Definition 4.4 .

A crossed module of Lie algebras ( 𝔀 , [ . , . ] 𝔀 ) fragments ( g , superscript fragments [ . , . ] 𝔀 ) (\mathfrak{g},\,[.,.]^{\mathfrak{g}}) ( fraktur_g , [ . , . ] start_POSTSUPERSCRIPT fraktur_g end_POSTSUPERSCRIPT ) and ( π”₯ , [ . , . ] π”₯ ) fragments ( h , superscript fragments [ . , . ] π”₯ ) (\mathfrak{h},\,[.,.]^{\mathfrak{h}}) ( fraktur_h , [ . , . ] start_POSTSUPERSCRIPT fraktur_h end_POSTSUPERSCRIPT ) is a homomorphism βˆ‚ : 𝔀 β†’ π”₯ : β†’ 𝔀 π”₯ \partial:\mathfrak{g}\to\mathfrak{h} βˆ‚ : fraktur_g β†’ fraktur_h together with an action by derivation of π”₯ π”₯ \mathfrak{h} fraktur_h on 𝔀 𝔀 \mathfrak{g} fraktur_g , that is, a linear map Ο‡ : π”₯ β†’ H ⁒ o ⁒ m ⁒ ( 𝔀 , 𝔀 ) : πœ’ β†’ π”₯ 𝐻 π‘œ π‘š 𝔀 𝔀 \chi:\mathfrak{h}\to Hom(\mathfrak{g},\mathfrak{g}) italic_Ο‡ : fraktur_h β†’ italic_H italic_o italic_m ( fraktur_g , fraktur_g ) such that

(34) βˆ‚ ⁑ ( Ο‡ ⁒ ( h ) ⁒ g ) = [ h , βˆ‚ ⁑ ( g ) ] π”₯ , for all ⁒ g ∈ 𝔀 , h ∈ π”₯ formulae-sequence πœ’ β„Ž 𝑔 superscript β„Ž 𝑔 π”₯ formulae-sequence for all 𝑔 𝔀 β„Ž π”₯ \partial(\chi(h)g)=[h,\partial(g)]^{\mathfrak{h}},\,\,\,\,\mbox{\rm for all}\,% \,\,g\in\mathfrak{g},\,h\in\mathfrak{h} βˆ‚ ( italic_Ο‡ ( italic_h ) italic_g ) = [ italic_h , βˆ‚ ( italic_g ) ] start_POSTSUPERSCRIPT fraktur_h end_POSTSUPERSCRIPT , for all italic_g ∈ fraktur_g , italic_h ∈ fraktur_h

and

(35) Ο‡ ⁒ ( βˆ‚ ⁑ ( g 1 ) ) ⁒ g 2 = [ g 1 , g 2 ] 𝔀 , for all ⁒ g 1 , g 2 ∈ 𝔀 . formulae-sequence πœ’ subscript 𝑔 1 subscript 𝑔 2 superscript subscript 𝑔 1 subscript 𝑔 2 𝔀 for all subscript 𝑔 1 subscript 𝑔 2 𝔀 \chi(\partial(g_{1}))g_{2}=[g_{1},g_{2}]^{\mathfrak{g}},\,\,\,\,\mbox{\rm for % all}\,\,\,g_{1},g_{2}\in\mathfrak{g}. italic_Ο‡ ( βˆ‚ ( italic_g start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) ) italic_g start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT = [ italic_g start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_g start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ] start_POSTSUPERSCRIPT fraktur_g end_POSTSUPERSCRIPT , for all italic_g start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_g start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ∈ fraktur_g .

Definition 3.3 .

Let Ο‰ πœ” \omega italic_Ο‰ and Ο‰ β€² superscript πœ” β€² \omega^{\prime} italic_Ο‰ start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT denote two paths. The initial point (in X 𝑋 X italic_X ) of a nonconstant path Ο‰ πœ” \omega italic_Ο‰ is defined by

in ⁒ ( Ο‰ ) = Ο‰ ⁒ ( ld ⁒ ( Ο‰ ) ) . in πœ” πœ” ld πœ” {\rm in}(\omega)=\omega({\rm ld}(\omega)). roman_in ( italic_Ο‰ ) = italic_Ο‰ ( roman_ld ( italic_Ο‰ ) ) .

The terminal point of a nonconstant path Ο‰ πœ” \omega italic_Ο‰ is defined by

ter ⁒ ( Ο‰ ) = Ο‰ ⁒ ( ud ⁒ ( Ο‰ ) ) . ter πœ” πœ” ud πœ” {\rm ter}(\omega)=\omega({\rm ud}(\omega)). roman_ter ( italic_Ο‰ ) = italic_Ο‰ ( roman_ud ( italic_Ο‰ ) ) .

The initial and terminal points of a constant path Ο‰ πœ” \omega italic_Ο‰ taking the constant value x ∈ X π‘₯ 𝑋 x\in X italic_x ∈ italic_X is defined by

in ⁒ ( Ο‰ ) = ter ⁒ ( Ο‰ ) = x . in πœ” ter πœ” π‘₯ {\rm in}(\omega)={\rm ter}(\omega)=x. roman_in ( italic_Ο‰ ) = roman_ter ( italic_Ο‰ ) = italic_x .

