Definition

A Courant algebroid consists of the following: a vector bundle V β†’ X β†’ 𝑉 𝑋 V\to X italic_V β†’ italic_X over a smooth manifold, X 𝑋 X italic_X , a bilinear operator [ , ] : Ξ“ ( V ) βŠ— Ξ“ ( V ) β†’ Ξ“ ( V ) fragments fragments [ , ] : Ξ“ fragments ( V ) tensor-product Ξ“ fragments ( V ) β†’ Ξ“ fragments ( V ) [,]:\Gamma(V)\otimes\Gamma(V)\to\Gamma(V) [ , ] : roman_Ξ“ ( italic_V ) βŠ— roman_Ξ“ ( italic_V ) β†’ roman_Ξ“ ( italic_V ) on the space of sections of V 𝑉 V italic_V , a non-degenerate bilinear form, ⟨ , ⟩ fragments ⟨ , ⟩ \langle,\rangle ⟨ , ⟩ on V 𝑉 V italic_V and an anchor map ρ : V β†’ T ⁒ X : 𝜌 β†’ 𝑉 𝑇 𝑋 \rho:V\to TX italic_ρ : italic_V β†’ italic_T italic_X . The data ( V , ρ , [ , ] , ⟨ , ⟩ ) fragments ( V , ρ , fragments [ , ] , fragments ⟨ , ⟩ ) (V,\rho,[,],\langle,\rangle) ( italic_V , italic_ρ , [ , ] , ⟨ , ⟩ ) is called a β€œCourant algebroid” if the conditions below hold for all a , b , c ∈ Ξ“ ⁒ ( V ) π‘Ž 𝑏 𝑐 Ξ“ 𝑉 a,b,c\in\Gamma(V) italic_a , italic_b , italic_c ∈ roman_Ξ“ ( italic_V ) . A Courant algebroid is called β€œregular” if the anchor map is of constant rank. The bracket [ , ] fragments [ , ] [,] [ , ] can be either symmetric or skew-symmetric. 9 9 9 Referred to in the literature as the β€œDorfman” or β€œCourant” bracket respectively, though both can arise as Courant brackets above.

β–  β–  {}_{\blacksquare} start_FLOATSUBSCRIPT β–  end_FLOATSUBSCRIPT


Definition 1 .

A 𝔀 𝔀 \mathfrak{g} fraktur_g -quasi-Poisson manifold is a manifold M 𝑀 M italic_M with an action ρ 𝜌 \rho italic_ρ of 𝔀 𝔀 \mathfrak{g} fraktur_g and with a 𝔀 𝔀 \mathfrak{g} fraktur_g -invariant bivector field Ο€ πœ‹ \pi italic_Ο€ , satisfying

[ Ο€ , Ο€ ] / 2 = ρ βŠ— 3 ⁒ ( Ο• ) . πœ‹ πœ‹ 2 superscript 𝜌 tensor-product absent 3 italic-Ο• [\pi,\pi]/2=\rho^{\otimes 3}(\phi). [ italic_Ο€ , italic_Ο€ ] / 2 = italic_ρ start_POSTSUPERSCRIPT βŠ— 3 end_POSTSUPERSCRIPT ( italic_Ο• ) .

A map F : M β†’ M β€² normal-: 𝐹 normal-β†’ 𝑀 superscript 𝑀 normal-β€² F:M\to M^{\prime} italic_F : italic_M β†’ italic_M start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT between two 𝔀 𝔀 \mathfrak{g} fraktur_g -quasi-Poisson manifolds is quasi-Poisson if it is 𝔀 𝔀 \mathfrak{g} fraktur_g -equivariant and if F * ⁒ Ο€ M = Ο€ M β€² subscript 𝐹 subscript πœ‹ 𝑀 subscript πœ‹ superscript 𝑀 normal-β€² F_{*}\pi_{M}=\pi_{M^{\prime}} italic_F start_POSTSUBSCRIPT * end_POSTSUBSCRIPT italic_Ο€ start_POSTSUBSCRIPT italic_M end_POSTSUBSCRIPT = italic_Ο€ start_POSTSUBSCRIPT italic_M start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT end_POSTSUBSCRIPT .


Definition 2.4.3 .

Let R 𝑅 R italic_R be a commutative ring with identity, and let R * superscript 𝑅 R^{*} italic_R start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT be its multiplicative group of invertible elements. The second Dennis-Stein K 𝐾 K italic_K -group D 2 ⁒ ( R ) subscript 𝐷 2 𝑅 D_{2}(R) italic_D start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( italic_R ) of R 𝑅 R italic_R is the multiplicative abelian group whose generators are symbols ⟨ a , b ⟩ π‘Ž 𝑏 \langle a,b\rangle ⟨ italic_a , italic_b ⟩ for each pair of elements a π‘Ž a italic_a and b 𝑏 b italic_b in R 𝑅 R italic_R such that 1 + a ⁒ b ∈ R * 1 π‘Ž 𝑏 superscript 𝑅 1+ab\in R^{*} 1 + italic_a italic_b ∈ italic_R start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT , subject to the additional relations

  1. 1.

    ⟨ a , b ⟩ ⁒ ⟨ - b , - a ⟩ = 1 . π‘Ž 𝑏 𝑏 π‘Ž 1 \langle a,b\rangle\langle-b,-a\rangle=1. ⟨ italic_a , italic_b ⟩ ⟨ - italic_b , - italic_a ⟩ = 1 .

  2. 2.

    ⟨ a , b ⟩ ⁒ ⟨ a , c ⟩ = ⟨ a , b + c + a ⁒ b ⁒ c ⟩ . π‘Ž 𝑏 π‘Ž 𝑐 π‘Ž 𝑏 𝑐 π‘Ž 𝑏 𝑐 \langle a,b\rangle\langle a,c\rangle=\langle a,b+c+abc\rangle. ⟨ italic_a , italic_b ⟩ ⟨ italic_a , italic_c ⟩ = ⟨ italic_a , italic_b + italic_c + italic_a italic_b italic_c ⟩ .

  3. 3.

    ⟨ a , b ⁒ c ⟩ = ⟨ a ⁒ b , c ⟩ ⁒ ⟨ a ⁒ c , b ⟩ . π‘Ž 𝑏 𝑐 π‘Ž 𝑏 𝑐 π‘Ž 𝑐 𝑏 \langle a,bc\rangle=\langle ab,c\rangle\langle ac,b\rangle. ⟨ italic_a , italic_b italic_c ⟩ = ⟨ italic_a italic_b , italic_c ⟩ ⟨ italic_a italic_c , italic_b ⟩ .


