Definition 21 .

We say that the functional ( 3 ) is invariant under an ε 𝜀 \varepsilon italic_ε -parameter group of infinitesimal transformations

𝐲 ^ ( t ) = 𝐲 ( t ) + ε 𝝃 ( t , 𝐲 ( t ) ) + o ( ε ) ^ 𝐲 𝑡 𝐲 𝑡 𝜀 𝝃 𝑡 𝐲 𝑡 𝑜 𝜀 \hat{\mathbf{y}}(t)=\mathbf{y}(t)+\varepsilon{\bm{\xi}}(t,\mathbf{y}(t))+o(\varepsilon) ^ start_ARG bold_y end_ARG ( italic_t ) = bold_y ( italic_t ) + italic_ε bold_italic_ξ ( italic_t , bold_y ( italic_t ) ) + italic_o ( italic_ε ) (11)

if for any subinterval [ t a , t b ] [ a , b ] subscript 𝑡 𝑎 subscript 𝑡 𝑏 𝑎 𝑏 [t_{a},t_{b}]\subseteq[a,b] [ italic_t start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT , italic_t start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT ] ⊆ [ italic_a , italic_b ] one has

K P ¯ α [ t F { 𝐲 } P D , R I β , γ ( t ) ] ( t b ) = K P ¯ α [ t F { 𝐲 ^ } P D , R I β , γ ( t ) ] ( t b ) , fragments superscript subscript 𝐾 ¯ 𝑃 𝛼 fragments [ t maps-to F superscript subscript fragments { y } subscript 𝑃 𝐷 subscript 𝑅 𝐼 𝛽 𝛾 fragments ( t ) ] fragments ( subscript 𝑡 𝑏 ) superscript subscript 𝐾 ¯ 𝑃 𝛼 fragments [ t maps-to F superscript subscript fragments { ^ 𝐲 } subscript 𝑃 𝐷 subscript 𝑅 𝐼 𝛽 𝛾 fragments ( t ) ] fragments ( subscript 𝑡 𝑏 ) , K_{\bar{P}}^{\alpha}\left[t\mapsto F\left\{\mathbf{y}\right\}_{P_{D},R_{I}}^{% \beta,\gamma}(t)\right](t_{b})=K_{\bar{P}}^{\alpha}\left[t\mapsto F\left\{\hat% {\mathbf{y}}\right\}_{P_{D},R_{I}}^{\beta,\gamma}(t)\right](t_{b}), italic_K start_POSTSUBSCRIPT ¯ start_ARG italic_P end_ARG end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_α end_POSTSUPERSCRIPT [ italic_t ↦ italic_F { bold_y } start_POSTSUBSCRIPT italic_P start_POSTSUBSCRIPT italic_D end_POSTSUBSCRIPT , italic_R start_POSTSUBSCRIPT italic_I end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_β , italic_γ end_POSTSUPERSCRIPT ( italic_t ) ] ( italic_t start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT ) = italic_K start_POSTSUBSCRIPT ¯ start_ARG italic_P end_ARG end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_α end_POSTSUPERSCRIPT [ italic_t ↦ italic_F { ^ start_ARG bold_y end_ARG } start_POSTSUBSCRIPT italic_P start_POSTSUBSCRIPT italic_D end_POSTSUBSCRIPT , italic_R start_POSTSUBSCRIPT italic_I end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_β , italic_γ end_POSTSUPERSCRIPT ( italic_t ) ] ( italic_t start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT ) , (12)

where P ¯ = t a , t b , t b , 1 , 0 normal-¯ 𝑃 subscript 𝑡 𝑎 subscript 𝑡 𝑏 subscript 𝑡 𝑏 1 0 \bar{P}=\langle t_{a},t_{b},t_{b},1,0\rangle ¯ start_ARG italic_P end_ARG = ⟨ italic_t start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT , italic_t start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT , italic_t start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT , 1 , 0 ⟩ .


Definition 1.6 .

Consider the following terms.

s u c ( x ) = 1 ; ( p ˘ ; x ; q ˘ ) 𝑠 𝑢 𝑐 𝑥 1 ˘ 𝑝 𝑥 ˘ 𝑞 suc(x)=1;(\breve{p};x;\breve{q}) italic_s italic_u italic_c ( italic_x ) = 1 ; ( ˘ start_ARG italic_p end_ARG ; italic_x ; ˘ start_ARG italic_q end_ARG )

and

p r e d ( x ) = p ˘ ; r a n x ; q . 𝑝 𝑟 𝑒 𝑑 𝑥 ˘ 𝑝 𝑟 𝑎 𝑛 𝑥 𝑞 pred(x)=\breve{p};ranx;q. italic_p italic_r italic_e italic_d ( italic_x ) = ˘ start_ARG italic_p end_ARG ; italic_r italic_a italic_n italic_x ; italic_q .

Definition 1.2

We now set:

q = ln ρ . 𝑞 𝜌 q=\ln\rho. italic_q = roman_ln italic_ρ .

Definition 2 .