The composition Ο‰ β‹… Ο‰ β€² β‹… πœ” superscript πœ” β€² \omega\cdot\omega^{\prime} italic_Ο‰ β‹… italic_Ο‰ start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT of paths Ο‰ πœ” \omega italic_Ο‰ and Ο‰ β€² superscript πœ” β€² \omega^{\prime} italic_Ο‰ start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT exists if ter ⁒ ( Ο‰ ) = in ⁒ ( Ο‰ β€² ) ter πœ” in superscript πœ” β€² {\rm ter}(\omega)={\rm in}(\omega^{\prime}) roman_ter ( italic_Ο‰ ) = roman_in ( italic_Ο‰ start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ) and is defined as follows:

( Ο‰ β‹… Ο‰ β€² ) β‹… πœ” superscript πœ” β€² (\omega\cdot\omega^{\prime}) ( italic_Ο‰ β‹… italic_Ο‰ start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ) = { Ο‰ if Ο‰ β€² is constant Ο‰ β€² if Ο‰ is constant. absent cases πœ” if Ο‰ β€² is constant missing-subexpression superscript πœ” β€² if Ο‰ is constant. missing-subexpression =\left\{\begin{array}[]{lll}\omega&\mbox{if $\omega^{\prime}$ is constant }\\ \vskip 6.0pt plus 2.0pt minus 2.0pt\omega^{\prime}&\mbox{if $\omega$ is % constant.}\end{array}\right. = { start_ARRAY start_ROW start_CELL italic_Ο‰ end_CELL start_CELL if italic_Ο‰ start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT is constant end_CELL start_CELL end_CELL end_ROW start_ROW start_CELL italic_Ο‰ start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT end_CELL start_CELL if italic_Ο‰ is constant. end_CELL start_CELL end_CELL end_ROW end_ARRAY

If Ο‰ πœ” \omega italic_Ο‰ and Ο‰ β€² superscript πœ” β€² \omega^{\prime} italic_Ο‰ start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT are nonconstant then

( Ο‰ β‹… Ο‰ β€² ) ⁒ ( n ) β‹… πœ” superscript πœ” β€² 𝑛 (\omega\cdot\omega^{\prime})(n) ( italic_Ο‰ β‹… italic_Ο‰ start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ) ( italic_n ) = { Ο‰ β€² ⁒ ( n ) for all n ≀ ud ⁒ Ο‰ β€² , Ο‰ ⁒ ( n - ud ⁒ Ο‰ β€² + ld ⁒ Ο‰ ) for all n β‰₯ ud ⁒ Ο‰ β€² . absent cases superscript πœ” β€² 𝑛 for all n ≀ ud ⁒ Ο‰ β€² , missing-subexpression πœ” 𝑛 ud superscript πœ” β€² ld πœ” for all n β‰₯ ud ⁒ Ο‰ β€² . missing-subexpression =\left\{\begin{array}[]{lll}\omega^{\prime}(n)&\mbox{for all $n\leq{\rm ud}~{}% \omega^{\prime}$,}\\ \vskip 6.0pt plus 2.0pt minus 2.0pt\omega(n-{\rm ud}~{}\omega^{\prime}+{\rm ld% }~{}\omega)&\mbox{for all $n\geq{\rm ud}~{}\omega^{\prime}$.}\end{array}\right. = { start_ARRAY start_ROW start_CELL italic_Ο‰ start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ( italic_n ) end_CELL start_CELL for all italic_n ≀ roman_ud italic_Ο‰ start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT , end_CELL start_CELL end_CELL end_ROW start_ROW start_CELL italic_Ο‰ ( italic_n - roman_ud italic_Ο‰ start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT + roman_ld italic_Ο‰ ) end_CELL start_CELL for all italic_n β‰₯ roman_ud italic_Ο‰ start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT . end_CELL start_CELL end_CELL end_ROW end_ARRAY

It is clear that the composition law β‹… β‹… \cdot β‹… on paths is associative.

Definition 3.12 .

If Ο‰ πœ” \omega italic_Ο‰ is a path, define the inverse path Ο‰ - 1 superscript πœ” 1 \omega^{-1} italic_Ο‰ start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT by

Ο‰ - 1 ⁒ ( n ) = Ο‰ ⁒ ( - n ) . superscript πœ” 1 𝑛 πœ” 𝑛 \omega^{-1}(n)=\omega(-n). italic_Ο‰ start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ( italic_n ) = italic_Ο‰ ( - italic_n ) .

Definition 2.1 .

Let m π‘š m italic_m be a positive integer. A permutation, f 𝑓 f italic_f , of the integers mod m π‘š m italic_m i.e., of the set 𝐙 / m ⁒ 𝐙 𝐙 π‘š 𝐙 \mathbf{Z}/m\mathbf{Z} bold_Z / italic_m bold_Z , is called a ( normal-( ( ( n m π‘š m italic_m - ) normal-) ) ) coloring automorphism if for any two integers a π‘Ž a italic_a and b 𝑏 b italic_b , the coloring condition is preserved i.e.,

f ⁒ ( a βˆ— b ) = f ⁒ ( a ) βˆ— f ⁒ ( b ) mod ⁒ m 𝑓 βˆ— π‘Ž 𝑏 βˆ— 𝑓 π‘Ž 𝑓 𝑏 mod π‘š f(a\ast b)=f(a)\ast f(b)\qquad\text{ mod }m italic_f ( italic_a βˆ— italic_b ) = italic_f ( italic_a ) βˆ— italic_f ( italic_b ) mod italic_m

where a βˆ— b := 2 ⁒ b - a assign normal-βˆ— π‘Ž 𝑏 2 𝑏 π‘Ž a\ast b:=2b-a italic_a βˆ— italic_b := 2 italic_b - italic_a .