Definition 1.1 .

The tetrad and anti-tetrad are respectively these quadrilinear operations on associative algebras:

{ a , b , c , d } = a ⁒ b ⁒ c ⁒ d + d ⁒ c ⁒ b ⁒ a , [ a , b , c , d ] = a ⁒ b ⁒ c ⁒ d - d ⁒ c ⁒ b ⁒ a . formulae-sequence π‘Ž 𝑏 𝑐 𝑑 π‘Ž 𝑏 𝑐 𝑑 𝑑 𝑐 𝑏 π‘Ž π‘Ž 𝑏 𝑐 𝑑 π‘Ž 𝑏 𝑐 𝑑 𝑑 𝑐 𝑏 π‘Ž \{a,b,c,d\}=abcd+dcba,\qquad[a,b,c,d]=abcd-dcba. { italic_a , italic_b , italic_c , italic_d } = italic_a italic_b italic_c italic_d + italic_d italic_c italic_b italic_a , [ italic_a , italic_b , italic_c , italic_d ] = italic_a italic_b italic_c italic_d - italic_d italic_c italic_b italic_a .

Definition 3 .

Let 𝒒 𝒒 \mathcal{G} caligraphic_G be a LCH groupoid. A (continuous) map Ο‰ : 𝒒 ( 2 ) β†’ 𝕋 : πœ” β†’ superscript 𝒒 2 𝕋 \omega:\mathcal{G}^{(2)}\to\mathbb{T} italic_Ο‰ : caligraphic_G start_POSTSUPERSCRIPT ( 2 ) end_POSTSUPERSCRIPT β†’ blackboard_T is called a (continuous) 2-cocycle if

Ο‰ ⁒ ( x , y ) ⁒ Ο‰ ⁒ ( x ⁒ y , z ) = Ο‰ ⁒ ( x , y ⁒ z ) ⁒ Ο‰ ⁒ ( y , z ) πœ” π‘₯ 𝑦 πœ” π‘₯ 𝑦 𝑧 πœ” π‘₯ 𝑦 𝑧 πœ” 𝑦 𝑧 \omega(x,y)\omega(xy,z)=\omega(x,yz)\omega(y,z) italic_Ο‰ ( italic_x , italic_y ) italic_Ο‰ ( italic_x italic_y , italic_z ) = italic_Ο‰ ( italic_x , italic_y italic_z ) italic_Ο‰ ( italic_y , italic_z ) (2)

whenever ( x , y ) , ( y , z ) ∈ 𝒒 ( 2 ) π‘₯ 𝑦 𝑦 𝑧 superscript 𝒒 2 (x,y),(y,z)\in\mathcal{G}^{(2)} ( italic_x , italic_y ) , ( italic_y , italic_z ) ∈ caligraphic_G start_POSTSUPERSCRIPT ( 2 ) end_POSTSUPERSCRIPT , and if

Ο‰ ⁒ ( x , s ⁒ ( x ) ) = 1 = Ο‰ ⁒ ( r ⁒ ( x ) , x ) πœ” π‘₯ 𝑠 π‘₯ 1 πœ” π‘Ÿ π‘₯ π‘₯ \omega(x,s(x))=1=\omega(r(x),x) italic_Ο‰ ( italic_x , italic_s ( italic_x ) ) = 1 = italic_Ο‰ ( italic_r ( italic_x ) , italic_x ) (3)

for any x ∈ 𝒒 π‘₯ 𝒒 x\in\mathcal{G} italic_x ∈ caligraphic_G .


Definition 10 (Weak system) .

A Weak system consists of parameters N , s , Ξ· , ΞΆ 𝑁 𝑠 πœ‚ 𝜁 N,s,\eta,\zeta italic_N , italic_s , italic_Ξ· , italic_ΞΆ , an m π‘š m italic_m -by- N 𝑁 N italic_N measurement matrix 𝚽 𝚽 \bm{\Phi} bold_Ξ¦ , and a decoding algorithm π’Ÿ π’Ÿ \mathcal{D} caligraphic_D , that satisfy the following property:

For any 𝐱 ∈ ℝ N 𝐱 superscript ℝ 𝑁 {\mathbf{x}}\in\mathbb{R}^{N} bold_x ∈ blackboard_R start_POSTSUPERSCRIPT italic_N end_POSTSUPERSCRIPT that can be written as 𝐱 = 𝐲 + 𝐳 𝐱 𝐲 𝐳 {\mathbf{x}}=\mathbf{y}+\mathbf{z} bold_x = bold_y + bold_z , where | supp ⁑ ( 𝐲 ) | ≀ s supp 𝐲 𝑠 |\operatorname{supp}(\mathbf{y})|\leq s | roman_supp ( bold_y ) | ≀ italic_s and βˆ₯ 𝐳 βˆ₯ 1 ≀ 3 / 2 subscript norm 𝐳 1 3 2 \left\|\mathbf{z}\right\|_{1}\leq 3/2 βˆ₯ bold_z βˆ₯ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ≀ 3 / 2 , given the measurements 𝚽 ⁒ 𝐱 𝚽 𝐱 \bm{\Phi}{\mathbf{x}} bold_Ξ¦ bold_x and a subset I βŠ† [ N ] 𝐼 delimited-[] 𝑁 I\subseteq[N] italic_I βŠ† [ italic_N ] such that | I ∩ supp ⁑ ( 𝐲 ) | β‰₯ ( 1 - ΞΆ / 2 ) ⁒ | supp ⁑ ( 𝐲 ) | 𝐼 supp 𝐲 1 𝜁 2 supp 𝐲 |I\cap\operatorname{supp}(\mathbf{y})|\geq(1-\zeta/2)|\operatorname{supp}(% \mathbf{y})| | italic_I ∩ roman_supp ( bold_y ) | β‰₯ ( 1 - italic_ΞΆ / 2 ) | roman_supp ( bold_y ) | , the decoding algorithm π’Ÿ π’Ÿ \mathcal{D} caligraphic_D returns 𝐱 ^ ^ 𝐱 \widehat{\mathbf{x}} ^ start_ARG bold_x end_ARG , such that 𝐱 𝐱 {\mathbf{x}} bold_x admits the following decomposition:

𝐱 = 𝐱 ^ + 𝐲 ^ + 𝐳 ^ , 𝐱 ^ 𝐱 ^ 𝐲 ^ 𝐳 {\mathbf{x}}=\widehat{\mathbf{x}}+\widehat{\mathbf{y}}+\widehat{\mathbf{z}}, bold_x = ^ start_ARG bold_x end_ARG + ^ start_ARG bold_y end_ARG + ^ start_ARG bold_z end_ARG ,

where | supp ⁑ ( 𝐱 ^ ) | = O ⁒ ( s ) supp ^ 𝐱 𝑂 𝑠 |\operatorname{supp}(\widehat{{\mathbf{x}}})|=O(s) | roman_supp ( ^ start_ARG bold_x end_ARG ) | = italic_O ( italic_s ) , | supp ⁑ ( 𝐲 ^ ) | ≀ ΞΆ ⁒ s supp ^ 𝐲 𝜁 𝑠 |\operatorname{supp}(\widehat{\mathbf{y}})|\leq\zeta s | roman_supp ( ^ start_ARG bold_y end_ARG ) | ≀ italic_ΞΆ italic_s , and βˆ₯ 𝐳 ^ βˆ₯ 1 ≀ βˆ₯ 𝐳 βˆ₯ 1 + Ξ· subscript norm ^ 𝐳 1 subscript norm 𝐳 1 πœ‚ \left\|\widehat{\mathbf{z}}\right\|_{1}\leq\left\|\mathbf{z}\right\|_{1}+\eta βˆ₯ ^ start_ARG bold_z end_ARG βˆ₯ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ≀ βˆ₯ bold_z βˆ₯ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT + italic_Ξ· . Intuitively, 𝐲 ^ ^ 𝐲 \mathbf{\widehat{y}} ^ start_ARG bold_y end_ARG and 𝐳 ^ ^ 𝐳 \mathbf{\widehat{z}} ^ start_ARG bold_z end_ARG will be the head and the tail of the residual 𝐱 - 𝐱 ^ 𝐱 ^ 𝐱 {\mathbf{x}}-\widehat{{\mathbf{x}}} bold_x - ^ start_ARG bold_x end_ARG , respectively.


Definition A.1

Given π›š ∈ ∧ n V , π›š β‰  𝟎 , formulae-sequence π›š superscript 𝑛 𝑉 π›š 0 \boldsymbol{\omega}\in\wedge^{n}V,\boldsymbol{\omega}\not=\mathbf{0}, bold_italic_Ο‰ ∈ ∧ start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT italic_V , bold_italic_Ο‰ β‰  bold_0 , there exists a unique linear map βˆ— : ∧ k V β†’ ∧ n - k V fragments normal-βˆ— normal-: superscript π‘˜ V normal-β†’ superscript 𝑛 π‘˜ V \ast:\wedge^{k}V\to\wedge^{n-k}V βˆ— : ∧ start_POSTSUPERSCRIPT italic_k end_POSTSUPERSCRIPT italic_V β†’ ∧ start_POSTSUPERSCRIPT italic_n - italic_k end_POSTSUPERSCRIPT italic_V that verifies the condition

𝐱 ∧ βˆ— 𝐲 = ⟨ 𝐱 , 𝐲 ⟩ 𝝎 fragments x βˆ— y fragments ⟨ x , y ⟩ Ο‰ \mathbf{x}\wedge\ast\mathbf{y}=\langle\mathbf{x},\mathbf{y}\rangle\boldsymbol{\omega} bold_x ∧ βˆ— bold_y = ⟨ bold_x , bold_y ⟩ bold_italic_Ο‰

for every 𝐱 , 𝐲 ∈ ∧ k V . 𝐱 𝐲 superscript π‘˜ 𝑉 \mathbf{x},\mathbf{y}\in\wedge^{k}V. bold_x , bold_y ∈ ∧ start_POSTSUPERSCRIPT italic_k end_POSTSUPERSCRIPT italic_V .


Definition 4.8 (New generic discounting rule ⊠ normal-⊠ \boxtimes ⊠ )

Let x , y ∈ Ξ© π‘₯ 𝑦 normal-Ξ© x,y\in\Omega italic_x , italic_y ∈ roman_Ξ© . Let g : Ξ© β†’ [ 0 , 1 ] normal-: 𝑔 normal-β†’ normal-Ξ© 0 1 g:\Omega\to[0,1] italic_g : roman_Ξ© β†’ [ 0 , 1 ] be a function. We define the operation ⊠ normal-⊠ \boxtimes ⊠ as

x ⊠ y = def g ⁒ ( x ) β‹… y superscript def ⊠ π‘₯ 𝑦 β‹… 𝑔 π‘₯ 𝑦 x\boxtimes y\stackrel{{\scriptstyle\rm def}}{{=}}g(x)\cdot y italic_x ⊠ italic_y start_RELOP SUPERSCRIPTOP start_ARG = end_ARG start_ARG roman_def end_ARG end_RELOP italic_g ( italic_x ) β‹… italic_y (14)

with the β‹… normal-β‹… \cdot β‹… operation as specified in Def. 4.4 .


Definition .

Assume that Ξ© βŠ‚ ℝ n Ξ© superscript ℝ 𝑛 \Omega\subset\mathbb{R}^{n} roman_Ξ© βŠ‚ blackboard_R start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT and u ∈ C 2 ⁒ ( Ξ© ; ℝ m ) ∩ L ∞ ⁒ ( Ξ© ; ℝ m ) 𝑒 superscript 𝐢 2 Ξ© superscript ℝ π‘š superscript 𝐿 Ξ© superscript ℝ π‘š u\in C^{2}(\Omega;\mathbb{R}^{m})\cap L^{\infty}(\Omega;\mathbb{R}^{m}) italic_u ∈ italic_C start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( roman_Ξ© ; blackboard_R start_POSTSUPERSCRIPT italic_m end_POSTSUPERSCRIPT ) ∩ italic_L start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT ( roman_Ξ© ; blackboard_R start_POSTSUPERSCRIPT italic_m end_POSTSUPERSCRIPT ) , are symmetric

(1.5) x ∈ Ξ© β‡’ g ⁒ x ∈ Ξ© , for ⁒ g ∈ G , u ⁒ ( g ⁒ x ) = g ⁒ u ⁒ ( x ) , for ⁒ g ∈ G , x ∈ Ξ© . formulae-sequence π‘₯ Ξ© β‡’ 𝑔 π‘₯ Ξ© formulae-sequence for 𝑔 𝐺 formulae-sequence 𝑒 𝑔 π‘₯ 𝑔 𝑒 π‘₯ formulae-sequence for 𝑔 𝐺 π‘₯ Ξ© \begin{split}&\displaystyle x\in\Omega\Rightarrow\;gx\in\Omega,\;\text{ for }% \;g\in G,\\ &\displaystyle u(gx)=gu(x),\;\text{ for }\;g\in G,\;x\in\Omega.\end{split} start_ROW start_CELL end_CELL start_CELL italic_x ∈ roman_Ξ© β‡’ italic_g italic_x ∈ roman_Ξ© , for italic_g ∈ italic_G , end_CELL end_ROW start_ROW start_CELL end_CELL start_CELL italic_u ( italic_g italic_x ) = italic_g italic_u ( italic_x ) , for italic_g ∈ italic_G , italic_x ∈ roman_Ξ© . end_CELL end_ROW

