Definition 2.2 .

[ 3 ] Groupoid Ξ“ ⇉ E normal-⇉ normal-Ξ“ 𝐸 \Gamma\rightrightarrows E roman_Ξ“ ⇉ italic_E is a quadrupole ( Ξ“ , m , s , e ) normal-Ξ“ π‘š 𝑠 𝑒 (\Gamma,m,s,e) ( roman_Ξ“ , italic_m , italic_s , italic_e ) , where Ξ“ normal-Ξ“ \Gamma roman_Ξ“ is a set, m : Ξ“ Γ— Ξ“ ⁒ β–· ⁒ Ξ“ normal-: π‘š normal-Ξ“ normal-Ξ“ β–· normal-Ξ“ m:\Gamma\times\Gamma\mbox{$\,$\rule[2.15pt]{11.0pt}{0.2pt}$\triangleright\,$}\Gamma italic_m : roman_Ξ“ Γ— roman_Ξ“ β–· roman_Ξ“ , e : { 1 } ⁒ β–· ⁒ Ξ“ normal-: 𝑒 1 β–· normal-Ξ“ e:\{1\}\mbox{$\,$\rule[2.15pt]{11.0pt}{0.2pt}$\triangleright\,$}\Gamma italic_e : { 1 } β–· roman_Ξ“ and s : Ξ“ ⁒ β–· ⁒ Ξ“ normal-: 𝑠 normal-Ξ“ β–· normal-Ξ“ s:\Gamma\mbox{$\,$\rule[2.15pt]{11.0pt}{0.2pt}$\triangleright\,$}\Gamma italic_s : roman_Ξ“ β–· roman_Ξ“ are relations satisfying the following conditions:

m ⁒ ( m Γ— i ⁒ d ) = m ⁒ ( i ⁒ d Γ— m ) , m ⁒ ( e Γ— i ⁒ d ) = m ⁒ ( i ⁒ d Γ— e ) = i ⁒ d formulae-sequence π‘š π‘š 𝑖 𝑑 π‘š 𝑖 𝑑 π‘š π‘š 𝑒 𝑖 𝑑 π‘š 𝑖 𝑑 𝑒 𝑖 𝑑 m(m\times id)=m(id\times m)\,\,\,,\,\,m(e\times id)=m(id\times e)=id\vspace{-1ex} italic_m ( italic_m Γ— italic_i italic_d ) = italic_m ( italic_i italic_d Γ— italic_m ) , italic_m ( italic_e Γ— italic_i italic_d ) = italic_m ( italic_i italic_d Γ— italic_e ) = italic_i italic_d
s 2 = i ⁒ d , s ⁒ m = m ⁒ Οƒ ⁒ ( s Γ— s ) formulae-sequence superscript 𝑠 2 𝑖 𝑑 𝑠 π‘š π‘š 𝜎 𝑠 𝑠 s^{2}=id\,\,,\,\,sm=m\sigma(s\times s)\vspace{-1ex} italic_s start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT = italic_i italic_d , italic_s italic_m = italic_m italic_Οƒ ( italic_s Γ— italic_s )
βˆ€ Ξ³ ∈ Ξ“ ⁒ βˆ… β‰  m ⁒ ( s ⁒ ( Ξ³ ) , Ξ³ ) βŠ‚ E := I ⁒ m ⁒ ( e ) for-all 𝛾 Ξ“ π‘š 𝑠 𝛾 𝛾 𝐸 assign 𝐼 π‘š 𝑒 \forall\gamma\in\Gamma\,\,\emptyset\neq m(s(\gamma),\gamma)\subset E:=Im(e)% \vspace{-1ex} βˆ€ italic_Ξ³ ∈ roman_Ξ“ βˆ… β‰  italic_m ( italic_s ( italic_Ξ³ ) , italic_Ξ³ ) βŠ‚ italic_E := italic_I italic_m ( italic_e )

Definition 3.1 (Generalized LiΓ©nard System)

A generalization of the LiΓ©nard (or Abel) system ( 9 ) presented above has the form

x Λ™ = x + Ξ³ ⁒ ΞΎ , ΞΎ Λ™ = Ξ± ⁒ x 2 formulae-sequence Λ™ π‘₯ π‘₯ 𝛾 πœ‰ Λ™ πœ‰ 𝛼 superscript π‘₯ 2 \dot{x}=x+\gamma\xi,\qquad\dot{\xi}=\alpha x^{2} Λ™ start_ARG italic_x end_ARG = italic_x + italic_Ξ³ italic_ΞΎ , Λ™ start_ARG italic_ΞΎ end_ARG = italic_Ξ± italic_x start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT (15)

where x ∈ Ξ› ∞ 0 , ΞΎ ∈ Ξ› ∞ 1 formulae-sequence π‘₯ subscript superscript normal-Ξ› 0 πœ‰ subscript superscript normal-Ξ› 1 x\in\Lambda^{\kern-11.0pt0}_{\infty},\xi\in\Lambda^{\kern-11.0pt1}_{\infty} italic_x ∈ roman_Ξ› start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT , italic_ΞΎ ∈ roman_Ξ› start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT play the role of dependent variables of t 𝑑 t italic_t , x Λ™ normal-Λ™ π‘₯ \dot{x} Λ™ start_ARG italic_x end_ARG and ΞΎ Λ™ normal-Λ™ πœ‰ \dot{\xi} Λ™ start_ARG italic_ΞΎ end_ARG express derivatives of first-order with respect to t 𝑑 t italic_t , and where Ξ± , Ξ³ ∈ Ξ› ∞ 1 𝛼 𝛾 subscript superscript normal-Ξ› 1 \alpha,\gamma\in\Lambda^{\kern-11.0pt1}_{\infty} italic_Ξ± , italic_Ξ³ ∈ roman_Ξ› start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT are constants.


Definition 6.1 .