An exact symplectic form on a manifold M 𝑀 M italic_M is an exact non-degenerate two-form ω 𝜔 \omega italic_ω . Thus

(6) ω = d λ 𝜔 𝑑 𝜆 \omega=d\lambda italic_ω = italic_d italic_λ

for some one-form λ 𝜆 \lambda italic_λ , which is called a Liouville one-form . The corresponding Liouville vector field Z 𝑍 Z italic_Z is defined by duality with respect to ω 𝜔 \omega italic_ω :

(7) ι Z ω = ω ( Z , ) = λ subscript 𝜄 𝑍 𝜔 𝜔 𝑍 𝜆 \iota_{Z}\omega=\omega(Z,\cdot)=\lambda italic_ι start_POSTSUBSCRIPT italic_Z end_POSTSUBSCRIPT italic_ω = italic_ω ( italic_Z , ⋅ ) = italic_λ

Thus the one-form λ 𝜆 \lambda italic_λ determines the two-form ω 𝜔 \omega italic_ω and the vector field Z 𝑍 Z italic_Z .

A Liouville domain [ 22 ] is a compact manifold with boundary, equipped with a one-form λ 𝜆 \lambda italic_λ , such that the two-form ω 𝜔 \omega italic_ω is symplectic, and the vector field Z 𝑍 Z italic_Z points strictly outward along the boundary.


Definition 4.1 .

An ( n + 1 ) 𝑛 1 (n+1) ( italic_n + 1 ) -form ω 𝜔 \omega italic_ω on a smooth manifold M 𝑀 M italic_M is 𝒏 𝒏 n bold_italic_n -plectic , or more specifically an 𝒏 𝒏 n bold_italic_n -plectic structure , if it is both closed:

d ω = 0 , 𝑑 𝜔 0 d\omega=0, italic_d italic_ω = 0 ,

and non-degenerate:

x M v T x M , ι v ω = 0 v = 0 . formulae-sequence for-all 𝑥 𝑀 for-all 𝑣 subscript 𝑇 𝑥 𝑀 subscript 𝜄 𝑣 𝜔 0 𝑣 0 \forall x\in M~{}\forall v\in T_{x}M,\ \iota_{v}\omega=0\Rightarrow v=0. ∀ italic_x ∈ italic_M ∀ italic_v ∈ italic_T start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT italic_M , italic_ι start_POSTSUBSCRIPT italic_v end_POSTSUBSCRIPT italic_ω = 0 ⇒ italic_v = 0 .

If ω 𝜔 \omega italic_ω is an n 𝑛 n italic_n -plectic form on M 𝑀 M italic_M , then we call the pair ( M , ω ) 𝑀 𝜔 (M,\omega) ( italic_M , italic_ω ) an 𝒏 𝒏 n bold_italic_n -plectic manifold . More generally, if ω 𝜔 \omega italic_ω is closed, but not necessarily non-degenerate, then we call ( M , ω ) 𝑀 𝜔 (M,\omega) ( italic_M , italic_ω ) a pre- n 𝑛 n bold_italic_n -plectic manifold


Definition 2.2 .

A class 𝒞 𝒞 \mathcal{C} caligraphic_C of algebras is said to be congruence \wedge -semidistributive if the congruence lattice of each algebra in 𝒞 𝒞 \mathcal{C} caligraphic_C satisfies the \wedge -semidistributive law:

[ x y = x z ] [ x y = x ( y z ) ] . fragments fragments [ x y x z ] fragments [ x y x fragments ( y z ) ] . \left[x\wedge y=x\wedge z\right]\rightarrow\left[x\wedge y=x\wedge(y\vee z)% \right]. [ italic_x ∧ italic_y = italic_x ∧ italic_z ] → [ italic_x ∧ italic_y = italic_x ∧ ( italic_y ∨ italic_z ) ] .

Definition 2.5 .

Define an edit of a word w = w 1 w n 𝑤 subscript 𝑤 1 subscript 𝑤 𝑛 w=w_{1}\cdots w_{n}\in\mathcal{L} italic_w = italic_w start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ⋯ italic_w start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ∈ caligraphic_L to be a transformation of w 𝑤 w italic_w by one of the following actions, where u j superscript 𝑢 𝑗 u^{j}\in\mathcal{L} italic_u start_POSTSUPERSCRIPT italic_j end_POSTSUPERSCRIPT ∈ caligraphic_L are arbitrary words and a , a A 𝑎 superscript 𝑎 𝐴 a,a^{\prime}\in A italic_a , italic_a start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ∈ italic_A are arbitrary symbols.

  1. (1)

    Substitution : w = u 1 a u 2 w = u 1 a u 2 𝑤 superscript 𝑢 1 𝑎 superscript 𝑢 2 maps-to superscript 𝑤 superscript 𝑢 1 superscript 𝑎 superscript 𝑢 2 w=u^{1}au^{2}\mapsto w^{\prime}=u^{1}a^{\prime}u^{2} italic_w = italic_u start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT italic_a italic_u start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ↦ italic_w start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT = italic_u start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT italic_a start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT italic_u start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT .

  2. (2)

    Insertion : w = u 1 u 2 w = u 1 a u 2 𝑤 superscript 𝑢 1 superscript 𝑢 2 maps-to superscript 𝑤 superscript 𝑢 1 superscript 𝑎 superscript 𝑢 2 w=u^{1}u^{2}\mapsto w^{\prime}=u^{1}a^{\prime}u^{2} italic_w = italic_u start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT italic_u start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ↦ italic_w start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT = italic_u start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT italic_a start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT italic_u start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT .

  3. (3)

    Deletion : w = u 1 a u 2 w = u 1 u 2 𝑤 superscript 𝑢 1 𝑎 superscript 𝑢 2 maps-to superscript 𝑤 superscript 𝑢 1 superscript 𝑢 2 w=u^{1}au^{2}\mapsto w^{\prime}=u^{1}u^{2} italic_w = italic_u start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT italic_a italic_u start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ↦ italic_w start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT = italic_u start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT italic_u start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT .

Given v , w 𝑣 𝑤 v,w\in\mathcal{L} italic_v , italic_w ∈ caligraphic_L , define the edit distance between v 𝑣 v italic_v and w 𝑤 w italic_w to be the minimum number of edits required to transform the word v 𝑣 v italic_v into the word w 𝑤 w italic_w : we will denote this by d ^ ( v , w ) ^ 𝑑 𝑣 𝑤 \hat{d}(v,w) ^ start_ARG italic_d end_ARG ( italic_v , italic_w ) .


Definition 5 .

A Boolean ring 𝔹 𝔹 \mathbb{B} blackboard_B (with addition denoted by “ normal-∔ \dotplus ” and with multiplication denoted by “ normal-⋄ \diamond ” ) is a ring with multiplicative identity, denoted by “ 1 1 1 1 ”, such that each element a 𝑎 a italic_a of 𝔹 𝔹 \mathbb{B} blackboard_B is an idempotent, i.e., such that

a 2 = a . superscript 𝑎 2 𝑎 a^{2}=a. italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT = italic_a .

It follows that 𝔹 𝔹 \mathbb{B} blackboard_B is a commutative ring, and that each element a 𝑎 a italic_a of 𝔹 𝔹 \mathbb{B} blackboard_B is its own additive inverse, i.e.,

a a = 0 , 𝑎 𝑎 0 a\dotplus a=0, italic_a ∔ italic_a = 0 ,

where “ 0 0 ” denotes the additive identity of 𝔹 𝔹 \mathbb{B} blackboard_B . The additive operation will often be referred to as exclusive “or” and the multiplicative operation “ normal-⋄ \diamond ” will often be referred to as logical “and” . The complement of an element a 𝑎 a italic_a of 𝔹 𝔹 \mathbb{B} blackboard_B , written a superscript 𝑎 normal-∗ a^{\ast} italic_a start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT , is defined as

a = 1 a . superscript 𝑎 1 𝑎 a^{\ast}=1\dotplus a. italic_a start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT = 1 ∔ italic_a .
Definition 9 (of addition “+”) .

Let a 𝑎 a italic_a and b 𝑏 b italic_b be generic dyadic integers. Let

{ c ( 0 ) = a c a r r i e s ( 0 ) = b cases superscript 𝑐 0 𝑎 missing-subexpression missing-subexpression missing-subexpression 𝑐 𝑎 𝑟 𝑟 𝑖 𝑒 superscript 𝑠 0 𝑏 \left\{\begin{array}[c]{lll}c^{(0)}&=&a\\ &&\\ carries^{(0)}&=&b\end{array}\right. { start_ARRAY start_ROW start_CELL italic_c start_POSTSUPERSCRIPT ( 0 ) end_POSTSUPERSCRIPT end_CELL start_CELL = end_CELL start_CELL italic_a end_CELL end_ROW start_ROW start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL end_ROW start_ROW start_CELL italic_c italic_a italic_r italic_r italic_i italic_e italic_s start_POSTSUPERSCRIPT ( 0 ) end_POSTSUPERSCRIPT end_CELL start_CELL = end_CELL start_CELL italic_b end_CELL end_ROW end_ARRAY