Then u 𝑒 u italic_u is said to be a symmetric minimizer if for each bounded open symmetric lipschitz set Ξ© β€² βŠ‚ Ξ© superscript Ξ© β€² Ξ© \Omega^{\prime}\subset\Omega roman_Ξ© start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT βŠ‚ roman_Ξ© and for each symmetric v ∈ W 0 1 , 2 ⁒ ( Ξ© β€² ; ℝ m ) 𝑣 superscript subscript π‘Š 0 1 2 superscript Ξ© β€² superscript ℝ π‘š v\in W_{0}^{1,2}(\Omega^{\prime};\mathbb{R}^{m}) italic_v ∈ italic_W start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 , 2 end_POSTSUPERSCRIPT ( roman_Ξ© start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ; blackboard_R start_POSTSUPERSCRIPT italic_m end_POSTSUPERSCRIPT ) it results

(1.6) J Ξ© β€² ⁒ ( u ) ≀ J Ξ© β€² ⁒ ( u + v ) . subscript 𝐽 superscript Ξ© β€² 𝑒 subscript 𝐽 superscript Ξ© β€² 𝑒 𝑣 \displaystyle J_{\Omega^{\prime}}(u)\leq J_{\Omega^{\prime}}(u+v). italic_J start_POSTSUBSCRIPT roman_Ξ© start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT end_POSTSUBSCRIPT ( italic_u ) ≀ italic_J start_POSTSUBSCRIPT roman_Ξ© start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT end_POSTSUBSCRIPT ( italic_u + italic_v ) .

Definition 2.1 .

A Poisson algebra is a commutative algebra A 𝐴 A italic_A equipped with a Lie bracket { β‹… , β‹… } β‹… β‹… \{\cdot,\cdot\} { β‹… , β‹… } such that

{ a , b ⁒ c } = { a , b } ⁒ c + b ⁒ { a , c } , π‘Ž 𝑏 𝑐 π‘Ž 𝑏 𝑐 𝑏 π‘Ž 𝑐 \{a,bc\}=\{a,b\}c+b\{a,c\}, { italic_a , italic_b italic_c } = { italic_a , italic_b } italic_c + italic_b { italic_a , italic_c } ,

for any a , b , c ∈ A π‘Ž 𝑏 𝑐 𝐴 a,b,c\in A italic_a , italic_b , italic_c ∈ italic_A .

Definition 5.3 .

Let R 𝑅 R italic_R be a commutative ring with identity, A 𝐴 A italic_A a commutative R 𝑅 R italic_R -algebra and L 𝐿 L italic_L a Lie algebra over R 𝑅 R italic_R . The pair ( A , L ) 𝐴 𝐿 (A,L) ( italic_A , italic_L ) is called a Lie-Rinehart algebra over A 𝐴 A italic_A if L 𝐿 L italic_L is a left A 𝐴 A italic_A -module and there is an anchor map ρ : L β†’ Der R ⁑ ( A ) : 𝜌 β†’ 𝐿 subscript Der 𝑅 𝐴 \rho:L\rightarrow\operatorname{Der}_{R}(A) italic_ρ : italic_L β†’ roman_Der start_POSTSUBSCRIPT italic_R end_POSTSUBSCRIPT ( italic_A ) , which is an A 𝐴 A italic_A -module and a Lie algebra morphism, such that the following relation is satisfied,

(5.6) [ ΞΎ , a β‹… ΞΆ ] = a β‹… [ ΞΎ , ΞΆ ] + ρ ⁒ ( ΞΎ ) ⁒ ( a ) β‹… ΞΆ , πœ‰ β‹… π‘Ž 𝜁 β‹… π‘Ž πœ‰ 𝜁 β‹… 𝜌 πœ‰ π‘Ž 𝜁 [\xi,a\cdot\zeta]=a\cdot[\xi,\zeta]+\rho(\xi)(a)\cdot\zeta, [ italic_ΞΎ , italic_a β‹… italic_ΞΆ ] = italic_a β‹… [ italic_ΞΎ , italic_ΞΆ ] + italic_ρ ( italic_ΞΎ ) ( italic_a ) β‹… italic_ΞΆ ,

for any a ∈ A π‘Ž 𝐴 a\in A italic_a ∈ italic_A and ΞΎ , ΞΆ ∈ L πœ‰ 𝜁 𝐿 \xi,\zeta\in L italic_ΞΎ , italic_ΞΆ ∈ italic_L .

Definition 6.11 .

A Lie coalgebra L 𝐿 L italic_L is a vector space with a k π‘˜ k italic_k -linear map Ξ΄ : L β†’ Asym ⁑ ( L βŠ— L ) : 𝛿 β†’ 𝐿 Asym tensor-product 𝐿 𝐿 \delta:L\rightarrow\operatorname{Asym}(L\otimes L) italic_Ξ΄ : italic_L β†’ roman_Asym ( italic_L βŠ— italic_L ) such that

(6.4) ( 1 + ΞΎ + ΞΎ 2 ) ∘ ( 1 βŠ— Ξ΄ ) ∘ Ξ΄ = 0 , 1 πœ‰ superscript πœ‰ 2 tensor-product 1 𝛿 𝛿 0 (1+\xi+\xi^{2})\circ(1\otimes\delta)\circ\delta=0, ( 1 + italic_ΞΎ + italic_ΞΎ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) ∘ ( 1 βŠ— italic_Ξ΄ ) ∘ italic_Ξ΄ = 0 ,

where ΞΎ : L βŠ— 3 β†’ L βŠ— 3 : πœ‰ β†’ superscript 𝐿 tensor-product absent 3 superscript 𝐿 tensor-product absent 3 \xi:L^{\otimes 3}\rightarrow L^{\otimes 3} italic_ΞΎ : italic_L start_POSTSUPERSCRIPT βŠ— 3 end_POSTSUPERSCRIPT β†’ italic_L start_POSTSUPERSCRIPT βŠ— 3 end_POSTSUPERSCRIPT is the k π‘˜ k italic_k -linear map induced by the cyclic permutation x βŠ— y βŠ— z ↦ y βŠ— z βŠ— x maps-to tensor-product π‘₯ 𝑦 𝑧 tensor-product 𝑦 𝑧 π‘₯ x\otimes y\otimes z\mapsto y\otimes z\otimes x italic_x βŠ— italic_y βŠ— italic_z ↦ italic_y βŠ— italic_z βŠ— italic_x .