Given a geodesic Ξ³ 𝛾 \gamma italic_Ξ³ and a constant k π‘˜ k italic_k , Define Ο• f Ξ³ , k subscript italic-Ο• subscript 𝑓 𝛾 π‘˜ \phi_{f_{\gamma},k} italic_Ο• start_POSTSUBSCRIPT italic_f start_POSTSUBSCRIPT italic_Ξ³ end_POSTSUBSCRIPT , italic_k end_POSTSUBSCRIPT to be the solution to

(6.1) Ο• Β¨ + 2 ⁒ f Λ™ ⁒ Ο• Λ™ + k ⁒ Ο• = 0 Ο• ⁒ ( 0 ) = 0 Ο• β€² ⁒ ( 0 ) = 1 . formulae-sequence Β¨ italic-Ο• 2 Λ™ 𝑓 Λ™ italic-Ο• π‘˜ italic-Ο• 0 formulae-sequence italic-Ο• 0 0 superscript italic-Ο• β€² 0 1 \displaystyle\ddot{\phi}+2\dot{f}\dot{\phi}+k\phi=0\qquad\phi(0)=0\qquad\phi^{% \prime}(0)=1. Β¨ start_ARG italic_Ο• end_ARG + 2 Λ™ start_ARG italic_f end_ARG Λ™ start_ARG italic_Ο• end_ARG + italic_k italic_Ο• = 0 italic_Ο• ( 0 ) = 0 italic_Ο• start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ( 0 ) = 1 .

Let L f Ξ³ , k subscript 𝐿 subscript 𝑓 𝛾 π‘˜ L_{f_{\gamma},k} italic_L start_POSTSUBSCRIPT italic_f start_POSTSUBSCRIPT italic_Ξ³ end_POSTSUBSCRIPT , italic_k end_POSTSUBSCRIPT to be the smallest positive number such that Ο• ⁒ ( L Ξ³ , k ) = 0 italic-Ο• subscript 𝐿 𝛾 π‘˜ 0 \phi\left(L_{\gamma,k}\right)=0 italic_Ο• ( italic_L start_POSTSUBSCRIPT italic_Ξ³ , italic_k end_POSTSUBSCRIPT ) = 0 and define L f Ξ³ , k = ∞ subscript 𝐿 subscript 𝑓 𝛾 π‘˜ L_{f_{\gamma},k}=\infty italic_L start_POSTSUBSCRIPT italic_f start_POSTSUBSCRIPT italic_Ξ³ end_POSTSUBSCRIPT , italic_k end_POSTSUBSCRIPT = ∞ if Ο• f Ξ³ , k subscript italic-Ο• subscript 𝑓 𝛾 π‘˜ \phi_{f_{\gamma},k} italic_Ο• start_POSTSUBSCRIPT italic_f start_POSTSUBSCRIPT italic_Ξ³ end_POSTSUBSCRIPT , italic_k end_POSTSUBSCRIPT is positive for all time.


Definition 2 .

A braided algebra is a triple ( V , m , Οƒ ) 𝑉 π‘š 𝜎 (V,m,\sigma) ( italic_V , italic_m , italic_Οƒ ) where V 𝑉 V italic_V is a vector space, m : V βŠ— V β†’ V normal-: π‘š normal-β†’ tensor-product 𝑉 𝑉 𝑉 m:V\otimes V\rightarrow V italic_m : italic_V βŠ— italic_V β†’ italic_V is an associative operation, Οƒ : V βŠ— V β†’ V βŠ— V normal-: 𝜎 normal-β†’ tensor-product 𝑉 𝑉 tensor-product 𝑉 𝑉 \sigma:V\otimes V\rightarrow V\otimes V italic_Οƒ : italic_V βŠ— italic_V β†’ italic_V βŠ— italic_V is a linear map such that on V βŠ— V βŠ— V tensor-product 𝑉 𝑉 𝑉 V\otimes V\otimes V italic_V βŠ— italic_V βŠ— italic_V , the following relations are verified:

( Οƒ βŠ— id ) ⁒ ( id βŠ— Οƒ ) ⁒ ( Οƒ βŠ— id ) = ( id βŠ— Οƒ ) ⁒ ( Οƒ βŠ— id ) ⁒ ( id βŠ— Οƒ ) , tensor-product 𝜎 id tensor-product id 𝜎 tensor-product 𝜎 id tensor-product id 𝜎 tensor-product 𝜎 id tensor-product id 𝜎 (\sigma\otimes\operatorname*{id})(\operatorname*{id}\otimes\sigma)(\sigma% \otimes\operatorname*{id})=(\operatorname*{id}\otimes\sigma)(\sigma\otimes% \operatorname*{id})(\operatorname*{id}\otimes\sigma), ( italic_Οƒ βŠ— roman_id ) ( roman_id βŠ— italic_Οƒ ) ( italic_Οƒ βŠ— roman_id ) = ( roman_id βŠ— italic_Οƒ ) ( italic_Οƒ βŠ— roman_id ) ( roman_id βŠ— italic_Οƒ ) ,
( m βŠ— id ) ⁒ ( id βŠ— Οƒ ) ⁒ ( Οƒ βŠ— id ) = Οƒ ⁒ ( m βŠ— id ) , tensor-product π‘š id tensor-product id 𝜎 tensor-product 𝜎 id 𝜎 tensor-product π‘š id (m\otimes\operatorname*{id})(\operatorname*{id}\otimes\sigma)(\sigma\otimes% \operatorname*{id})=\sigma(m\otimes\operatorname*{id}), ( italic_m βŠ— roman_id ) ( roman_id βŠ— italic_Οƒ ) ( italic_Οƒ βŠ— roman_id ) = italic_Οƒ ( italic_m βŠ— roman_id ) ,
( id βŠ— m ) ⁒ ( Οƒ βŠ— id ) ⁒ ( id βŠ— Οƒ ) = Οƒ ⁒ ( id βŠ— m ) . tensor-product id π‘š tensor-product 𝜎 id tensor-product id 𝜎 𝜎 tensor-product id π‘š (\operatorname*{id}\otimes m)(\sigma\otimes\operatorname*{id})(\operatorname*{% id}\otimes\sigma)=\sigma(\operatorname*{id}\otimes m). ( roman_id βŠ— italic_m ) ( italic_Οƒ βŠ— roman_id ) ( roman_id βŠ— italic_Οƒ ) = italic_Οƒ ( roman_id βŠ— italic_m ) .

Definition 3 .