Definition 2.3 .

We define t 0 subscript 𝑑 0 t_{0} italic_t start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT to be the point of maxima of the function g n ⁒ ( t ) subscript 𝑔 𝑛 𝑑 g_{n}(t) italic_g start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( italic_t ) , i.e., t 0 subscript 𝑑 0 t_{0} italic_t start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT is the solution of the equation

(6) Ο† β€² ⁒ ( t ) ⁒ t = n . superscript πœ‘ β€² 𝑑 𝑑 𝑛 \varphi^{\prime}(t)t=n. italic_Ο† start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ( italic_t ) italic_t = italic_n .

Definition 2 .

A ( n , k , d , t ) 𝑛 π‘˜ 𝑑 𝑑 (n,k,d,t) ( italic_n , italic_k , italic_d , italic_t ) -LDLSC is a pair containing an encoder, f : 𝒳 n ↦ 𝒴 k normal-: 𝑓 maps-to superscript 𝒳 𝑛 superscript 𝒴 π‘˜ f:\mathcal{X}^{n}\mapsto\mathcal{Y}^{k} italic_f : caligraphic_X start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT ↦ caligraphic_Y start_POSTSUPERSCRIPT italic_k end_POSTSUPERSCRIPT , and a decoder, g : 𝒴 k ↦ 𝒳 n normal-: 𝑔 maps-to superscript 𝒴 π‘˜ superscript 𝒳 𝑛 g:\mathcal{Y}^{k}\mapsto\mathcal{X}^{n} italic_g : caligraphic_Y start_POSTSUPERSCRIPT italic_k end_POSTSUPERSCRIPT ↦ caligraphic_X start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT , where the decoder is t 𝑑 t italic_t -local and the distortion is bounded, 𝔼 ⁒ [ d ⁒ ( X n , g ⁒ ( f ⁒ ( X n ) ) ) ] ≀ d 𝔼 delimited-[] 𝑑 superscript 𝑋 𝑛 𝑔 𝑓 superscript 𝑋 𝑛 𝑑 \mathbb{E}[d(X^{n},g(f(X^{n})))]\leq d blackboard_E [ italic_d ( italic_X start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT , italic_g ( italic_f ( italic_X start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT ) ) ) ] ≀ italic_d .
Let

k * ⁒ ( n , d , t ) = superscript π‘˜ 𝑛 𝑑 𝑑 absent \displaystyle k^{*}(n,d,t)= italic_k start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT ( italic_n , italic_d , italic_t ) =
min ⁑ { k ⁒ such that ⁒ βˆƒ ( n , k , d , t ) - LDLSC } , π‘˜ such that 𝑛 π‘˜ 𝑑 𝑑 LDLSC \displaystyle\min\{k\text{~{}such that~{}}\exists(n,k,d,t)-\text{~{} LDLSC~{}}\}, roman_min { italic_k such that βˆƒ ( italic_n , italic_k , italic_d , italic_t ) - LDLSC } , (14)

and

R * ⁒ ( d , t ) = lim sup n β†’ ∞ ⁑ k * ⁒ ( n , d , t ) n . superscript 𝑅 𝑑 𝑑 subscript limit-supremum β†’ 𝑛 superscript π‘˜ 𝑛 𝑑 𝑑 𝑛 R^{*}(d,t)=\limsup_{n\to\infty}\frac{k^{*}(n,d,t)}{n}. italic_R start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT ( italic_d , italic_t ) = lim sup start_POSTSUBSCRIPT italic_n β†’ ∞ end_POSTSUBSCRIPT divide start_ARG italic_k start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT ( italic_n , italic_d , italic_t ) end_ARG start_ARG italic_n end_ARG . (15)

Definition 2.5 .

A Lie ring L 𝐿 L italic_L is an additive Abelian group L 𝐿 L italic_L together with an operation [ β‹… , β‹… ] : L Γ— L ⟢ L : β‹… β‹… ⟢ 𝐿 𝐿 𝐿 [\cdot,\cdot]:L\times L\longrightarrow L [ β‹… , β‹… ] : italic_L Γ— italic_L ⟢ italic_L satisfying the following identities

  1. 1.

    [ x , x ] = 0 π‘₯ π‘₯ 0 [x,x]=0 [ italic_x , italic_x ] = 0

  2. 2.

    [ y , x ] = - [ x , y ] 𝑦 π‘₯ π‘₯ 𝑦 [y,x]=-[x,y] [ italic_y , italic_x ] = - [ italic_x , italic_y ]

  3. 3.