Definition 6.12 .

A Lie bialgebra L 𝐿 L italic_L is a Lie algebra with a Lie coalgebra structure given by a cobracket Ξ΄ 𝛿 \delta italic_Ξ΄ such that

(6.5) Ξ΄ ⁒ ( [ a , b ] ) = a β‹… Ξ΄ ⁒ ( b ) - b β‹… Ξ΄ ⁒ ( a ) , 𝛿 π‘Ž 𝑏 β‹… π‘Ž 𝛿 𝑏 β‹… 𝑏 𝛿 π‘Ž \delta([a,b])=a\cdot\delta(b)-b\cdot\delta(a), italic_Ξ΄ ( [ italic_a , italic_b ] ) = italic_a β‹… italic_Ξ΄ ( italic_b ) - italic_b β‹… italic_Ξ΄ ( italic_a ) ,

where

a β‹… ( b βŠ— c ) = [ a , b ] βŠ— c + b βŠ— [ a , c ] . β‹… π‘Ž tensor-product 𝑏 𝑐 tensor-product π‘Ž 𝑏 𝑐 tensor-product 𝑏 π‘Ž 𝑐 a\cdot(b\otimes c)=[a,b]\otimes c+b\otimes[a,c]. italic_a β‹… ( italic_b βŠ— italic_c ) = [ italic_a , italic_b ] βŠ— italic_c + italic_b βŠ— [ italic_a , italic_c ] .

Definition 4.1 .

The parametrized inner-segment length function Ο‡ : ℝ β†’ [ 0 , ∞ ) normal-: πœ’ normal-β†’ ℝ 0 \chi:\bm{\mathbbm{R}}\rightarrow[0,\infty) italic_Ο‡ : blackboard_bold_R β†’ [ 0 , ∞ ) is defined by

Ο‡ ⁒ ( t ) ⁒ = 𝒅𝒆𝒇 ⁒ d ⁒ ( cos ⁑ t , sin ⁑ t ) . πœ’ 𝑑 𝒅𝒆𝒇 𝑑 𝑑 𝑑 \chi(t)\overset{\textbf{def}}{=}d(\cos t,\sin t). italic_Ο‡ ( italic_t ) def start_ARG = end_ARG italic_d ( roman_cos italic_t , roman_sin italic_t ) .

Definition 4.0 .

A reductive decomposition [ 18 ] is a decomposition

𝔀 = π”₯ βŠ• π”ͺ 𝔀 direct-sum π”₯ π”ͺ \displaystyle\mathfrak{g}=\mathfrak{h}\oplus\mathfrak{m} fraktur_g = fraktur_h βŠ• fraktur_m (69)

such that

H β‹… π”ͺ βŠ‚ π”ͺ . β‹… 𝐻 π”ͺ π”ͺ \displaystyle H\cdot\mathfrak{m}\subset\mathfrak{m}. italic_H β‹… fraktur_m βŠ‚ fraktur_m . (70)

Definition 1.5

(i) A Hom-associative algebra is a triple ( A , ΞΌ , Ξ± ) 𝐴 πœ‡ 𝛼 (A,\mu,\alpha) ( italic_A , italic_ΞΌ , italic_Ξ± ) , in which A 𝐴 A italic_A is a linear space, Ξ± : A β†’ A normal-: 𝛼 normal-β†’ 𝐴 𝐴 \alpha:A\rightarrow A italic_Ξ± : italic_A β†’ italic_A and ΞΌ : A βŠ— A β†’ A normal-: πœ‡ normal-β†’ tensor-product 𝐴 𝐴 𝐴 \mu:A\otimes A\rightarrow A italic_ΞΌ : italic_A βŠ— italic_A β†’ italic_A are linear maps, with notation ΞΌ ⁒ ( a βŠ— a β€² ) = a ⁒ a β€² πœ‡ tensor-product π‘Ž superscript π‘Ž normal-β€² π‘Ž superscript π‘Ž normal-β€² \mu(a\otimes a^{\prime})=aa^{\prime} italic_ΞΌ ( italic_a βŠ— italic_a start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ) = italic_a italic_a start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT , satisfying the following conditions, for all a , a β€² , a β€²β€² ∈ A π‘Ž superscript π‘Ž normal-β€² superscript π‘Ž normal-β€²β€² 𝐴 a,a^{\prime},a^{\prime\prime}\in A italic_a , italic_a start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT , italic_a start_POSTSUPERSCRIPT β€² β€² end_POSTSUPERSCRIPT ∈ italic_A :

Ξ± ⁒ ( a ⁒ a β€² ) = Ξ± ⁒ ( a ) ⁒ Ξ± ⁒ ( a β€² ) , ( m ⁒ u ⁒ l ⁒ t ⁒ i ⁒ p ⁒ l ⁒ i ⁒ c ⁒ a ⁒ t ⁒ i ⁒ v ⁒ i ⁒ t ⁒ y ) 𝛼 π‘Ž superscript π‘Ž β€² 𝛼 π‘Ž 𝛼 superscript π‘Ž β€² π‘š 𝑒 𝑙 𝑑 𝑖 𝑝 𝑙 𝑖 𝑐 π‘Ž 𝑑 𝑖 𝑣 𝑖 𝑑 𝑦 \displaystyle\alpha(aa^{\prime})=\alpha(a)\alpha(a^{\prime}),\;\;\;\;\;(multiplicativity) italic_Ξ± ( italic_a italic_a start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ) = italic_Ξ± ( italic_a ) italic_Ξ± ( italic_a start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ) , ( italic_m italic_u italic_l italic_t italic_i italic_p italic_l italic_i italic_c italic_a italic_t italic_i italic_v italic_i italic_t italic_y )
Ξ± ( a ) ( a β€² a β€²β€² ) = ( a a β€² ) Ξ± ( a β€²β€² ) . ( H o m - a s s o c i a t i v i t y ) fragments Ξ± fragments ( a ) fragments ( superscript π‘Ž β€² superscript π‘Ž β€²β€² ) fragments ( a superscript π‘Ž β€² ) Ξ± fragments ( superscript π‘Ž β€²β€² ) . italic- fragments ( H o m a s s o c i a t i v i t y ) \displaystyle\alpha(a)(a^{\prime}a^{\prime\prime})=(aa^{\prime})\alpha(a^{% \prime\prime}).\;\;\;\;\;(Hom-associativity) italic_Ξ± ( italic_a ) ( italic_a start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT italic_a start_POSTSUPERSCRIPT β€² β€² end_POSTSUPERSCRIPT ) = ( italic_a italic_a start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ) italic_Ξ± ( italic_a start_POSTSUPERSCRIPT β€² β€² end_POSTSUPERSCRIPT ) . ( italic_H italic_o italic_m - italic_a italic_s italic_s italic_o italic_c italic_i italic_a italic_t italic_i italic_v italic_i italic_t italic_y )

We call Ξ± 𝛼 \alpha italic_Ξ± the structure map of A 𝐴 A italic_A .

