frenet-Serret trihedron. The curve c is called a spine curve.


Definition 2.2

Let K 𝐾 K italic_K be a field, and let V 𝑉 V italic_V be a vector space over K 𝐾 K italic_K equipped with an additional binary operation from V Γ— V β†’ V normal-β†’ 𝑉 𝑉 𝑉 V\times V\to V italic_V Γ— italic_V β†’ italic_V , denoted here by β‹… normal-β‹… \cdot β‹… (i.e. if x and y are any two elements of V , x β‹… y 𝑉 normal-β‹… π‘₯ 𝑦 V,x\cdot y italic_V , italic_x β‹… italic_y is the product of x π‘₯ x italic_x and y 𝑦 y italic_y ). Then V 𝑉 V italic_V is an algebra over K 𝐾 K italic_K if the following identities hold for any three elements x , y π‘₯ 𝑦 x,y italic_x , italic_y , and z 𝑧 z italic_z of V 𝑉 V italic_V , and all elements (”scalars”) a π‘Ž a italic_a and b 𝑏 b italic_b of K 𝐾 K italic_K :

( x + y ) β‹… z = x β‹… z + y β‹… z β‹… π‘₯ 𝑦 𝑧 β‹… π‘₯ 𝑧 β‹… 𝑦 𝑧 (x+y)\cdot z=x\cdot z+y\cdot z ( italic_x + italic_y ) β‹… italic_z = italic_x β‹… italic_z + italic_y β‹… italic_z
x β‹… ( y + z ) = x β‹… y + x β‹… z β‹… π‘₯ 𝑦 𝑧 β‹… π‘₯ 𝑦 β‹… π‘₯ 𝑧 x\cdot(y+z)=x\cdot y+x\cdot z italic_x β‹… ( italic_y + italic_z ) = italic_x β‹… italic_y + italic_x β‹… italic_z
( a ⁒ x ) β‹… ( b ⁒ y ) = ( a ⁒ b ) ⁒ ( x β‹… y ) β‹… π‘Ž π‘₯ 𝑏 𝑦 π‘Ž 𝑏 β‹… π‘₯ 𝑦 (ax)\cdot(by)=(ab)(x\cdot y) ( italic_a italic_x ) β‹… ( italic_b italic_y ) = ( italic_a italic_b ) ( italic_x β‹… italic_y )

We call the algebra V 𝑉 V italic_V assiciative if

( x β‹… y ) β‹… z = x β‹… ( y β‹… z ) β‹… β‹… π‘₯ 𝑦 𝑧 β‹… π‘₯ β‹… 𝑦 𝑧 (x\cdot y)\cdot z=x\cdot(y\cdot z) ( italic_x β‹… italic_y ) β‹… italic_z = italic_x β‹… ( italic_y β‹… italic_z )

We call the algebra V 𝑉 V italic_V unital if there is an element e ∈ V 𝑒 𝑉 e\in V italic_e ∈ italic_V :

e β‹… x = x β‹… e = x β‹… 𝑒 π‘₯ β‹… π‘₯ 𝑒 π‘₯ e\cdot x=x\cdot e=x italic_e β‹… italic_x = italic_x β‹… italic_e = italic_x

for all x ∈ V π‘₯ 𝑉 x\in V italic_x ∈ italic_V

Definition 7.13

Let U and V be two Z 2 subscript 𝑍 2 Z_{2} italic_Z start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT -graded vector spaces. A bilinear mapping of V Γ— V 𝑉 𝑉 V\times V italic_V Γ— italic_V into U is called supersymmetric / skew-supersymmetric if s ⁒ g Β± g plus-or-minus 𝑠 𝑔 𝑔 sg\pm g italic_s italic_g Β± italic_g , i.e. if

b ⁒ ( y , x ) = Β± ( - 1 ) a ⁒ b ⁒ b ⁒ ( x , y ) 𝑏 𝑦 π‘₯ plus-or-minus superscript 1 π‘Ž 𝑏 𝑏 π‘₯ 𝑦 b(y,x)=\pm(-1)^{ab}b(x,y) italic_b ( italic_y , italic_x ) = Β± ( - 1 ) start_POSTSUPERSCRIPT italic_a italic_b end_POSTSUPERSCRIPT italic_b ( italic_x , italic_y )

for all x ∈ V a , y ∈ V b ; a , b ∈ Z 2 formulae-sequence π‘₯ subscript 𝑉 π‘Ž formulae-sequence 𝑦 subscript 𝑉 𝑏 π‘Ž 𝑏 subscript 𝑍 2 x\in V_{a},y\in V_{b};a,b\in Z_{2} italic_x ∈ italic_V start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT , italic_y ∈ italic_V start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT ; italic_a , italic_b ∈ italic_Z start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT .

Definition 7.18

Let U and V be two Klein graded vector spaces. A bilinear mapping of V Γ— V 𝑉 𝑉 V\times V italic_V Γ— italic_V into U is called supersymmetric / skew-supersymmetric if s ⁒ g Β± g plus-or-minus 𝑠 𝑔 𝑔 sg\pm g italic_s italic_g Β± italic_g , i.e. if

b ⁒ ( y , x ) = Β± ΞΈ ⁒ ( a , b ) ⁒ b ⁒ ( x , y ) 𝑏 𝑦 π‘₯ plus-or-minus πœƒ π‘Ž 𝑏 𝑏 π‘₯ 𝑦 b(y,x)=\pm\theta(a,b)b(x,y) italic_b ( italic_y , italic_x ) = Β± italic_ΞΈ ( italic_a , italic_b ) italic_b ( italic_x , italic_y )

for all x ∈ V a , y ∈ V b ; a , b ∈ 𝒦 formulae-sequence π‘₯ subscript 𝑉 π‘Ž formulae-sequence 𝑦 subscript 𝑉 𝑏 π‘Ž 𝑏 𝒦 x\in V_{a},y\in V_{b};a,b\in\mathcal{K} italic_x ∈ italic_V start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT , italic_y ∈ italic_V start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT ; italic_a , italic_b ∈ caligraphic_K .


Definition 2 .

[ 13 ] A hypergroupoid ( H , ∘ ) 𝐻 (H,\circ) ( italic_H , ∘ ) is called an LA-semihypergroup if, for all x , y , z ∈ H , π‘₯ 𝑦 𝑧 𝐻 x,y,z\in H, italic_x , italic_y , italic_z ∈ italic_H ,

( x ∘ y ) ∘ z = ( z ∘ y ) ∘ x . π‘₯ 𝑦 𝑧 𝑧 𝑦 π‘₯ (x\circ y)\circ z=(z\circ y)\circ x. ( italic_x ∘ italic_y ) ∘ italic_z = ( italic_z ∘ italic_y ) ∘ italic_x .

Definition 2.1 (Boost weight (b.w.)) .

A quantity q π‘ž q italic_q has a boost weight ( normal-( ( ( b.w. ) normal-) ) ) b normal-b {\rm b} roman_b if it transforms under a boostΒ ( 2.7 ) according to

q ^ = Ξ» b ⁒ q . ^ π‘ž superscript πœ† b π‘ž \hat{q}=\lambda^{\rm b}q. ^ start_ARG italic_q end_ARG = italic_Ξ» start_POSTSUPERSCRIPT roman_b end_POSTSUPERSCRIPT italic_q . (2.8)