    [ x , [ y , z ] ] + [ y , [ z , x ] ] + [ z , [ x , y ] ] = 0 π‘₯ 𝑦 𝑧 𝑦 𝑧 π‘₯ 𝑧 π‘₯ 𝑦 0 [x,[y,z]]+[y,[z,x]]+[z,[x,y]]=0 [ italic_x , [ italic_y , italic_z ] ] + [ italic_y , [ italic_z , italic_x ] ] + [ italic_z , [ italic_x , italic_y ] ] = 0

for all x , y , z ∈ L π‘₯ 𝑦 𝑧 𝐿 x,y,z\in L italic_x , italic_y , italic_z ∈ italic_L . The Property 3. above is called the Jacobi identity. We call [ , ] fragments [ , ] [,] [ , ] the Lie bracket or the Lie commutator.


Definition 2.1 .

An arithmetical function f : β„• β†’ β„‚ : 𝑓 β†’ β„• β„‚ f\colon{\mathbb{N}}\to{\mathbb{C}} italic_f : blackboard_N β†’ blackboard_C is multiplicative if

f ⁒ ( m ⁒ n ) = f ⁒ ( m ) ⁒ f ⁒ ( n ) 𝑓 π‘š 𝑛 𝑓 π‘š 𝑓 𝑛 f(mn)=f(m)f(n) italic_f ( italic_m italic_n ) = italic_f ( italic_m ) italic_f ( italic_n ) (2.1)

for all m , n ∈ β„• π‘š 𝑛 β„• m,n\in{\mathbb{N}} italic_m , italic_n ∈ blackboard_N with ( m , n ) = 1 π‘š 𝑛 1 (m,n)=1 ( italic_m , italic_n ) = 1 .

Definition 2.2 .

An arithmetical function f : β„• β†’ β„‚ : 𝑓 β†’ β„• β„‚ f\colon{\mathbb{N}}\to{\mathbb{C}} italic_f : blackboard_N β†’ blackboard_C is quasimultiplicative if there exists a nonzero constant c 𝑐 c italic_c such that

c ⁒ f ⁒ ( m ⁒ n ) = f ⁒ ( m ) ⁒ f ⁒ ( n ) 𝑐 𝑓 π‘š 𝑛 𝑓 π‘š 𝑓 𝑛 c\,f(mn)=f(m)f(n) italic_c italic_f ( italic_m italic_n ) = italic_f ( italic_m ) italic_f ( italic_n ) (2.3)

for all m , n ∈ β„• π‘š 𝑛 β„• m,n\in{\mathbb{N}} italic_m , italic_n ∈ blackboard_N with ( m , n ) = 1 π‘š 𝑛 1 (m,n)=1 ( italic_m , italic_n ) = 1 .


Definition 4.13 .

Functional ( 1 ) is said to be invariant under an Ξ΅ πœ€ \varepsilon italic_Ξ΅ -parameter family of infinitesimal transformations

u Β― ⁒ ( t ) = u ⁒ ( t ) + Ξ΅ ⁒ ΞΎ ⁒ ( t , u ⁒ ( t ) ) + o ⁒ ( Ξ΅ ) Β― 𝑒 𝑑 𝑒 𝑑 πœ€ πœ‰ 𝑑 𝑒 𝑑 π‘œ πœ€ \bar{u}(t)=u(t)+\varepsilon\xi(t,u(t))+o(\varepsilon) Β― start_ARG italic_u end_ARG ( italic_t ) = italic_u ( italic_t ) + italic_Ξ΅ italic_ΞΎ ( italic_t , italic_u ( italic_t ) ) + italic_o ( italic_Ξ΅ ) (11)

with ΞΎ ∈ C 1 ⁒ ( Ξ” Β― n ; ℝ N ) πœ‰ superscript 𝐢 1 subscript normal-Β― normal-Ξ” 𝑛 superscript ℝ 𝑁 \xi\in C^{1}\left(\bar{\Delta}_{n};\mathbb{R}^{N}\right) italic_ΞΎ ∈ italic_C start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT ( Β― start_ARG roman_Ξ” end_ARG start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ; blackboard_R start_POSTSUPERSCRIPT italic_N end_POSTSUPERSCRIPT ) such that B P t i 1 Ξ± i ⁒ ΞΎ superscript subscript 𝐡 superscript subscript 𝑃 subscript 𝑑 𝑖 1 subscript 𝛼 𝑖 πœ‰ B_{P_{t_{i}}^{1}}^{\alpha_{i}}\xi italic_B start_POSTSUBSCRIPT italic_P start_POSTSUBSCRIPT italic_t start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_Ξ± start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT end_POSTSUPERSCRIPT italic_ΞΎ and K P t i 2 Ξ² i ⁒ ΞΎ superscript subscript 𝐾 superscript subscript 𝑃 subscript 𝑑 𝑖 2 subscript 𝛽 𝑖 πœ‰ K_{P_{t_{i}}^{2}}^{\beta_{i}}\xi italic_K start_POSTSUBSCRIPT italic_P start_POSTSUBSCRIPT italic_t start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_Ξ² start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT end_POSTSUPERSCRIPT italic_ΞΎ exist and are continuous on Ξ” Β― n subscript normal-Β― normal-Ξ” 𝑛 \bar{\Delta}_{n} Β― start_ARG roman_Ξ” end_ARG start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT , i ∈ { 1 , … , n } 𝑖 1 normal-… 𝑛 i\in\{1,\dots,n\} italic_i ∈ { 1 , … , italic_n } , if