and let

{ c ( i + 1 ) = c ( i ) c a r r i e s ( i ) c a r r i e s ( i + 1 ) = 𝒮 ( c ( i ) c a r r i e s ( i ) ) cases superscript 𝑐 𝑖 1 superscript 𝑐 𝑖 𝑐 𝑎 𝑟 𝑟 𝑖 𝑒 superscript 𝑠 𝑖 missing-subexpression missing-subexpression missing-subexpression 𝑐 𝑎 𝑟 𝑟 𝑖 𝑒 superscript 𝑠 𝑖 1 𝒮 superscript 𝑐 𝑖 𝑐 𝑎 𝑟 𝑟 𝑖 𝑒 superscript 𝑠 𝑖 \left\{\begin{array}[c]{lll}c^{(i+1)}&=&c^{(i)}\dotplus carries^{(i)}\\ &&\\ carries^{(i+1)}&=&\mathcal{S}\left(c^{(i)}\diamond carries^{(i)}\right)\end{% array}\right. { start_ARRAY start_ROW start_CELL italic_c start_POSTSUPERSCRIPT ( italic_i + 1 ) end_POSTSUPERSCRIPT end_CELL start_CELL = end_CELL start_CELL italic_c start_POSTSUPERSCRIPT ( italic_i ) end_POSTSUPERSCRIPT ∔ italic_c italic_a italic_r italic_r italic_i italic_e italic_s start_POSTSUPERSCRIPT ( italic_i ) end_POSTSUPERSCRIPT end_CELL end_ROW start_ROW start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL end_ROW start_ROW start_CELL italic_c italic_a italic_r italic_r italic_i italic_e italic_s start_POSTSUPERSCRIPT ( italic_i + 1 ) end_POSTSUPERSCRIPT end_CELL start_CELL = end_CELL start_CELL caligraphic_S ( italic_c start_POSTSUPERSCRIPT ( italic_i ) end_POSTSUPERSCRIPT ⋄ italic_c italic_a italic_r italic_r italic_i italic_e italic_s start_POSTSUPERSCRIPT ( italic_i ) end_POSTSUPERSCRIPT ) end_CELL end_ROW end_ARRAY

Then the sequences c ( i ) superscript 𝑐 𝑖 c^{(i)} italic_c start_POSTSUPERSCRIPT ( italic_i ) end_POSTSUPERSCRIPT and c a r r i e s ( i ) 𝑐 𝑎 𝑟 𝑟 𝑖 𝑒 superscript 𝑠 𝑖 carries^{(i)} italic_c italic_a italic_r italic_r italic_i italic_e italic_s start_POSTSUPERSCRIPT ( italic_i ) end_POSTSUPERSCRIPT are convergent. The generic dyadic integer a + b 𝑎 𝑏 a+b italic_a + italic_b is defined as:

a + b = lim i c ( i ) 𝑎 𝑏 subscript 𝑖 superscript 𝑐 𝑖 a+b=\lim_{i\rightarrow\infty}c^{(i)} italic_a + italic_b = roman_lim start_POSTSUBSCRIPT italic_i → ∞ end_POSTSUBSCRIPT italic_c start_POSTSUPERSCRIPT ( italic_i ) end_POSTSUPERSCRIPT

It can also be shown that

lim i c a r r i e s ( i ) = 0 subscript 𝑖 𝑐 𝑎 𝑟 𝑟 𝑖 𝑒 superscript 𝑠 𝑖 0 \lim_{i\rightarrow\infty}carries^{(i)}=0 roman_lim start_POSTSUBSCRIPT italic_i → ∞ end_POSTSUBSCRIPT italic_c italic_a italic_r italic_r italic_i italic_e italic_s start_POSTSUPERSCRIPT ( italic_i ) end_POSTSUPERSCRIPT = 0

Moreover, if a 𝑎 a italic_a and b 𝑏 b italic_b are generic rational integers, then a + b 𝑎 𝑏 a+b italic_a + italic_b is also a generic rational integer.

Definition 13 .

Let e 𝔹 𝐱 𝑒 𝔹 delimited-⟨⟩ 𝐱 e\in\mathbb{B}\left\langle\mathbf{x}\right\rangle italic_e ∈ blackboard_B ⟨ bold_x ⟩ . A solution of the Boolean equation

e = 1 𝑒 1 e=1 italic_e = 1

is an instantiation Φ normal-Φ \Phi roman_Φ such that

Φ ( e ) = 1 . Φ 𝑒 1 \Phi(e)=1\qquad. roman_Φ ( italic_e ) = 1 .
Definition 15 .

Let e 𝔹 𝐱 𝑒 𝔹 delimited-⟨⟩ 𝐱 e\in\mathbb{B}\left\langle\mathbf{x}\right\rangle italic_e ∈ blackboard_B ⟨ bold_x ⟩ . The Boolean equation

e = 1 𝑒 1 e=1 italic_e = 1

is said to be scarcely satisfiable if the number of its solutions Φ normal-Φ \Phi roman_Φ is a non-zero number which is less than the number of distinct free basis elements x i subscript 𝑥 𝑖 x_{i} italic_x start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT appearing in the canonical expression for e 𝑒 e italic_e .


Definition 16 .