For two such algebras π’œ = π’œ 0 βŠ• π’œ 1 π’œ direct-sum superscript π’œ 0 superscript π’œ 1 \mathcal{A}=\mathcal{A}^{0}\oplus\mathcal{A}^{1} caligraphic_A = caligraphic_A start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT βŠ• caligraphic_A start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT and ℬ = ℬ 0 βŠ• ℬ 1 ℬ direct-sum superscript ℬ 0 superscript ℬ 1 \mathcal{B}=\mathcal{B}^{0}\oplus\mathcal{B}^{1} caligraphic_B = caligraphic_B start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT βŠ• caligraphic_B start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT the β„€ 2 subscript β„€ 2 \mathbb{Z}_{2} blackboard_Z start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT -graded tensor product is defined

( a βŠ— b ) ⁒ ( a β€² βŠ— b β€² ) = ( - 1 ) j ⁒ k ⁒ ( a ⁒ a β€² ) βŠ— ( b ⁒ b β€² ) tensor-product π‘Ž 𝑏 tensor-product superscript π‘Ž β€² superscript 𝑏 β€² tensor-product superscript 1 𝑗 π‘˜ π‘Ž superscript π‘Ž β€² 𝑏 superscript 𝑏 β€² (a\otimes b)(a^{\prime}\otimes b^{\prime})=(-1)^{jk}(aa^{\prime})\otimes(bb^{% \prime}) ( italic_a βŠ— italic_b ) ( italic_a start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT βŠ— italic_b start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ) = ( - 1 ) start_POSTSUPERSCRIPT italic_j italic_k end_POSTSUPERSCRIPT ( italic_a italic_a start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ) βŠ— ( italic_b italic_b start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ) (29)

if b ∈ ℬ j 𝑏 superscript ℬ 𝑗 b\in\mathcal{B}^{j} italic_b ∈ caligraphic_B start_POSTSUPERSCRIPT italic_j end_POSTSUPERSCRIPT and a β€² ∈ π’œ k superscript π‘Ž β€² superscript π’œ π‘˜ a^{\prime}\in\mathcal{A}^{k} italic_a start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ∈ caligraphic_A start_POSTSUPERSCRIPT italic_k end_POSTSUPERSCRIPT . The Eq.Β ( 29 ) may be extended on arbitrary elements of algebras due to distributivity. It is also called the skew tensor product and denoted as βŠ— ^ ^ tensor-product \mathbin{\widehat{\otimes}} start_BINOP ^ start_ARG βŠ— end_ARG end_BINOP Post .


Definition 1

Two Laurent polynomials f , g ∈ K ⁒ [ I ] 𝑓 𝑔 𝐾 delimited-[] 𝐼 f,g\in K[I] italic_f , italic_g ∈ italic_K [ italic_I ] are co-prime if every common factor is at most a monomial:

f = h ⁒ f β€² , g = h ⁒ g β€² β‡’ h ∈ M ⁒ [ I ] . formulae-sequence 𝑓 β„Ž superscript 𝑓 β€² 𝑔 β„Ž superscript 𝑔 β€² β‡’ β„Ž 𝑀 delimited-[] 𝐼 f=hf^{\prime},\ g=hg^{\prime}\ \Rightarrow\ h\in M[I]. italic_f = italic_h italic_f start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT , italic_g = italic_h italic_g start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT β‡’ italic_h ∈ italic_M [ italic_I ] .

If f ∈ K ⁒ [ I ] 𝑓 𝐾 delimited-[] 𝐼 f\in K[I] italic_f ∈ italic_K [ italic_I ] is co-prime with every element g ∈ K ⁒ [ I ] 𝑔 𝐾 delimited-[] 𝐼 g\in K[I] italic_g ∈ italic_K [ italic_I ] such that g βˆ‰ M ⁒ [ I ] ⁒ f := { m ⁒ f | m ∈ M ⁒ [ I ] } 𝑔 𝑀 delimited-[] 𝐼 𝑓 assign conditional-set π‘š 𝑓 π‘š 𝑀 delimited-[] 𝐼 g\not\in M[I]f:=\{mf|\ m\in M[I]\} italic_g βˆ‰ italic_M [ italic_I ] italic_f := { italic_m italic_f | italic_m ∈ italic_M [ italic_I ] } , then f 𝑓 f italic_f is said to be an irreducible Laurent polynomial. We denote the set of all irreducible Laurent polynomial in K ⁒ [ I ] 𝐾 delimited-[] 𝐼 K[I] italic_K [ italic_I ] as K 0 ⁒ [ I ] subscript 𝐾 0 delimited-[] 𝐼 K_{0}[I] italic_K start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT [ italic_I ] .


Definition 2.3 .

A sheaf of π’ͺ S subscript π’ͺ 𝑆 {\mathcal{O}}_{S} caligraphic_O start_POSTSUBSCRIPT italic_S end_POSTSUBSCRIPT -Poisson algebras on X 𝑋 X italic_X is a pair ( π’œ , { β‹… , β‹… } ) π’œ β‹… β‹… ({\mathcal{A}},\{\cdot,\cdot\}) ( caligraphic_A , { β‹… , β‹… } ) consisting of a sheaf π’œ π’œ {\mathcal{A}} caligraphic_A of commutative, associative and unital π’ͺ X subscript π’ͺ 𝑋 {\mathcal{O}}_{X} caligraphic_O start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT -algebras with a Poisson bracket { β‹… , β‹… } β‹… β‹… \{\cdot,\cdot\} { β‹… , β‹… } such that ( π’œ , { β‹… , β‹… } ) π’œ β‹… β‹… ({\mathcal{A}},\{\cdot,\cdot\}) ( caligraphic_A , { β‹… , β‹… } ) is a sheaf of π’ͺ S subscript π’ͺ 𝑆 {\mathcal{O}}_{S} caligraphic_O start_POSTSUBSCRIPT italic_S end_POSTSUBSCRIPT -Lie algebras on X 𝑋 X italic_X satisfying the Leibniz rule

{ x , y β‹… z } = { x , y } β‹… z + y β‹… { x , z } π‘₯ β‹… 𝑦 𝑧 β‹… π‘₯ 𝑦 𝑧 β‹… 𝑦 π‘₯ 𝑧 \{x,y\cdot z\}=\{x,y\}\cdot z+y\cdot\{x,z\} { italic_x , italic_y β‹… italic_z } = { italic_x , italic_y } β‹… italic_z + italic_y β‹… { italic_x , italic_z }

for all x , y , z ∈ π’œ π‘₯ 𝑦 𝑧 π’œ x,y,z\in{\mathcal{A}} italic_x , italic_y , italic_z ∈ caligraphic_A .