∫ Ξ” n * F ⁒ ( t , u ⁒ ( t ) , βˆ‡ B P 1 𝜢 ⁑ u ⁒ ( t ) , βˆ‡ K P 2 𝜷 ⁑ u ⁒ ( t ) ) ⁒ 𝑑 t = ∫ Ξ” n * F ⁒ ( t , u Β― ⁒ ( t ) , βˆ‡ B P 1 𝜢 ⁑ u Β― ⁒ ( t ) , βˆ‡ K P 2 𝜷 ⁑ u Β― ⁒ ( t ) ) ⁒ 𝑑 t subscript superscript subscript Ξ” 𝑛 𝐹 𝑑 𝑒 𝑑 superscript subscript βˆ‡ subscript 𝐡 superscript 𝑃 1 𝜢 𝑒 𝑑 superscript subscript βˆ‡ subscript 𝐾 superscript 𝑃 2 𝜷 𝑒 𝑑 differential-d 𝑑 subscript superscript subscript Ξ” 𝑛 𝐹 𝑑 Β― 𝑒 𝑑 superscript subscript βˆ‡ subscript 𝐡 superscript 𝑃 1 𝜢 Β― 𝑒 𝑑 superscript subscript βˆ‡ subscript 𝐾 superscript 𝑃 2 𝜷 Β― 𝑒 𝑑 differential-d 𝑑 \int\limits_{\Delta_{n}^{*}}F\left(t,u(t),\nabla_{B_{P^{1}}}^{\bm{\alpha}}u(t)% ,\nabla_{K_{P^{2}}}^{\bm{\beta}}u(t)\right)dt=\int\limits_{\Delta_{n}^{*}}F% \left(t,\bar{u}(t),\nabla_{B_{P^{1}}}^{\bm{\alpha}}\bar{u}(t),\nabla_{K_{P^{2}% }}^{\bm{\beta}}\bar{u}(t)\right)dt ∫ start_POSTSUBSCRIPT roman_Ξ” start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT end_POSTSUBSCRIPT italic_F ( italic_t , italic_u ( italic_t ) , βˆ‡ start_POSTSUBSCRIPT italic_B start_POSTSUBSCRIPT italic_P start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT bold_italic_Ξ± end_POSTSUPERSCRIPT italic_u ( italic_t ) , βˆ‡ start_POSTSUBSCRIPT italic_K start_POSTSUBSCRIPT italic_P start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT bold_italic_Ξ² end_POSTSUPERSCRIPT italic_u ( italic_t ) ) italic_d italic_t = ∫ start_POSTSUBSCRIPT roman_Ξ” start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT end_POSTSUBSCRIPT italic_F ( italic_t , Β― start_ARG italic_u end_ARG ( italic_t ) , βˆ‡ start_POSTSUBSCRIPT italic_B start_POSTSUBSCRIPT italic_P start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT bold_italic_Ξ± end_POSTSUPERSCRIPT Β― start_ARG italic_u end_ARG ( italic_t ) , βˆ‡ start_POSTSUBSCRIPT italic_K start_POSTSUBSCRIPT italic_P start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT bold_italic_Ξ² end_POSTSUPERSCRIPT Β― start_ARG italic_u end_ARG ( italic_t ) ) italic_d italic_t

for any Ξ” n * βŠ† Ξ” n superscript subscript normal-Ξ” 𝑛 subscript normal-Ξ” 𝑛 \Delta_{n}^{*}\subseteq\Delta_{n} roman_Ξ” start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT βŠ† roman_Ξ” start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT .


Definition 5 .

An execution Ξ³ : T β†’ D normal-: 𝛾 normal-β†’ 𝑇 𝐷 \gamma:T\rightarrow D italic_Ξ³ : italic_T β†’ italic_D is periodic if there exists s ∈ T 𝑠 𝑇 s\in T italic_s ∈ italic_T and Ο„ > 0 𝜏 0 \tau>0 italic_Ο„ > 0 such that

Ξ³ ⁒ ( s ) = Ξ³ ⁒ ( s + Ο„ ) . 𝛾 𝑠 𝛾 𝑠 𝜏 \displaystyle\gamma(s)=\gamma(s+\tau). italic_Ξ³ ( italic_s ) = italic_Ξ³ ( italic_s + italic_Ο„ ) . (1)

If there is no smaller positive number Ο„ 𝜏 \tau italic_Ο„ such that ( 1 ) holds, then Ο„ 𝜏 \tau italic_Ο„ is called the period of Ξ³ 𝛾 \gamma italic_Ξ³ , and we will say Ξ³ 𝛾 \gamma italic_Ξ³ is a Ο„ 𝜏 \tau italic_Ο„ –periodic orbit .