The algebra of 2 × 2 2 2 2\times 2 2 × 2 quantum matrices 𝖬 𝖬 \mathsf{M} sansserif_M is the k ( q ) 𝑘 𝑞 k(q) italic_k ( italic_q ) -algebra generated by 𝖺 , 𝖻 , 𝖼 , 𝖽 𝖺 𝖻 𝖼 𝖽 \mathsf{a},\mathsf{b},\mathsf{c},\mathsf{d} sansserif_a , sansserif_b , sansserif_c , sansserif_d subject to the relations

(11) 𝖺𝖻 = q 𝖻𝖺 𝖺𝖼 = q 𝖼𝖺 𝖻𝖼 = 𝖼𝖻 𝖻𝖽 = q 𝖽𝖻 𝖼𝖽 = q 𝖽𝖼 formulae-sequence 𝖺𝖻 𝑞 𝖻𝖺 formulae-sequence 𝖺𝖼 𝑞 𝖼𝖺 formulae-sequence 𝖻𝖼 𝖼𝖻 formulae-sequence 𝖻𝖽 𝑞 𝖽𝖻 𝖼𝖽 𝑞 𝖽𝖼 \displaystyle\mathsf{a}\mathsf{b}=q\mathsf{b}\mathsf{a}\,\,\,\,\,\,\mathsf{a}% \mathsf{c}=q\mathsf{c}\mathsf{a}\,\,\,\,\,\,\mathsf{b}\mathsf{c}=\mathsf{c}% \mathsf{b}\,\,\,\,\,\,\mathsf{b}\mathsf{d}=q\mathsf{d}\mathsf{b}\,\,\,\,\,\,% \mathsf{c}\mathsf{d}=q\mathsf{d}\mathsf{c} sansserif_ab = italic_q sansserif_ba sansserif_ac = italic_q sansserif_ca sansserif_bc = sansserif_cb sansserif_bd = italic_q sansserif_db sansserif_cd = italic_q sansserif_dc
𝖺𝖽 - 𝖽𝖺 = ( q - q - 1 ) 𝖻𝖼 . 𝖺𝖽 𝖽𝖺 𝑞 superscript 𝑞 1 𝖻𝖼 \displaystyle\mathsf{a}\mathsf{d}-\mathsf{d}\mathsf{a}=(q-q^{-1})\mathsf{b}% \mathsf{c}. sansserif_ad - sansserif_da = ( italic_q - italic_q start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ) sansserif_bc .

Definition 2.1 .

[ 18 , 19 ] A BCK-algebra is an algebra ( X , * , 0 ) 𝑋 0 (X,*,0) ( italic_X , * , 0 ) of type ( 2 , 0 ) 2 0 (2,0) ( 2 , 0 ) satisfying the following conditions:

  1. (BCK1)

    ( ( x * y ) * ( x * z ) ) * ( z * y ) = 0 𝑥 𝑦 𝑥 𝑧 𝑧 𝑦 0 ((x*y)*(x*z))*(z*y)=0 ( ( italic_x * italic_y ) * ( italic_x * italic_z ) ) * ( italic_z * italic_y ) = 0 ;

  2. (BCK2)

    x * 0 = x 𝑥 0 𝑥 x*0=x italic_x * 0 = italic_x ;

  3. (BCK3)

    x * y = 0 𝑥 𝑦 0 x*y=0 italic_x * italic_y = 0 and y * x = 0 𝑦 𝑥 0 y*x=0 italic_y * italic_x = 0 imply y = x 𝑦 𝑥 y=x italic_y = italic_x ;

  4. (BCK4)

    0 * x = 0 0 𝑥 0 0*x=0 0 * italic_x = 0 .

Definition 3.1 .

A map μ : X X : 𝜇 𝑋 𝑋 \mu:X\rightarrow X italic_μ : italic_X → italic_X is called a left (right) state operator on X 𝑋 X italic_X if it satisfies the following conditions:

A left (right) state BCK-algebra is a pair ( X , μ ) 𝑋 𝜇 (X,\mu) ( italic_X , italic_μ ) , where X 𝑋 X italic_X is a BCK-algebra and μ 𝜇 \mu italic_μ is a left (right) state operator on X 𝑋 X italic_X .


Definition 3.1 (Mass density and mass current)

The mass density is given by

ρ ( t , x ) = u ( t , x ) 2 . 𝜌 𝑡 𝑥 𝑢 superscript 𝑡 𝑥 2 \rho(t,x)=u(t,x)^{2}. italic_ρ ( italic_t , italic_x ) = italic_u ( italic_t , italic_x ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT . (3.1)

The mass current is given by

j ( t , x ) = 3 u x ( t , x ) 2 + 5 3 u ( t , x ) 6 . 𝑗 𝑡 𝑥 3 subscript 𝑢 𝑥 superscript 𝑡 𝑥 2 5 3 𝑢 superscript 𝑡 𝑥 6 j(t,x)=3u_{x}(t,x)^{2}+\frac{5}{3}u(t,x)^{6}. italic_j ( italic_t , italic_x ) = 3 italic_u start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT ( italic_t , italic_x ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + divide start_ARG 5 end_ARG start_ARG 3 end_ARG italic_u ( italic_t , italic_x ) start_POSTSUPERSCRIPT 6 end_POSTSUPERSCRIPT . (3.2)

Definition 4.7 .