Definition 2

A function f : [ 1 , n ] β†’ [ 1 , m ] normal-: 𝑓 normal-β†’ 1 𝑛 1 π‘š f:[1,n]\rightarrow[1,m] italic_f : [ 1 , italic_n ] β†’ [ 1 , italic_m ] has the distinct differences property if for all i , j , h ∈ β„€ 𝑖 𝑗 β„Ž β„€ i,j,h\in\mathbb{Z} italic_i , italic_j , italic_h ∈ blackboard_Z such that 1 ≀ h ≀ n - 1 1 β„Ž 𝑛 1 1\leq h\leq n-1 1 ≀ italic_h ≀ italic_n - 1 and 1 ≀ i , j ≀ n - h formulae-sequence 1 𝑖 𝑗 𝑛 β„Ž 1\leq i,j\leq n-h 1 ≀ italic_i , italic_j ≀ italic_n - italic_h ,

f ⁒ ( i + h ) - f ⁒ ( i ) = f ⁒ ( j + h ) - f ⁒ ( j ) β‡’ i = j , 𝑓 𝑖 β„Ž 𝑓 𝑖 𝑓 𝑗 β„Ž 𝑓 𝑗 β‡’ 𝑖 𝑗 f(i+h)-f(i)=f(j+h)-f(j)\Rightarrow i=j, italic_f ( italic_i + italic_h ) - italic_f ( italic_i ) = italic_f ( italic_j + italic_h ) - italic_f ( italic_j ) β‡’ italic_i = italic_j , (11)

Furthermore, if [ 1 , m ] 1 π‘š [1,m] [ 1 , italic_m ] is replaced by β„€ m subscript β„€ π‘š \mathbb{Z}_{m} blackboard_Z start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT and ( 11 ) by

f ⁒ ( i + h ) - f ⁒ ( i ) ≑ f ⁒ ( j + h ) - f ⁒ ( j ) ( mod m ) β‡’ i = j , 𝑓 𝑖 β„Ž 𝑓 𝑖 annotated 𝑓 𝑗 β„Ž 𝑓 𝑗 pmod π‘š β‡’ 𝑖 𝑗 f(i+h)-f(i)\equiv f(j+h)-f(j)\pmod{m}\Rightarrow i=j, italic_f ( italic_i + italic_h ) - italic_f ( italic_i ) ≑ italic_f ( italic_j + italic_h ) - italic_f ( italic_j ) start_MODIFIER ( roman_mod start_ARG italic_m end_ARG ) end_MODIFIER β‡’ italic_i = italic_j , (12)

f 𝑓 f italic_f has the distinct differences property module m π‘š m italic_m .


Definition 3.7 .

For each p β‰₯ 1 𝑝 1 p\geq 1 italic_p β‰₯ 1 we fix the permutation ( p , … , 1 ) 𝑝 … 1 (p,\ldots,1) ( italic_p , … , 1 ) . Then for each permutation Οƒ 𝜎 \sigma italic_Οƒ of { 1 , … , p } 1 … 𝑝 \{1,\ldots,p\} { 1 , … , italic_p } we define

Ο΅ ⁒ ( Οƒ ) = sgn ⁑ ( Οƒ , ( p , … , 1 ) ) italic-Ο΅ 𝜎 sgn 𝜎 𝑝 … 1 \epsilon(\sigma)=\operatorname{sgn}(\sigma,(p,\ldots,1)) italic_Ο΅ ( italic_Οƒ ) = roman_sgn ( italic_Οƒ , ( italic_p , … , 1 ) )

where sgn ⁑ ( - , - ) sgn \operatorname{sgn}(-,-) roman_sgn ( - , - ) denotes the standard sign function for permutations.


Definition 4.1

Let β„‚ p Λ™ , z Λ™ = β„‚ ⁒ w subscript β„‚ normal-Λ™ 𝑝 normal-Λ™ 𝑧 β„‚ 𝑀 \mathbb{C}_{\dot{p},\dot{z}}=\mathbb{C}w blackboard_C start_POSTSUBSCRIPT Λ™ start_ARG italic_p end_ARG , Λ™ start_ARG italic_z end_ARG end_POSTSUBSCRIPT = blackboard_C italic_w be a one-dimensional vector space. By the action of

p ⁒ w = p Λ™ ⁒ w , z ⁒ w = z Λ™ ⁒ w , formulae-sequence 𝑝 𝑀 Λ™ 𝑝 𝑀 𝑧 𝑀 Λ™ 𝑧 𝑀 pw=\dot{p}w,zw=\dot{z}w, italic_p italic_w = Λ™ start_ARG italic_p end_ARG italic_w , italic_z italic_w = Λ™ start_ARG italic_z end_ARG italic_w ,

β„‚ p Λ™ , z Λ™ subscript β„‚ Λ™ 𝑝 Λ™ 𝑧 \mathbb{C}_{\dot{p},\dot{z}} blackboard_C start_POSTSUBSCRIPT Λ™ start_ARG italic_p end_ARG , Λ™ start_ARG italic_z end_ARG end_POSTSUBSCRIPT can be viewed as a β„‚ ⁒ p βŠ• β„‚ ⁒ z - direct-sum β„‚ 𝑝 limit-from β„‚ 𝑧 \mathbb{C}p\oplus\mathbb{C}z- blackboard_C italic_p βŠ• blackboard_C italic_z - module. The induced module

M β„Œ ⁒ ( p Λ™ , z Λ™ ) = U ⁒ ( β„Œ ) βŠ— U ⁒ ( β„‚ ⁒ p βŠ• β„‚ ⁒ z ) β„‚ p Λ™ , z Λ™ subscript 𝑀 β„Œ Λ™ 𝑝 Λ™ 𝑧 subscript tensor-product π‘ˆ direct-sum β„‚ 𝑝 β„‚ 𝑧 π‘ˆ β„Œ subscript β„‚ Λ™ 𝑝 Λ™ 𝑧 M_{\mathfrak{H}}(\dot{p},\dot{z})=U(\mathfrak{H})\otimes_{U(\mathbb{C}p\oplus% \mathbb{C}z)}\mathbb{C}_{\dot{p},\dot{z}} italic_M start_POSTSUBSCRIPT fraktur_H end_POSTSUBSCRIPT ( Λ™ start_ARG italic_p end_ARG , Λ™ start_ARG italic_z end_ARG ) = italic_U ( fraktur_H ) βŠ— start_POSTSUBSCRIPT italic_U ( blackboard_C italic_p βŠ• blackboard_C italic_z ) end_POSTSUBSCRIPT blackboard_C start_POSTSUBSCRIPT Λ™ start_ARG italic_p end_ARG , Λ™ start_ARG italic_z end_ARG end_POSTSUBSCRIPT

is called a Whittaker module for Heisenberg Lie algebra β„Œ . β„Œ \mathfrak{H}. fraktur_H .