Definition 2.2

ΓΎ A general frame is a triple 𝒲 = ⟨ W , R , A ⟩ 𝒲 π‘Š 𝑅 𝐴 \mathcal{W}=\langle W,R,A\rangle caligraphic_W = ⟨ italic_W , italic_R , italic_A ⟩ , where ⟨ W , R ⟩ π‘Š 𝑅 \langle W,R\rangle ⟨ italic_W , italic_R ⟩ is a Kripke frame, and A 𝐴 A italic_A is a family of subsets of W π‘Š W italic_W which is closed under Boolean operations, and under the operation

β–‘ X = { w ∈ W : βˆ€ v ∈ W ( w 𝑅 v β‡’ v ∈ X ) } . fragments β–‘ X fragments { w W : for-all v W fragments ( w 𝑅 v β‡’ v X ) } . \Box X=\{w\in W:\forall v\in W\,(w\mathrel{R}v\Rightarrow v\in X)\}. β–‘ italic_X = { italic_w ∈ italic_W : βˆ€ italic_v ∈ italic_W ( italic_w italic_R italic_v β‡’ italic_v ∈ italic_X ) } .

Sets X ∈ A 𝑋 𝐴 X\in A italic_X ∈ italic_A are called admissible . A model β„³ = ⟨ W , R , ⊨ ⟩ β„³ π‘Š 𝑅 ⊨ \mathcal{M}=\langle W,R,{\vDash}\rangle caligraphic_M = ⟨ italic_W , italic_R , ⊨ ⟩ is based on 𝒲 𝒲 \mathcal{W} caligraphic_W if the set

{ w ∈ W : β„³ , w ⊨ p } conditional-set 𝑀 π‘Š ⊨ β„³ 𝑀 𝑝 \{w\in W:\mathcal{M},w\vDash p\} { italic_w ∈ italic_W : caligraphic_M , italic_w ⊨ italic_p }

is admissible for every variable p 𝑝 p italic_p (which implies the same holds for all formulas). A formula is valid in 𝒲 𝒲 \mathcal{W} caligraphic_W if it holds in all models based on 𝒲 𝒲 \mathcal{W} caligraphic_W , and the notions of L 𝐿 L italic_L -frames, soundness, and completeness are defined accordingly. A Kripke frame ⟨ W , R ⟩ π‘Š 𝑅 \langle W,R\rangle ⟨ italic_W , italic_R ⟩ can be identified with the general frame ⟨ W , R , 𝒫 ⁒ ( W ) ⟩ π‘Š 𝑅 𝒫 π‘Š \langle W,R,\mathcal{P}(W)\rangle ⟨ italic_W , italic_R , caligraphic_P ( italic_W ) ⟩ .


Definition 2.1 ( [ 21 ] ) .

The data ( E , [ , ] , ρ , ⟨ , ⟩ ) fragments ( E , fragments [ , ] , ρ , fragments ⟨ , ⟩ ) (E,[\,\,,\,\,],\rho,\langle\,\,,\,\,\rangle) ( italic_E , [ , ] , italic_ρ , ⟨ , ⟩ ) is a Courant algebroid if the following conditions hold for all a , b , c ∈ Ξ“ ⁒ ( E ) π‘Ž 𝑏 𝑐 Ξ“ 𝐸 a,b,c\in\Gamma(E) italic_a , italic_b , italic_c ∈ roman_Ξ“ ( italic_E ) :

We call [ , ] fragments [ , ] [\,\,,\,\,] [ , ] the Dorfman bracket , ρ 𝜌 \rho italic_ρ the anchor and ⟨ , ⟩ fragments ⟨ , ⟩ \langle\,\,,\,\,\rangle ⟨ , ⟩ the pairing of E 𝐸 E italic_E .


Definition 3.6 .

Let G 𝐺 G italic_G be a smooth affine group scheme equipped with a lift of Frobenius Ο• G subscript italic-Ο• 𝐺 \phi_{G} italic_Ο• start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT and let Ξ± ∈ L Ξ΄ ⁒ ( G ) 𝛼 subscript 𝐿 𝛿 𝐺 \alpha\in L_{\delta}(G) italic_Ξ± ∈ italic_L start_POSTSUBSCRIPT italic_Ξ΄ end_POSTSUBSCRIPT ( italic_G ) . Then the equality

l ⁒ Ξ΄ ⁒ ( u ) = Ξ± 𝑙 𝛿 𝑒 𝛼 l\delta(u)=\alpha italic_l italic_Ξ΄ ( italic_u ) = italic_Ξ±

will be referred to as a Ξ΄ G subscript 𝛿 𝐺 \delta_{G} italic_Ξ΄ start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT -linear equation with unknown u ∈ G 𝑒 𝐺 u\in G italic_u ∈ italic_G .


Definition 4.4 .

Let w 𝑀 w italic_w be a quasi-valuation on a ring R 𝑅 R italic_R . An element c ∈ R 𝑐 𝑅 c\in R italic_c ∈ italic_R is called left stable with respect to w 𝑀 w italic_w if

w ⁒ ( c ⁒ r ) = w ⁒ ( c ) + w ⁒ ( r ) 𝑀 𝑐 π‘Ÿ 𝑀 𝑐 𝑀 π‘Ÿ w(cr)=w(c)+w(r) italic_w ( italic_c italic_r ) = italic_w ( italic_c ) + italic_w ( italic_r )

for every r ∈ R π‘Ÿ 𝑅 r\in R italic_r ∈ italic_R . Analogously, one defines the notion right stable .