Consider the following terms.

s u c ( x ) = 1 ; ( p ˘ ; x ; q ˘ ) 𝑠 𝑢 𝑐 𝑥 1 ˘ 𝑝 𝑥 ˘ 𝑞 suc(x)=1;(\breve{p};x;\breve{q}) italic_s italic_u italic_c ( italic_x ) = 1 ; ( ˘ start_ARG italic_p end_ARG ; italic_x ; ˘ start_ARG italic_q end_ARG )

and

p r e d ( x ) = p ˘ ; r a n x ; q . 𝑝 𝑟 𝑒 𝑑 𝑥 ˘ 𝑝 𝑟 𝑎 𝑛 𝑥 𝑞 pred(x)=\breve{p};ranx;q. italic_p italic_r italic_e italic_d ( italic_x ) = ˘ start_ARG italic_p end_ARG ; italic_r italic_a italic_n italic_x ; italic_q .

Definition 1 .

Let α 𝛼 \alpha italic_α be a positive real number. An affine connection \nabla on M 𝑀 M italic_M is called projectively compact of order α + 𝛼 subscript \alpha\in\mathbb{R}_{+} italic_α ∈ blackboard_R start_POSTSUBSCRIPT + end_POSTSUBSCRIPT if for any x M 𝑥 𝑀 x\in\partial M italic_x ∈ ∂ italic_M , there is a neighborhood U 𝑈 U italic_U of x 𝑥 x italic_x in M ¯ ¯ 𝑀 \overline{M} ¯ start_ARG italic_M end_ARG and a defining function ρ : U : 𝜌 𝑈 \rho:U\to\mathbb{R} italic_ρ : italic_U → blackboard_R for the boundary such that the connection

(1) ^ = + d ρ α ρ ^ 𝑑 𝜌 𝛼 𝜌 \hat{\nabla}=\nabla+\tfrac{d\rho}{\alpha\rho} ^ start_ARG ∇ end_ARG = ∇ + divide start_ARG italic_d italic_ρ end_ARG start_ARG italic_α italic_ρ end_ARG

on U M 𝑈 𝑀 U\cap M italic_U ∩ italic_M extends to all of U 𝑈 U italic_U .


Definition 17

A Lie group G 𝐺 G italic_G is called regular provided that, for any mapping ς : 𝔤 normal-: 𝜍 normal-→ 𝔤 \varsigma:\mathbb{R}\rightarrow\mathfrak{g} italic_ς : blackboard_R → fraktur_g , there exists a mapping θ : G normal-: 𝜃 normal-→ 𝐺 \theta:\mathbb{R}\rightarrow G italic_θ : blackboard_R → italic_G with

θ ( 0 ) = e 𝜃 0 𝑒 \theta\left(0\right)=e italic_θ ( 0 ) = italic_e

and

θ ( t + d ) = θ ( t ) . ς ( t ) d formulae-sequence 𝜃 𝑡 𝑑 𝜃 𝑡 𝜍 subscript 𝑡 𝑑 \theta(t+d)=\theta\left(t\right).\varsigma\left(t\right)_{d} italic_θ ( italic_t + italic_d ) = italic_θ ( italic_t ) . italic_ς ( italic_t ) start_POSTSUBSCRIPT italic_d end_POSTSUBSCRIPT

for any t 𝑡 t\in\mathbb{R} italic_t ∈ blackboard_R and any d D 𝑑 𝐷 d\in D italic_d ∈ italic_D .


Definition 1 .

A set π 𝜋 \pi italic_π is a pairing of { 1 , 2 , , 2 n - 1 , 2 n } 1 2 2 𝑛 1 2 𝑛 \left\{1,2,\ldots,2n-1,2n\right\} { 1 , 2 , … , 2 italic_n - 1 , 2 italic_n } if there exists two injective functions a : { 1 , , n } { 1 , , 2 n } : 𝑎 1 𝑛 1 2 𝑛 a:\left\{1,\ldots,n\right\}\rightarrow\left\{1,\ldots,2n\right\} italic_a : { 1 , … , italic_n } → { 1 , … , 2 italic_n } and b : { 1 , , n } { 1 , , 2 n } : 𝑏 1 𝑛 1 2 𝑛 b:\left\{1,\dots,n\right\}\rightarrow\left\{1,\ldots,2n\right\} italic_b : { 1 , … , italic_n } → { 1 , … , 2 italic_n } such that a ( i ) < b ( i ) 𝑎 𝑖 𝑏 𝑖 a\left(i\right)<b\left(i\right) italic_a ( italic_i ) < italic_b ( italic_i ) for all i 𝑖 i italic_i and

π = { ( a ( i ) , b ( i ) ) : i = 1 , . . , n } fragments π fragments { fragments ( a fragments ( i ) , b fragments ( i ) ) : i 1 , . . , n } \pi=\left\{\left(a\left(i\right),b\left(i\right)\right):i=1,..,n\right\} italic_π = { ( italic_a ( italic_i ) , italic_b ( italic_i ) ) : italic_i = 1 , . . , italic_n }

Definition 2.2 .