Definition 4.9 .

In any involutive space over split-complex numbers, the following algebraic identity called the Parallelogram Identity holds:

( x + y ) * ⁒ ( x + y ) + ( x - y ) * ⁒ ( x - y ) = 2 ⁒ ( x * ⁒ x + y * ⁒ y ) superscript π‘₯ 𝑦 π‘₯ 𝑦 superscript π‘₯ 𝑦 π‘₯ 𝑦 2 superscript π‘₯ π‘₯ superscript 𝑦 𝑦 {(x+y)}^{*}(x+y)+{(x-y)}^{*}(x-y)=2(x^{*}x+y^{*}y) ( italic_x + italic_y ) start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT ( italic_x + italic_y ) + ( italic_x - italic_y ) start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT ( italic_x - italic_y ) = 2 ( italic_x start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT italic_x + italic_y start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT italic_y )

Definition 4

Let π’œ π’œ {\mathcal{A}} caligraphic_A be a finite alphabet. The reversal operator is the operator ∼ : π’œ * ↦ π’œ * fragments similar-to : superscript π’œ maps-to superscript π’œ \sim:{\mathcal{A}}^{*}\mapsto{\mathcal{A}}^{*} ∼ : caligraphic_A start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT ↦ caligraphic_A start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT defined by recurrence in the following way:

Ξ΅ ~ = Ξ΅ , v ⁒ a ~ = a ⁒ v ~ formulae-sequence ~ πœ€ πœ€ ~ 𝑣 π‘Ž π‘Ž ~ 𝑣 \tilde{\varepsilon}=\varepsilon,\quad\widetilde{va}=a\tilde{v} ~ start_ARG italic_Ξ΅ end_ARG = italic_Ξ΅ , ~ start_ARG italic_v italic_a end_ARG = italic_a ~ start_ARG italic_v end_ARG

for all v ∈ π’œ * 𝑣 superscript π’œ v\in{\mathcal{A}}^{*} italic_v ∈ caligraphic_A start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT and a ∈ π’œ π‘Ž π’œ a\in{\mathcal{A}} italic_a ∈ caligraphic_A . The fixed points of the reversal operator are called palindromes .

Definition 6

We call the iterated (right) palindromic closure operator the operator ψ πœ“ \psi italic_ψ recurrently defined by the following rules:

ψ ⁒ ( Ξ΅ ) = Ξ΅ , ψ ⁒ ( v ⁒ a ) = ( ψ ⁒ ( v ) ⁒ a ) ( + ) formulae-sequence πœ“ πœ€ πœ€ πœ“ 𝑣 π‘Ž superscript πœ“ 𝑣 π‘Ž \psi(\varepsilon)=\varepsilon,\quad\psi(va)=(\psi(v)a)^{(+)} italic_ψ ( italic_Ξ΅ ) = italic_Ξ΅ , italic_ψ ( italic_v italic_a ) = ( italic_ψ ( italic_v ) italic_a ) start_POSTSUPERSCRIPT ( + ) end_POSTSUPERSCRIPT

for all v ∈ π’œ * 𝑣 superscript π’œ v\in{\mathcal{A}}^{*} italic_v ∈ caligraphic_A start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT and a ∈ π’œ π‘Ž π’œ a\in{\mathcal{A}} italic_a ∈ caligraphic_A . The definition of ψ πœ“ \psi italic_ψ may be extended to infinite words u 𝑒 u italic_u over π’œ π’œ {\mathcal{A}} caligraphic_A as ψ ⁒ ( u ) = lim n ⁑ ψ ⁒ ( Pref n ⁑ u ) πœ“ 𝑒 subscript 𝑛 πœ“ subscript Pref 𝑛 𝑒 \psi(u)=\lim_{n}\psi(\operatorname{Pref}_{n}u) italic_ψ ( italic_u ) = roman_lim start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT italic_ψ ( roman_Pref start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT italic_u ) , i.e., ψ ⁒ ( u ) πœ“ 𝑒 \psi(u) italic_ψ ( italic_u ) is the infinite word having ψ ⁒ ( Pref n ⁑ u ) πœ“ subscript Pref 𝑛 𝑒 \psi(\operatorname{Pref}_{n}u) italic_ψ ( roman_Pref start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT italic_u ) as its prefix for every n ∈ β„• 𝑛 β„• n\in\mathbb{N} italic_n ∈ blackboard_N .


Definition 1.3 .

Given a finite group G 𝐺 G italic_G and a natural number n 𝑛 n italic_n , write [ n ] = { 1 , 2 , … , n } delimited-[] 𝑛 1 2 … 𝑛 [n]=\{1,2,\ldots,n\} [ italic_n ] = { 1 , 2 , … , italic_n } and B ⁒ ( G , n ) = ( [ n ] Γ— G Γ— [ n ] ) βˆͺ { Ο‘ } 𝐡 𝐺 𝑛 delimited-[] 𝑛 𝐺 delimited-[] 𝑛 italic-Ο‘ B(G,n)=([n]\times G\times[n])\cup\{\vartheta\} italic_B ( italic_G , italic_n ) = ( [ italic_n ] Γ— italic_G Γ— [ italic_n ] ) βˆͺ { italic_Ο‘ } . Define a binary operation (say, addition) on B ⁒ ( G , n ) 𝐡 𝐺 𝑛 B(G,n) italic_B ( italic_G , italic_n ) by