A morphism f : ( A , ΞΌ A , Ξ± A ) β†’ ( B , ΞΌ B , Ξ± B ) normal-: 𝑓 normal-β†’ 𝐴 subscript πœ‡ 𝐴 subscript 𝛼 𝐴 𝐡 subscript πœ‡ 𝐡 subscript 𝛼 𝐡 f:(A,\mu_{A},\alpha_{A})\rightarrow(B,\mu_{B},\alpha_{B}) italic_f : ( italic_A , italic_ΞΌ start_POSTSUBSCRIPT italic_A end_POSTSUBSCRIPT , italic_Ξ± start_POSTSUBSCRIPT italic_A end_POSTSUBSCRIPT ) β†’ ( italic_B , italic_ΞΌ start_POSTSUBSCRIPT italic_B end_POSTSUBSCRIPT , italic_Ξ± start_POSTSUBSCRIPT italic_B end_POSTSUBSCRIPT ) of Hom-associative algebras is a linear map f : A β†’ B normal-: 𝑓 normal-β†’ 𝐴 𝐡 f:A\rightarrow B italic_f : italic_A β†’ italic_B such that Ξ± B ∘ f = f ∘ Ξ± A subscript 𝛼 𝐡 𝑓 𝑓 subscript 𝛼 𝐴 \alpha_{B}\circ f=f\circ\alpha_{A} italic_Ξ± start_POSTSUBSCRIPT italic_B end_POSTSUBSCRIPT ∘ italic_f = italic_f ∘ italic_Ξ± start_POSTSUBSCRIPT italic_A end_POSTSUBSCRIPT and f ∘ ΞΌ A = ΞΌ B ∘ ( f βŠ— f ) 𝑓 subscript πœ‡ 𝐴 subscript πœ‡ 𝐡 tensor-product 𝑓 𝑓 f\circ\mu_{A}=\mu_{B}\circ(f\otimes f) italic_f ∘ italic_ΞΌ start_POSTSUBSCRIPT italic_A end_POSTSUBSCRIPT = italic_ΞΌ start_POSTSUBSCRIPT italic_B end_POSTSUBSCRIPT ∘ ( italic_f βŠ— italic_f ) .
(ii) A Hom-coassociative coalgebra is a triple ( C , Ξ” , Ξ± ) 𝐢 normal-Ξ” 𝛼 (C,\Delta,\alpha) ( italic_C , roman_Ξ” , italic_Ξ± ) , in which C 𝐢 C italic_C is a linear space, Ξ± : C β†’ C normal-: 𝛼 normal-β†’ 𝐢 𝐢 \alpha:C\rightarrow C italic_Ξ± : italic_C β†’ italic_C and Ξ” : C β†’ C βŠ— C normal-: normal-Ξ” normal-β†’ 𝐢 tensor-product 𝐢 𝐢 \Delta:C\rightarrow C\otimes C roman_Ξ” : italic_C β†’ italic_C βŠ— italic_C are linear maps, satisfying the following conditions:

( Ξ± βŠ— Ξ± ) ∘ Ξ” = Ξ” ∘ Ξ± , ( c ⁒ o ⁒ m ⁒ u ⁒ l ⁒ t ⁒ i ⁒ p ⁒ l ⁒ i ⁒ c ⁒ a ⁒ t ⁒ i ⁒ v ⁒ i ⁒ t ⁒ y ) tensor-product 𝛼 𝛼 Ξ” Ξ” 𝛼 𝑐 π‘œ π‘š 𝑒 𝑙 𝑑 𝑖 𝑝 𝑙 𝑖 𝑐 π‘Ž 𝑑 𝑖 𝑣 𝑖 𝑑 𝑦 \displaystyle(\alpha\otimes\alpha)\circ\Delta=\Delta\circ\alpha,\;\;\;\;\;(comultiplicativity) ( italic_Ξ± βŠ— italic_Ξ± ) ∘ roman_Ξ” = roman_Ξ” ∘ italic_Ξ± , ( italic_c italic_o italic_m italic_u italic_l italic_t italic_i italic_p italic_l italic_i italic_c italic_a italic_t italic_i italic_v italic_i italic_t italic_y )
( Ξ” βŠ— Ξ± ) ∘ Ξ” = ( Ξ± βŠ— Ξ” ) ∘ Ξ” . ( H o m - c o a s s o c i a t i v i t y ) fragments fragments ( Ξ” tensor-product Ξ± ) Ξ” fragments ( Ξ± tensor-product Ξ” ) Ξ” . italic- fragments ( H o m c o a s s o c i a t i v i t y ) \displaystyle(\Delta\otimes\alpha)\circ\Delta=(\alpha\otimes\Delta)\circ\Delta% .\;\;\;\;\;(Hom-coassociativity) ( roman_Ξ” βŠ— italic_Ξ± ) ∘ roman_Ξ” = ( italic_Ξ± βŠ— roman_Ξ” ) ∘ roman_Ξ” . ( italic_H italic_o italic_m - italic_c italic_o italic_a italic_s italic_s italic_o italic_c italic_i italic_a italic_t italic_i italic_v italic_i italic_t italic_y )