As usual let L 1 , L 2 M subscript 𝐿 1 subscript 𝐿 2 𝑀 L_{1},L_{2}\subset M italic_L start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_L start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ⊂ italic_M be two transverse Lagrangians. Fix 𝐱 , 𝐲 L 1 L 2 𝐱 𝐲 subscript 𝐿 1 subscript 𝐿 2 {\textbf{x}},{\textbf{y}}\in L_{1}\cap L_{2} x , y ∈ italic_L start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ∩ italic_L start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT . Denote by π 2 ( 𝐱 , 𝐲 ) subscript 𝜋 2 𝐱 𝐲 \pi_{2}({\textbf{x}},{\textbf{y}}) italic_π start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( x , y ) the set of homotopy classes of continuous maps f : [ 0 , 1 ] × [ 0 , 1 ] M : 𝑓 0 1 0 1 𝑀 f\colon[0,1]\times[0,1]\to M italic_f : [ 0 , 1 ] × [ 0 , 1 ] → italic_M such that for all ( s , t ) [ 0 , 1 ] × [ 0 , 1 ] 𝑠 𝑡 0 1 0 1 (s,t)\in[0,1]\times[0,1] ( italic_s , italic_t ) ∈ [ 0 , 1 ] × [ 0 , 1 ] we have

f ( 0 , t ) = 𝐱 , f ( 1 , t ) = 𝐲 , formulae-sequence 𝑓 0 𝑡 𝐱 𝑓 1 𝑡 𝐲 \displaystyle f(0,t)={\textbf{x}},\hskip 28.452756ptf(1,t)={\textbf{y}}, italic_f ( 0 , italic_t ) = x , italic_f ( 1 , italic_t ) = y ,
f ( s , 0 ) L 1 , f ( s , 1 ) L 2 . formulae-sequence 𝑓 𝑠 0 subscript 𝐿 1 𝑓 𝑠 1 subscript 𝐿 2 \displaystyle f(s,0)\in L_{1},\hskip 22.762205ptf(s,1)\in L_{2}. italic_f ( italic_s , 0 ) ∈ italic_L start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_f ( italic_s , 1 ) ∈ italic_L start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT .

Then for any three points 𝐱 , 𝐲 , 𝐳 L 1 L 2 𝐱 𝐲 𝐳 subscript 𝐿 1 subscript 𝐿 2 {\textbf{x}},{\textbf{y}},{\textbf{z}}\in L_{1}\cap L_{2} x , y , z ∈ italic_L start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ∩ italic_L start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT there is a natural ‘gluing’ map

: π 2 ( 𝐱 , 𝐲 ) × π 2 ( 𝐲 , 𝐳 ) π 2 ( 𝐱 , 𝐳 ) . : subscript 𝜋 2 𝐱 𝐲 subscript 𝜋 2 𝐲 𝐳 subscript 𝜋 2 𝐱 𝐳 \sharp\colon\pi_{2}({\textbf{x}},{\textbf{y}})\times\pi_{2}({\textbf{y}},{% \textbf{z}})\to\pi_{2}({\textbf{x}},{\textbf{z}}). ♯ : italic_π start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( x , y ) × italic_π start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( y , z ) → italic_π start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( x , z ) .

To give an explicit definition of \sharp , let f , g : [ 0 , 1 ] × [ 0 , 1 ] M : 𝑓 𝑔 0 1 0 1 𝑀 f,g\colon[0,1]\times[0,1]\to M italic_f , italic_g : [ 0 , 1 ] × [ 0 , 1 ] → italic_M be continuous maps such that

[ f ] = ϕ π 2 ( 𝐱 , 𝐲 ) and [ g ] = ψ π 2 ( 𝐲 , 𝐳 ) . formulae-sequence delimited-[] 𝑓 italic-ϕ subscript 𝜋 2 𝐱 𝐲 and delimited-[] 𝑔 𝜓 subscript 𝜋 2 𝐲 𝐳 [f]=\phi\in\pi_{2}({\textbf{x}},{\textbf{y}})\hskip 28.452756pt\text{and}% \hskip 28.452756pt[g]=\psi\in\pi_{2}({\textbf{y}},{\textbf{z}}). [ italic_f ] = italic_ϕ ∈ italic_π start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( x , y ) and [ italic_g ] = italic_ψ ∈ italic_π start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( y , z ) .

Definition 2.1 .