Definition 2.2

Let G 𝐺 G italic_G and H 𝐻 H italic_H be groups acting on the sets X 𝑋 X italic_X and Y π‘Œ Y italic_Y from the left respectively. Then the wreath product H ≀ X G subscript ≀ 𝑋 𝐻 𝐺 H\wr_{X}G italic_H ≀ start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT italic_G acts on the set Y Γ— X π‘Œ 𝑋 Y\times X italic_Y Γ— italic_X by defining

( Ξ± ; g ) β‹… ( y , x ) = ( ( Ξ± ⁒ ( g ⁒ ( x ) ) ) ⁒ ( y ) , g ⁒ ( x ) ) β‹… 𝛼 𝑔 𝑦 π‘₯ 𝛼 𝑔 π‘₯ 𝑦 𝑔 π‘₯ (\alpha;g)\cdot(y,x)=((\alpha(g(x)))(y),g(x)) ( italic_Ξ± ; italic_g ) β‹… ( italic_y , italic_x ) = ( ( italic_Ξ± ( italic_g ( italic_x ) ) ) ( italic_y ) , italic_g ( italic_x ) )

for any x ∈ X π‘₯ 𝑋 x\in X italic_x ∈ italic_X , y ∈ Y 𝑦 π‘Œ y\in Y italic_y ∈ italic_Y , g ∈ G 𝑔 𝐺 g\in G italic_g ∈ italic_G , Ξ± ∈ A 𝛼 𝐴 \alpha\in A italic_Ξ± ∈ italic_A . It is routine to verify that ( ( Ξ± ; g 1 ) β‹… ( Ξ² ; g 2 ) ) β‹… ( y , x ) = ( Ξ± ; g 1 ) β‹… ( ( Ξ² ; g 2 ) β‹… ( y , x ) ) β‹… β‹… 𝛼 subscript 𝑔 1 𝛽 subscript 𝑔 2 𝑦 π‘₯ β‹… 𝛼 subscript 𝑔 1 β‹… 𝛽 subscript 𝑔 2 𝑦 π‘₯ ((\alpha;g_{1})\cdot(\beta;g_{2}))\cdot(y,x)=(\alpha;g_{1})\cdot((\beta;g_{2})% \cdot(y,x)) ( ( italic_Ξ± ; italic_g start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) β‹… ( italic_Ξ² ; italic_g start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) ) β‹… ( italic_y , italic_x ) = ( italic_Ξ± ; italic_g start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) β‹… ( ( italic_Ξ² ; italic_g start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) β‹… ( italic_y , italic_x ) ) for any x ∈ X π‘₯ 𝑋 x\in X italic_x ∈ italic_X , y ∈ Y 𝑦 π‘Œ y\in Y italic_y ∈ italic_Y , Ξ± , Ξ² ∈ A 𝛼 𝛽 𝐴 \alpha,\beta\in A italic_Ξ± , italic_Ξ² ∈ italic_A , g 1 , g 2 ∈ G subscript 𝑔 1 subscript 𝑔 2 𝐺 g_{1},g_{2}\in G italic_g start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_g start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ∈ italic_G .


Definition A.1 .

A torsor is a set G 𝐺 G italic_G with a map G 3 β†’ G normal-β†’ superscript 𝐺 3 𝐺 G^{3}\to G italic_G start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT β†’ italic_G , ( x , y , z ) ↦ ( x ⁒ y ⁒ z ) maps-to π‘₯ 𝑦 𝑧 π‘₯ 𝑦 𝑧 (x,y,z)\mapsto(xyz) ( italic_x , italic_y , italic_z ) ↦ ( italic_x italic_y italic_z ) satisfying the following algebraic identities:

  1. (PA)

    para-associative identity : ( ( x u v ) w z ) = ( x ( w u v ) z ) = ( x u ( v w z ) ) ) fragments fragments ( fragments ( x u v ) w z ) fragments ( x fragments ( w u v ) z ) fragments ( x u fragments ( v w z ) ) ) ((xuv)wz)=(x(wuv)z)=(xu(vwz))) ( ( italic_x italic_u italic_v ) italic_w italic_z ) = ( italic_x ( italic_w italic_u italic_v ) italic_z ) = ( italic_x italic_u ( italic_v italic_w italic_z ) ) ) .

  2. (IP)

    idempotency identity ( x ⁒ x ⁒ y ) = y = ( y ⁒ x ⁒ x ) π‘₯ π‘₯ 𝑦 𝑦 𝑦 π‘₯ π‘₯ (xxy)=y=(yxx) ( italic_x italic_x italic_y ) = italic_y = ( italic_y italic_x italic_x ) .

The opposite torsor is G 𝐺 G italic_G with ( x ⁒ y ⁒ z ) o ⁒ p ⁒ p = ( z ⁒ y ⁒ x ) superscript π‘₯ 𝑦 𝑧 π‘œ 𝑝 𝑝 𝑧 𝑦 π‘₯ (xyz)^{opp}=(zyx) ( italic_x italic_y italic_z ) start_POSTSUPERSCRIPT italic_o italic_p italic_p end_POSTSUPERSCRIPT = ( italic_z italic_y italic_x ) , and a torsor is called commutative if G = G o ⁒ p ⁒ p 𝐺 superscript 𝐺 π‘œ 𝑝 𝑝 G=G^{opp} italic_G = italic_G start_POSTSUPERSCRIPT italic_o italic_p italic_p end_POSTSUPERSCRIPT , i.e., it satisfies the identity

  1. (C)

    ( x ⁒ y ⁒ z ) = ( z ⁒ y ⁒ x ) π‘₯ 𝑦 𝑧 𝑧 𝑦 π‘₯ (xyz)=(zyx) ( italic_x italic_y italic_z ) = ( italic_z italic_y italic_x ) .