A morphism g : ( C , Ξ” C , Ξ± C ) β†’ ( D , Ξ” D , Ξ± D ) normal-: 𝑔 normal-β†’ 𝐢 subscript normal-Ξ” 𝐢 subscript 𝛼 𝐢 𝐷 subscript normal-Ξ” 𝐷 subscript 𝛼 𝐷 g:(C,\Delta_{C},\alpha_{C})\rightarrow(D,\Delta_{D},\alpha_{D}) italic_g : ( italic_C , roman_Ξ” start_POSTSUBSCRIPT italic_C end_POSTSUBSCRIPT , italic_Ξ± start_POSTSUBSCRIPT italic_C end_POSTSUBSCRIPT ) β†’ ( italic_D , roman_Ξ” start_POSTSUBSCRIPT italic_D end_POSTSUBSCRIPT , italic_Ξ± start_POSTSUBSCRIPT italic_D end_POSTSUBSCRIPT ) of Hom-coassociative coalgebras is a linear map g : C β†’ D normal-: 𝑔 normal-β†’ 𝐢 𝐷 g:C\rightarrow D italic_g : italic_C β†’ italic_D such that Ξ± D ∘ g = g ∘ Ξ± C subscript 𝛼 𝐷 𝑔 𝑔 subscript 𝛼 𝐢 \alpha_{D}\circ g=g\circ\alpha_{C} italic_Ξ± start_POSTSUBSCRIPT italic_D end_POSTSUBSCRIPT ∘ italic_g = italic_g ∘ italic_Ξ± start_POSTSUBSCRIPT italic_C end_POSTSUBSCRIPT and ( g βŠ— g ) ∘ Ξ” C = Ξ” D ∘ g tensor-product 𝑔 𝑔 subscript normal-Ξ” 𝐢 subscript normal-Ξ” 𝐷 𝑔 (g\otimes g)\circ\Delta_{C}=\Delta_{D}\circ g ( italic_g βŠ— italic_g ) ∘ roman_Ξ” start_POSTSUBSCRIPT italic_C end_POSTSUBSCRIPT = roman_Ξ” start_POSTSUBSCRIPT italic_D end_POSTSUBSCRIPT ∘ italic_g .


Definition 3.2 .

Let β„‹ β„‹ \mathcal{H} caligraphic_H be a measurable G 𝐺 G italic_G -Hilbert bundle with bundle map p : β„‹ β†’ G ( 0 ) : 𝑝 β†’ β„‹ superscript 𝐺 0 p:{\mathcal{H}}\rightarrow G^{(0)} italic_p : caligraphic_H β†’ italic_G start_POSTSUPERSCRIPT ( 0 ) end_POSTSUPERSCRIPT . We define its fixed-point bundle as

β„‹ G = { ΞΎ ∈ β„‹ : Ξ³ ⁒ p ⁒ ( ΞΎ ) = p ⁒ ( ΞΎ ) β‡’ L ⁒ ( Ξ³ ) ⁒ ΞΎ = ΞΎ } superscript β„‹ 𝐺 conditional-set πœ‰ β„‹ 𝛾 𝑝 πœ‰ 𝑝 πœ‰ β‡’ 𝐿 𝛾 πœ‰ πœ‰ {\mathcal{H}}^{G}=\{\xi\in{\mathcal{H}}:\gamma p(\xi)=p(\xi)\Rightarrow L(% \gamma)\xi=\xi\} caligraphic_H start_POSTSUPERSCRIPT italic_G end_POSTSUPERSCRIPT = { italic_ΞΎ ∈ caligraphic_H : italic_Ξ³ italic_p ( italic_ΞΎ ) = italic_p ( italic_ΞΎ ) β‡’ italic_L ( italic_Ξ³ ) italic_ΞΎ = italic_ΞΎ }

Definition 2.3

A Hom-Lie algebra is a triple ( V , [ β‹… , β‹… ] , Ξ± ) 𝑉 normal-β‹… normal-β‹… 𝛼 (V,[\cdot,\cdot],\alpha) ( italic_V , [ β‹… , β‹… ] , italic_Ξ± ) consisting of a vector space V 𝑉 V italic_V , bilinear map [ β‹… , β‹… ] : V Γ— V β†’ V normal-: normal-β‹… normal-β‹… normal-β†’ 𝑉 𝑉 𝑉 [\cdot,\cdot]:V\times V\rightarrow V [ β‹… , β‹… ] : italic_V Γ— italic_V β†’ italic_V and a linear map Ξ± : V β†’ V normal-: 𝛼 normal-β†’ 𝑉 𝑉 \alpha:V\rightarrow V italic_Ξ± : italic_V β†’ italic_V satisfying

[ x , y ] = - [ y , x ] , π‘₯ 𝑦 𝑦 π‘₯ \displaystyle[x,y]=-[y,x], [ italic_x , italic_y ] = - [ italic_y , italic_x ] ,
[ Ξ± ⁒ ( x ) , [ y , z ] ] + [ Ξ± ⁒ ( y ) , [ z , x ] ] + [ Ξ± ⁒ ( z ) , [ x , y ] ] = 0 , 𝛼 π‘₯ 𝑦 𝑧 𝛼 𝑦 𝑧 π‘₯ 𝛼 𝑧 π‘₯ 𝑦 0 \displaystyle[\alpha(x),[y,z]]+[\alpha(y),[z,x]]+[\alpha(z),[x,y]]=0, [ italic_Ξ± ( italic_x ) , [ italic_y , italic_z ] ] + [ italic_Ξ± ( italic_y ) , [ italic_z , italic_x ] ] + [ italic_Ξ± ( italic_z ) , [ italic_x , italic_y ] ] = 0 ,

for all x , y , z ∈ V . π‘₯ 𝑦 𝑧 𝑉 x,y,z\in V. italic_x , italic_y , italic_z ∈ italic_V .


Definition 5

Let Ξ³ n subscript 𝛾 𝑛 \gamma_{n} italic_Ξ³ start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT be a permutation of n 𝑛 n italic_n elements. We define the inversion permutation of Ξ³ n subscript 𝛾 𝑛 \gamma_{n} italic_Ξ³ start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT , denoted by Ξ³ n * subscript superscript 𝛾 𝑛 \gamma^{*}_{n} italic_Ξ³ start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT , as the permutation given by Ξ³ n * = ( Ξ³ * ⁒ ( 1 , n ) , … , Ξ³ * ⁒ ( n , n ) ) subscript superscript 𝛾 𝑛 superscript 𝛾 1 𝑛 … superscript 𝛾 𝑛 𝑛 \gamma^{*}_{n}=(\gamma^{*}(1,n),\ldots,\gamma^{*}(n,n)) italic_Ξ³ start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT = ( italic_Ξ³ start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT ( 1 , italic_n ) , … , italic_Ξ³ start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT ( italic_n , italic_n ) ) with

Ξ³ * ⁒ ( i , n ) = n + 1 - Ξ³ ⁒ ( i , n ) i = 1 , … , n formulae-sequence superscript 𝛾 𝑖 𝑛 𝑛 1 𝛾 𝑖 𝑛 𝑖 1 … 𝑛 \gamma^{*}(i,n)=n+1-\gamma(i,n)\qquad i=1,\ldots,n italic_Ξ³ start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT ( italic_i , italic_n ) = italic_n + 1 - italic_Ξ³ ( italic_i , italic_n ) italic_i = 1 , … , italic_n

Notice that if I n = ( I ⁒ ( 1 , n ) , … , I ⁒ ( n , n ) ) subscript 𝐼 𝑛 𝐼 1 𝑛 … 𝐼 𝑛 𝑛 I_{n}=(I(1,n),\ldots,I(n,n)) italic_I start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT = ( italic_I ( 1 , italic_n ) , … , italic_I ( italic_n , italic_n ) ) is the identity permutation then I n * ∘ I n * = I n subscript superscript 𝐼 𝑛 subscript superscript 𝐼 𝑛 subscript 𝐼 𝑛 I^{*}_{n}\circ I^{*}_{n}=I_{n} italic_I start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ∘ italic_I start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT = italic_I start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT .


Definition 3.12 .

A qualgebra ( Q , ⊲ , β‹„ ) 𝑄 subgroup-of β‹„ (Q,\lhd,\diamond) ( italic_Q , ⊲ , β‹„ ) is called associative if the operation β‹„ β‹„ \diamond β‹„ is such, i.e., if for all elements of Q 𝑄 Q italic_Q one has

( a β‹„ b ) β‹„ c = a β‹„ ( b β‹„ c ) . β‹„ β‹„ π‘Ž 𝑏 𝑐 β‹„ π‘Ž β‹„ 𝑏 𝑐 (a\diamond b)\diamond c=a\diamond(b\diamond c). ( italic_a β‹„ italic_b ) β‹„ italic_c = italic_a β‹„ ( italic_b β‹„ italic_c ) . (9)
Definition 6.17 .

For a squandle Q 𝑄 Q italic_Q , a ( β„€ β„€ \mathbb{Z} blackboard_Z -valued) squandle 2 2 2 2 -cocycle of Q 𝑄 Q italic_Q is a pair of maps Ο‡ : Q Γ— Q β†’ β„€ : πœ’ β†’ 𝑄 𝑄 β„€ \chi:Q\times Q\rightarrow\mathbb{Z} italic_Ο‡ : italic_Q Γ— italic_Q β†’ blackboard_Z , Ξ» : Q β†’ β„€ : πœ† β†’ 𝑄 β„€ \lambda:Q\rightarrow\mathbb{Z} italic_Ξ» : italic_Q β†’ blackboard_Z satisfying Axioms ( 3 )-( 4 ) together with two additional ones:

Ο‡ ⁒ ( a , b 2 ) = Ο‡ ⁒ ( a , b ) + Ο‡ ⁒ ( a ⊲ b , b ) , πœ’ π‘Ž superscript 𝑏 2 πœ’ π‘Ž 𝑏 πœ’ subgroup-of π‘Ž 𝑏 𝑏 \displaystyle\chi(a,b^{2})=\chi(a,b)+\chi(a\lhd b,b), italic_Ο‡ ( italic_a , italic_b start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) = italic_Ο‡ ( italic_a , italic_b ) + italic_Ο‡ ( italic_a ⊲ italic_b , italic_b ) ,
Ο‡ ⁒ ( a 2 , b ) + Ξ» ⁒ ( a ⊲ b ) = 2 ⁒ Ο‡ ⁒ ( a , b ) + Ξ» ⁒ ( a ) . πœ’ superscript π‘Ž 2 𝑏 πœ† subgroup-of π‘Ž 𝑏 2 πœ’ π‘Ž 𝑏 πœ† π‘Ž \displaystyle\chi(a^{2},b)+\lambda(a\lhd b)=2\chi(a,b)+\lambda(a). italic_Ο‡ ( italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT , italic_b ) + italic_Ξ» ( italic_a ⊲ italic_b ) = 2 italic_Ο‡ ( italic_a , italic_b ) + italic_Ξ» ( italic_a ) .

The Abelian group of all squandle 2 2 2 2 -cocycles of Q 𝑄 Q italic_Q is denoted by Z 2 ⁒ ( Q ) superscript 𝑍 2 𝑄 Z^{2}(Q) italic_Z start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_Q ) .


Definition 4.1 .

A derivation from A 𝐴 A italic_A to M 𝑀 M italic_M is a function A ⟢ βˆ‚ M superscript ⟢ 𝐴 𝑀 A\stackrel{{\scriptstyle\partial}}{{\longrightarrow}}M italic_A start_RELOP SUPERSCRIPTOP start_ARG ⟢ end_ARG start_ARG βˆ‚ end_ARG end_RELOP italic_M such that for each a , b ∈ A π‘Ž 𝑏 𝐴 a,b\in A italic_a , italic_b ∈ italic_A we have

  1. (i)

    βˆ‚ ⁑ ( a + b ) = βˆ‚ ⁑ a + βˆ‚ ⁑ b π‘Ž 𝑏 π‘Ž 𝑏 \partial(a+b)=\partial a+\partial b βˆ‚ ( italic_a + italic_b ) = βˆ‚ italic_a + βˆ‚ italic_b ; and

  2. (ii)

    βˆ‚ ⁑ ( a ⁒ b ) = a ⁒ βˆ‚ ⁑ b + b ⁒ βˆ‚ ⁑ a π‘Ž 𝑏 π‘Ž 𝑏 𝑏 π‘Ž \partial(ab)=a\partial b+b\partial a βˆ‚ ( italic_a italic_b ) = italic_a βˆ‚ italic_b + italic_b βˆ‚ italic_a .

It is an β„± β„± \mathcal{F} caligraphic_F -derivation if and only if also for each f ∈ β„± 𝑓 β„± f\in\mathcal{F} italic_f ∈ caligraphic_F and each a ∈ A ∩ dom ⁑ f π‘Ž 𝐴 dom 𝑓 a\in A\cap\operatorname{dom}f italic_a ∈ italic_A ∩ roman_dom italic_f such that f ⁒ ( a ) ∈ A 𝑓 π‘Ž 𝐴 f(a)\in A italic_f ( italic_a ) ∈ italic_A and f β€² ⁒ ( a ) ∈ A superscript 𝑓 β€² π‘Ž 𝐴 f^{\prime}(a)\in A italic_f start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ( italic_a ) ∈ italic_A we have βˆ‚ ⁑ f ⁒ ( a ) = f β€² ⁒ ( a ) ⁒ βˆ‚ ⁑ a 𝑓 π‘Ž superscript 𝑓 β€² π‘Ž π‘Ž \partial f(a)=f^{\prime}(a)\partial a βˆ‚ italic_f ( italic_a ) = italic_f start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ( italic_a ) βˆ‚ italic_a .