( i , a , j ) + ( k , b , l ) = { ( i , a ⁒ b , l ) if j = k ; Ο‘ otherwise, 𝑖 π‘Ž 𝑗 π‘˜ 𝑏 𝑙 cases 𝑖 π‘Ž 𝑏 𝑙 if j = k ; italic-Ο‘ otherwise, (i,a,j)+(k,b,l)=\left\{\begin{array}[]{cl}(i,ab,l)&\text{if $j=k$;}\\ \vartheta&\text{otherwise,}\end{array}\right. ( italic_i , italic_a , italic_j ) + ( italic_k , italic_b , italic_l ) = { start_ARRAY start_ROW start_CELL ( italic_i , italic_a italic_b , italic_l ) end_CELL start_CELL if italic_j = italic_k ; end_CELL end_ROW start_ROW start_CELL italic_Ο‘ end_CELL start_CELL otherwise, end_CELL end_ROW end_ARRAY
and ⁒ Ο‘ + ( i , a , j ) = ( i , a , j ) + Ο‘ = Ο‘ + Ο‘ = Ο‘ . and italic-Ο‘ 𝑖 π‘Ž 𝑗 𝑖 π‘Ž 𝑗 italic-Ο‘ italic-Ο‘ italic-Ο‘ italic-Ο‘ \mbox{and }\;\vartheta+(i,a,j)=(i,a,j)+\vartheta=\vartheta+\vartheta=\vartheta. and italic_Ο‘ + ( italic_i , italic_a , italic_j ) = ( italic_i , italic_a , italic_j ) + italic_Ο‘ = italic_Ο‘ + italic_Ο‘ = italic_Ο‘ .

With the above defined multiplication, B ⁒ ( G , n ) 𝐡 𝐺 𝑛 B(G,n) italic_B ( italic_G , italic_n ) is a semigroup known as Brandt semigroup . When G 𝐺 G italic_G is the trivial group, the Brandt semigroup B ⁒ ( { e } , n ) 𝐡 𝑒 𝑛 B(\{e\},n) italic_B ( { italic_e } , italic_n ) is aperiodic and is denoted by B n subscript 𝐡 𝑛 B_{n} italic_B start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT . For more details on Brandt semigroups, one may refer to [ 5 ] .


Definition 7

Let Ο† : G Γ— [ 0 , 1 ] s β†’ G normal-: πœ‘ normal-β†’ 𝐺 superscript 0 1 𝑠 𝐺 \varphi:G\times[0,1]^{s}\to G italic_Ο† : italic_G Γ— [ 0 , 1 ] start_POSTSUPERSCRIPT italic_s end_POSTSUPERSCRIPT β†’ italic_G be an update function. We say that Ο† πœ‘ \varphi italic_Ο† satisfies the β€˜anywhere-to-anywhere’ condition if for all x , y ∈ G π‘₯ 𝑦 𝐺 x,y\in G italic_x , italic_y ∈ italic_G there exists a u ∈ [ 0 , 1 ] s 𝑒 superscript 0 1 𝑠 u\in[0,1]^{s} italic_u ∈ [ 0 , 1 ] start_POSTSUPERSCRIPT italic_s end_POSTSUPERSCRIPT such that

Ο† ⁒ ( x ; u ) = y . πœ‘ π‘₯ 𝑒 𝑦 \varphi(x;u)=y. italic_Ο† ( italic_x ; italic_u ) = italic_y .

Definition 1

(M. Van den Bergh). A double Poisson bracket on an associative algebra π’œ π’œ {\cal A} caligraphic_A is a β„‚ β„‚ \mathbb{C} blackboard_C -linear map { { , } } : π’œ βŠ— π’œ ↦ π’œ βŠ— π’œ fragments fragments fragments normal-{ normal-{ normal-, fragments normal-} normal-} normal-: A tensor-product A maps-to A tensor-product A \mathopen{\{\!\!\{},\mathclose{\}\!\!\}}:{\cal A}\otimes{\cal A}\mapsto{\cal A% }\otimes{\cal A} start_OPEN { { end_OPEN , start_CLOSE } } end_CLOSE : caligraphic_A βŠ— caligraphic_A ↦ caligraphic_A βŠ— caligraphic_A satisfying the following conditions:

{ { u , v } } = - { { v , u } } ∘ , 𝑒 𝑣 superscript 𝑣 𝑒 \mathopen{\{\!\!\{}u,v\mathclose{\}\!\!\}}=-\mathopen{\{\!\!\{}v,u\mathclose{% \}\!\!\}}^{\circ}, start_OPEN { { end_OPEN italic_u , italic_v start_CLOSE } } end_CLOSE = - start_OPEN { { end_OPEN italic_v , italic_u start_CLOSE } } end_CLOSE start_POSTSUPERSCRIPT ∘ end_POSTSUPERSCRIPT , (3.18)
{ { u , { { v , w } } } } l + Οƒ ⁒ { { v , { { w , u } } } } l + Οƒ 2 ⁒ { { w , { { u , v } } } } l = 0 , subscript 𝑒 𝑣 𝑀 𝑙 𝜎 subscript 𝑣 𝑀 𝑒 𝑙 superscript 𝜎 2 subscript 𝑀 𝑒 𝑣 𝑙 0 \mathopen{\{\!\!\{}u,\mathopen{\{\!\!\{}v,w\mathclose{\}\!\!\}}\mathclose{\}\!% \!\}}_{l}+\sigma\mathopen{\{\!\!\{}v,\mathopen{\{\!\!\{}w,u\mathclose{\}\!\!\}% }\mathclose{\}\!\!\}}_{l}+\sigma^{2}\mathopen{\{\!\!\{}w,\mathopen{\{\!\!\{}u,% v\mathclose{\}\!\!\}}\mathclose{\}\!\!\}}_{l}=0, start_OPEN { { end_OPEN italic_u , start_OPEN { { end_OPEN italic_v , italic_w start_CLOSE } } end_CLOSE start_CLOSE } } end_CLOSE start_POSTSUBSCRIPT italic_l end_POSTSUBSCRIPT + italic_Οƒ start_OPEN { { end_OPEN italic_v , start_OPEN { { end_OPEN italic_w , italic_u start_CLOSE } } end_CLOSE start_CLOSE } } end_CLOSE start_POSTSUBSCRIPT italic_l end_POSTSUBSCRIPT + italic_Οƒ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT start_OPEN { { end_OPEN italic_w , start_OPEN { { end_OPEN italic_u , italic_v start_CLOSE } } end_CLOSE start_CLOSE } } end_CLOSE start_POSTSUBSCRIPT italic_l end_POSTSUBSCRIPT = 0 , (3.19)