Categorial notions are defined in the obvious way. In every torsor, left-, right- and middle multiplication operators are the maps G β†’ G β†’ 𝐺 𝐺 G\to G italic_G β†’ italic_G defined by equation ( 0.1 ).


Definition 2.13

Let ρ β€² superscript 𝜌 normal-β€² \rho^{\prime} italic_ρ start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT and ρ β€²β€² superscript 𝜌 normal-β€²β€² \rho^{\prime\prime} italic_ρ start_POSTSUPERSCRIPT β€² β€² end_POSTSUPERSCRIPT be two permutations of the sets { 1 , … , i } 1 normal-… 𝑖 \{1,\dots,i\} { 1 , … , italic_i } , { i + 1 , … , i + j } 𝑖 1 normal-… 𝑖 𝑗 \{i+1,\dots,i+j\} { italic_i + 1 , … , italic_i + italic_j } , respectively. We define the permutation ρ β€² ⁣ - 1 βˆͺ ρ β€²β€² ⁣ - 1 superscript 𝜌 normal-β€² 1 superscript 𝜌 normal-β€²β€² 1 \rho^{\prime-1}\cup\rho^{\prime\prime-1} italic_ρ start_POSTSUPERSCRIPT β€² - 1 end_POSTSUPERSCRIPT βˆͺ italic_ρ start_POSTSUPERSCRIPT β€² β€² - 1 end_POSTSUPERSCRIPT of { 1 , … , i + j } 1 normal-… 𝑖 𝑗 \{1,\dots,i+j\} { 1 , … , italic_i + italic_j } , which acts on { 1 , … , i } 1 normal-… 𝑖 \{1,\dots,i\} { 1 , … , italic_i } as ρ β€² ⁣ - 1 superscript 𝜌 normal-β€² 1 \rho^{\prime-1} italic_ρ start_POSTSUPERSCRIPT β€² - 1 end_POSTSUPERSCRIPT and on { i + 1 , … , i + j } 𝑖 1 normal-… 𝑖 𝑗 \{i+1,\dots,i+j\} { italic_i + 1 , … , italic_i + italic_j } as ρ β€²β€² ⁣ - 1 superscript 𝜌 normal-β€²β€² 1 \rho^{\prime\prime-1} italic_ρ start_POSTSUPERSCRIPT β€² β€² - 1 end_POSTSUPERSCRIPT . We define the set of shuffles of two given permutations, denoted by s ⁒ h ⁒ ( ρ β€² , ρ β€²β€² ) 𝑠 β„Ž superscript 𝜌 normal-β€² superscript 𝜌 normal-β€²β€² sh(\rho^{\prime},\rho^{\prime\prime}) italic_s italic_h ( italic_ρ start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT , italic_ρ start_POSTSUPERSCRIPT β€² β€² end_POSTSUPERSCRIPT ) , as the set of all permutations ρ 𝜌 \rho italic_ρ of the set { 1 , 2 , … , i + j } 1 2 normal-… 𝑖 𝑗 \{1,2,\dots,i+j\} { 1 , 2 , … , italic_i + italic_j } such that ρ - 1 superscript 𝜌 1 \rho^{-1} italic_ρ start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT is the composition of a shuffle of sets Ο„ ∈ s ⁒ h ⁒ ( i , j ) 𝜏 𝑠 β„Ž 𝑖 𝑗 \tau\in sh(i,j) italic_Ο„ ∈ italic_s italic_h ( italic_i , italic_j ) (see Definition 1.4 ) and with ρ β€² ⁣ - 1 βˆͺ ρ β€²β€² ⁣ - 1 superscript 𝜌 normal-β€² 1 superscript 𝜌 normal-β€²β€² 1 \rho^{\prime-1}\cup\rho^{\prime\prime-1} italic_ρ start_POSTSUPERSCRIPT β€² - 1 end_POSTSUPERSCRIPT βˆͺ italic_ρ start_POSTSUPERSCRIPT β€² β€² - 1 end_POSTSUPERSCRIPT . That is,

ρ - 1 = Ο„ ∘ ( ρ β€² ⁣ - 1 βˆͺ ρ β€²β€² ⁣ - 1 ) . superscript 𝜌 1 𝜏 superscript 𝜌 β€² 1 superscript 𝜌 β€²β€² 1 \rho^{-1}=\tau\circ(\rho^{\prime-1}\cup\rho^{\prime\prime-1}). italic_ρ start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT = italic_Ο„ ∘ ( italic_ρ start_POSTSUPERSCRIPT β€² - 1 end_POSTSUPERSCRIPT βˆͺ italic_ρ start_POSTSUPERSCRIPT β€² β€² - 1 end_POSTSUPERSCRIPT ) .