A multiplicative Hom-Lie superalgebra is a triple ( 𝔤 , [ , ] , σ ) fragments normal-( g normal-, fragments normal-[ normal-, normal-] normal-, σ normal-) (\mathfrak{g},[,],\sigma) ( fraktur_g , [ , ] , italic_σ ) consisting of a 2 subscript 2 \mathbb{Z}_{2} blackboard_Z start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT -graded vector space 𝔤 𝔤 \mathfrak{g} fraktur_g , a bilinear map [ , ] : 𝔤 × 𝔤 𝔤 fragments fragments normal-[ normal-, normal-] normal-: g g normal-⟶ g [,]:\mathfrak{g}\times\mathfrak{g}\longrightarrow\mathfrak{g} [ , ] : fraktur_g × fraktur_g ⟶ fraktur_g and an even linear map σ : 𝔤 𝔤 normal-: 𝜎 normal-⟶ 𝔤 𝔤 \sigma:\mathfrak{g}\longrightarrow\mathfrak{g} italic_σ : fraktur_g ⟶ fraktur_g satisfying

σ [ x , y ] = [ σ ( x ) , σ ( y ) ] , 𝜎 𝑥 𝑦 𝜎 𝑥 𝜎 𝑦 \displaystyle\sigma[x,y]=[\sigma(x),\sigma(y)], italic_σ [ italic_x , italic_y ] = [ italic_σ ( italic_x ) , italic_σ ( italic_y ) ] , (2.1)
[ x , y ] = - ( - 1 ) | x | | y | [ y , x ] , 𝑥 𝑦 superscript 1 𝑥 𝑦 𝑦 𝑥 \displaystyle[x,y]=-(-1)^{|x||y|}[y,x], [ italic_x , italic_y ] = - ( - 1 ) start_POSTSUPERSCRIPT | italic_x | | italic_y | end_POSTSUPERSCRIPT [ italic_y , italic_x ] ,
( - 1 ) | x | | z | [ σ ( x ) , [ y , z ] ] + ( - 1 ) | y | | x | [ σ ( y ) , [ z , x ] ] + ( - 1 ) | z | | y | [ σ ( z ) , [ x , y ] ] = 0 , superscript 1 𝑥 𝑧 𝜎 𝑥 𝑦 𝑧 superscript 1 𝑦 𝑥 𝜎 𝑦 𝑧 𝑥 superscript 1 𝑧 𝑦 𝜎 𝑧 𝑥 𝑦 0 \displaystyle(-1)^{|x||z|}[\sigma(x),[y,z]]+(-1)^{|y||x|}[\sigma(y),[z,x]]+(-1% )^{|z||y|}[\sigma(z),[x,y]]=0, ( - 1 ) start_POSTSUPERSCRIPT | italic_x | | italic_z | end_POSTSUPERSCRIPT [ italic_σ ( italic_x ) , [ italic_y , italic_z ] ] + ( - 1 ) start_POSTSUPERSCRIPT | italic_y | | italic_x | end_POSTSUPERSCRIPT [ italic_σ ( italic_y ) , [ italic_z , italic_x ] ] + ( - 1 ) start_POSTSUPERSCRIPT | italic_z | | italic_y | end_POSTSUPERSCRIPT [ italic_σ ( italic_z ) , [ italic_x , italic_y ] ] = 0 , (2.2)

where x , y 𝑥 𝑦 x,y italic_x , italic_y and z 𝑧 z italic_z are homogeneous elements in 𝔤 . 𝔤 \mathfrak{g}. fraktur_g .


Definition 2.1 .

[ 9 ] A vector space T 𝑇 T italic_T together with a trilinear map ( x , y , z ) [ x , y , z ] maps-to 𝑥 𝑦 𝑧 𝑥 𝑦 𝑧 (x,y,z)\mapsto[x,y,z] ( italic_x , italic_y , italic_z ) ↦ [ italic_x , italic_y , italic_z ] is called a Lie triple system(LTS) if

  1. (1)

    [ x , x , z ] = 0 𝑥 𝑥 𝑧 0 [x,x,z]=0 [ italic_x , italic_x , italic_z ] = 0 ,

  2. (2)

    [ x , y , z ] + [ y , z , x ] + [ z , x , y ] = 0 𝑥 𝑦 𝑧 𝑦 𝑧 𝑥 𝑧 𝑥 𝑦 0 [x,y,z]+[y,z,x]+[z,x,y]=0 [ italic_x , italic_y , italic_z ] + [ italic_y , italic_z , italic_x ] + [ italic_z , italic_x , italic_y ] = 0 ,

  3. (3)

    [ u , v , [ x , y , z ] ] = [ [ u , v , x ] , y , z ] + [ x , [ u , v , y ] , z ] + [ x , y , [ u , v , z ] ] 𝑢 𝑣 𝑥 𝑦 𝑧 𝑢 𝑣 𝑥 𝑦 𝑧 𝑥 𝑢 𝑣 𝑦 𝑧 𝑥 𝑦 𝑢 𝑣 𝑧 [u,v,[x,y,z]]=[[u,v,x],y,z]+[x,[u,v,y],z]+[x,y,[u,v,z]] [ italic_u , italic_v , [ italic_x , italic_y , italic_z ] ] = [ [ italic_u , italic_v , italic_x ] , italic_y , italic_z ] + [ italic_x , [ italic_u , italic_v , italic_y ] , italic_z ] + [ italic_x , italic_y , [ italic_u , italic_v , italic_z ] ] ,

for all x , y , z , u , v T 𝑥 𝑦 𝑧 𝑢 𝑣 𝑇 x,y,z,u,v\in T italic_x , italic_y , italic_z , italic_u , italic_v ∈ italic_T .