and

{ { u , v ⁒ w } } = ( v βŠ— 1 ) ⁒ { { u , w } } + { { u , v } } ⁒ ( 1 βŠ— w ) . 𝑒 𝑣 𝑀 tensor-product 𝑣 1 𝑒 𝑀 𝑒 𝑣 tensor-product 1 𝑀 \mathopen{\{\!\!\{}u,vw\mathclose{\}\!\!\}}=(v\otimes 1)\mathopen{\{\!\!\{}u,w% \mathclose{\}\!\!\}}+\mathopen{\{\!\!\{}u,v\mathclose{\}\!\!\}}(1\otimes w). start_OPEN { { end_OPEN italic_u , italic_v italic_w start_CLOSE } } end_CLOSE = ( italic_v βŠ— 1 ) start_OPEN { { end_OPEN italic_u , italic_w start_CLOSE } } end_CLOSE + start_OPEN { { end_OPEN italic_u , italic_v start_CLOSE } } end_CLOSE ( 1 βŠ— italic_w ) . (3.20)

Definition 5.1 .

Take u , v ∈ F ⁑ ( A ) 𝑒 𝑣 F 𝐴 u,v\in\operatorname{F}(A) italic_u , italic_v ∈ roman_F ( italic_A ) . The join of u 𝑒 u italic_u and v 𝑣 v italic_v , denoted by [ u , v ] 𝑒 𝑣 [u,v] [ italic_u , italic_v ] , is the shortest word admitting u 𝑒 u italic_u as quasi-subword and v 𝑣 v italic_v as suffix. Namely,

[ u , v ] = u + ⁒ v 𝑒 𝑣 superscript 𝑒 𝑣 [u,v]=u^{+}v [ italic_u , italic_v ] = italic_u start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT italic_v

where u = u + ⁒ u - 𝑒 superscript 𝑒 superscript 𝑒 u=u^{+}u^{-} italic_u = italic_u start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT italic_u start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT , so that u - superscript 𝑒 u^{-} italic_u start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT is the longest suffix of u 𝑒 u italic_u which is a quasi-subword of v 𝑣 v italic_v .


Definition 1.1 .

Let R 𝑅 R italic_R be a ring, Οƒ 𝜎 \sigma italic_Οƒ an endomorphism of R 𝑅 R italic_R and Ξ΄ 𝛿 \delta italic_Ξ΄ an additive function, R β†’ R normal-β†’ 𝑅 𝑅 R\to R italic_R β†’ italic_R , satisfying

Ξ΄ ⁒ ( a ⁒ b ) = Οƒ ⁒ ( a ) ⁒ Ξ΄ ⁒ ( b ) + Ξ΄ ⁒ ( a ) ⁒ b 𝛿 π‘Ž 𝑏 𝜎 π‘Ž 𝛿 𝑏 𝛿 π‘Ž 𝑏 \delta(ab)=\sigma(a)\delta(b)+\delta(a)b italic_Ξ΄ ( italic_a italic_b ) = italic_Οƒ ( italic_a ) italic_Ξ΄ ( italic_b ) + italic_Ξ΄ ( italic_a ) italic_b

for all a , b ∈ R π‘Ž 𝑏 𝑅 a,b\in R italic_a , italic_b ∈ italic_R . (Such Ξ΄ 𝛿 \delta italic_Ξ΄ :s are known as Οƒ 𝜎 \sigma italic_Οƒ -derivations.) The Ore extension R ⁒ [ x ; Οƒ , Ξ΄ ] 𝑅 π‘₯ 𝜎 𝛿 R[x;\sigma,\delta] italic_R [ italic_x ; italic_Οƒ , italic_Ξ΄ ] is the over-ring of R 𝑅 R italic_R satisfying x ⁒ r = Οƒ ⁒ ( r ) ⁒ x + Ξ΄ ⁒ ( r ) π‘₯ π‘Ÿ 𝜎 π‘Ÿ π‘₯ 𝛿 π‘Ÿ xr=\sigma(r)x+\delta(r) italic_x italic_r = italic_Οƒ ( italic_r ) italic_x + italic_Ξ΄ ( italic_r ) for all r ∈ R π‘Ÿ 𝑅 r\in R italic_r ∈ italic_R and such that every element of R ⁒ [ x ; Οƒ , Ξ΄ ] 𝑅 π‘₯ 𝜎 𝛿 R[x;\sigma,\delta] italic_R [ italic_x ; italic_Οƒ , italic_Ξ΄ ] can be written βˆ‘ a i ⁒ x i subscript π‘Ž 𝑖 superscript π‘₯ 𝑖 \sum a_{i}x^{i} βˆ‘ italic_a start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT italic_x start_POSTSUPERSCRIPT italic_i end_POSTSUPERSCRIPT with a i ∈ R subscript π‘Ž 𝑖 𝑅 a_{i}\in R italic_a start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ∈ italic_R . If Οƒ = id 𝜎 normal-id \sigma=\operatorname{id} italic_Οƒ = roman_id then R ⁒ [ x ; id R , Ξ΄ ] 𝑅 π‘₯ subscript normal-id 𝑅 𝛿 R[x;\operatorname{id}_{R},\delta] italic_R [ italic_x ; roman_id start_POSTSUBSCRIPT italic_R end_POSTSUBSCRIPT , italic_Ξ΄ ] is called a differential operator ring .


Definition 2.6 .

A coboundary Lie bialgebra ( L , Ο• , Ξ” , r ) 𝐿 italic-Ο• Ξ” π‘Ÿ (L,\phi,\Delta,r) ( italic_L , italic_Ο• , roman_Ξ” , italic_r ) is called triangular if r π‘Ÿ r italic_r satisfies the following Classical Yang-Baxter Equation (CYBE) :

c ⁒ ( r ) = 0 . 𝑐 π‘Ÿ 0 c(r)=0. italic_c ( italic_r ) = 0 .

Definition 1.1 .

A matched pair of algebras is a system ( A , X , β–· , ◁ , β†Ό , ⇀ ) fragments ( A , X , β–· , ◁ , β†Ό , ⇀ ) (A,\,X,\triangleright,\triangleleft,\leftharpoonup,\rightharpoonup\bigl{)} ( italic_A , italic_X , β–· , ◁ , β†Ό , ⇀ ) consisting of two algebras A 𝐴 A italic_A , X 𝑋 X italic_X and four bilinear maps

◁ : X Γ— A β†’ X , β–· : X Γ— A β†’ A , β†Ό : A Γ— X β†’ A , ⇀ : A Γ— X β†’ X fragments ◁ : X A β†’ X , β–· : X A β†’ A , β†Ό : A X β†’ A , ⇀ : A X β†’ X \triangleleft:X\times A\to X,\quad\triangleright:X\times A\to A,\quad% \leftharpoonup\,:A\times X\to A,\quad\rightharpoonup\,:A\times X\to X ◁ : italic_X Γ— italic_A β†’ italic_X , β–· : italic_X Γ— italic_A β†’ italic_A , β†Ό : italic_A Γ— italic_X β†’ italic_A , ⇀ : italic_A Γ— italic_X β†’ italic_X

such that ( X , ⇀ , ◁ ) ∈ β„³ A A 𝑋 ⇀ ◁ subscript subscript β„³ 𝐴 𝐴 (X,\rightharpoonup,\triangleleft)\in{}_{A}\mathcal{M}_{A} ( italic_X , ⇀ , ◁ ) ∈ start_FLOATSUBSCRIPT italic_A end_FLOATSUBSCRIPT caligraphic_M start_POSTSUBSCRIPT italic_A end_POSTSUBSCRIPT is an A 𝐴 A italic_A -bimodule, ( A , β–· , β†Ό ) ∈ β„³ X X 𝐴 β–· β†Ό subscript subscript β„³ 𝑋 𝑋 (A,\triangleright,\leftharpoonup)\in{}_{X}\mathcal{M}_{X} ( italic_A , β–· , β†Ό ) ∈ start_FLOATSUBSCRIPT italic_X end_FLOATSUBSCRIPT caligraphic_M start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT is an X 𝑋 X italic_X -bimodule and the following compatibilities hold for any a π‘Ž a italic_a , b ∈ A 𝑏 𝐴 b\in A italic_b ∈ italic_A , x π‘₯ x italic_x , y ∈ X 𝑦 𝑋 y\in X italic_y ∈ italic_X :

  1. (MP1)

    a ⇀ ( x y ) = ( a ⇀ x ) y + ( a β†Ό x ) ⇀ y fragments a ⇀ fragments ( x y ) fragments ( a ⇀ x ) y fragments ( a β†Ό x ) ⇀ y a\rightharpoonup(x\,y)=(a\rightharpoonup x)\,y+(a\leftharpoonup x)\rightharpoonup y italic_a ⇀ ( italic_x italic_y ) = ( italic_a ⇀ italic_x ) italic_y + ( italic_a β†Ό italic_x ) ⇀ italic_y ;

  2. (MP2)

    ( a b ) β†Ό x = a ( b β†Ό x ) + a β†Ό ( b ⇀ x ) fragments fragments ( a b ) β†Ό x a fragments ( b β†Ό x ) a β†Ό fragments ( b ⇀ x ) (a\,b)\leftharpoonup x=a\,(b\leftharpoonup x)+a\leftharpoonup(b\rightharpoonup x) ( italic_a italic_b ) β†Ό italic_x = italic_a ( italic_b β†Ό italic_x ) + italic_a β†Ό ( italic_b ⇀ italic_x ) ;

  3. (MP3)

    x β–· ( a ⁒ b ) = ( x β–· a ) ⁒ b + ( x ◁ a ) β–· b β–· π‘₯ π‘Ž 𝑏 β–· β–· π‘₯ π‘Ž 𝑏 ◁ π‘₯ π‘Ž 𝑏 x\triangleright(a\,b)=(x\triangleright a)\,b+(x\triangleleft a)\triangleright b italic_x β–· ( italic_a italic_b ) = ( italic_x β–· italic_a ) italic_b + ( italic_x ◁ italic_a ) β–· italic_b ;

  4. (MP4)

    ( x ⁒ y ) ◁ a = x ◁ ( y β–· a ) + x ⁒ ( y ◁ a ) ◁ π‘₯ 𝑦 π‘Ž ◁ π‘₯ β–· 𝑦 π‘Ž π‘₯ ◁ 𝑦 π‘Ž (x\,y)\triangleleft a=x\triangleleft(y\triangleright a)+x\,(y\triangleleft a) ( italic_x italic_y ) ◁ italic_a = italic_x ◁ ( italic_y β–· italic_a ) + italic_x ( italic_y ◁ italic_a ) ;

  5. (MP5)

    a ( x β–· b ) + a β†Ό ( x ◁ b ) = ( a β†Ό x ) b + ( a ⇀ x ) β–· b fragments a fragments ( x β–· b ) a β†Ό fragments ( x ◁ b ) fragments ( a β†Ό x ) b fragments ( a ⇀ x ) β–· b a\,(x\triangleright b)+a\leftharpoonup(x\triangleleft b)=(a\leftharpoonup x)\,% b+(a\rightharpoonup x)\triangleright b italic_a ( italic_x β–· italic_b ) + italic_a β†Ό ( italic_x ◁ italic_b ) = ( italic_a β†Ό italic_x ) italic_b + ( italic_a ⇀ italic_x ) β–· italic_b ;

  6. (MP6)

    x ◁ ( a β†Ό y ) + x ( a ⇀ y ) = ( x β–· a ) ⇀ y + ( x ◁ a ) y fragments x ◁ fragments ( a β†Ό y ) x fragments ( a ⇀ y ) fragments ( x β–· a ) ⇀ y fragments ( x ◁ a ) y x\triangleleft(a\leftharpoonup y)+x\,(a\rightharpoonup y)=(x\triangleright a)% \rightharpoonup y+(x\triangleleft a)\,y italic_x ◁ ( italic_a β†Ό italic_y ) + italic_x ( italic_a ⇀ italic_y ) = ( italic_x β–· italic_a ) ⇀ italic_y + ( italic_x ◁ italic_a ) italic_y ;