Definition 2.1 .

We define t 0 subscript 𝑡 0 t_{0} italic_t start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT to be the point of maxima of the function g n - 1 ( t ) subscript 𝑔 𝑛 1 𝑡 g_{n-1}(t) italic_g start_POSTSUBSCRIPT italic_n - 1 end_POSTSUBSCRIPT ( italic_t ) , i.e., t 0 subscript 𝑡 0 t_{0} italic_t start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT is the solution of the equation

(8) φ ( t ) t = n - 1 . superscript 𝜑 𝑡 𝑡 𝑛 1 \varphi^{\prime}(t)t=n-1. italic_φ start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( italic_t ) italic_t = italic_n - 1 .

Definition 2.1 .

Let f 𝑓 f italic_f and g 𝑔 g italic_g be smooth and let 𝓢 [ 0 , ) × M 𝓢 0 𝑀 \boldsymbol{\mathcal{S}}\subseteq[0,\infty)\times M bold_caligraphic_S ⊆ [ 0 , ∞ ) × italic_M be the topological subspace consisting of all pairs ( λ , p ) 𝜆 𝑝 (\lambda,p) ( italic_λ , italic_p ) such that the maximal solution of the following Cauchy problem:

(3) { x ˙ = g ( x ) + λ f ( t , x ) , x ( 0 ) = p , cases ˙ 𝑥 𝑔 𝑥 𝜆 𝑓 𝑡 𝑥 𝑥 0 𝑝 \left\{\begin{array}[]{l}\dot{x}=g(x)+\lambda f(t,x),\\ x(0)=p,\end{array}\right. { start_ARRAY start_ROW start_CELL ˙ start_ARG italic_x end_ARG = italic_g ( italic_x ) + italic_λ italic_f ( italic_t , italic_x ) , end_CELL end_ROW start_ROW start_CELL italic_x ( 0 ) = italic_p , end_CELL end_ROW end_ARRAY

is T 𝑇 T italic_T -periodic. The elements of 𝓢 𝓢 \boldsymbol{\mathcal{S}} bold_caligraphic_S are called starting points . If ( λ , p ) 𝓢 𝜆 𝑝 𝓢 (\lambda,p)\in\boldsymbol{\mathcal{S}} ( italic_λ , italic_p ) ∈ bold_caligraphic_S the point p 𝑝 p italic_p will be informally referred to as an initial point of a T 𝑇 T italic_T -periodic solution.


Definition 2.6 .

Let X 𝑋 X italic_X be a Hilbert A 𝐴 A italic_A -bimodule. The conjugate of X 𝑋 X italic_X , denoted X * superscript 𝑋 X^{*} italic_X start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT , is the complex conjugate of the vector space X 𝑋 X italic_X , equipped with left A 𝐴 A italic_A -module structure defined by

a x * = ( x a * ) * . 𝑎 superscript 𝑥 superscript 𝑥 superscript 𝑎 a\cdot x^{*}=(xa^{*})^{*}. italic_a ⋅ italic_x start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT = ( italic_x italic_a start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT .

Here x * X * superscript 𝑥 superscript 𝑋 x^{*}\in X^{*} italic_x start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT ∈ italic_X start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT denotes the image of x X 𝑥 𝑋 x\in X italic_x ∈ italic_X under the obvious conjugate \mathbb{C} blackboard_C -linear isomorphism X X * 𝑋 superscript 𝑋 X\to X^{*} italic_X → italic_X start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT .

Definition 2.23 .

Let A 𝐴 A italic_A and B 𝐵 B italic_B be C * superscript 𝐶 C^{*} italic_C start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT -algebras and let F 𝐹 F italic_F be a Hilbert A 𝐴 A italic_A - B 𝐵 B italic_B -bimodule. The conjugate of F 𝐹 F italic_F is the Hilbert module conjugate F * superscript 𝐹 F^{*} italic_F start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT , as in Definition 2.6 , equipped with right A 𝐴 A italic_A -module structure defined by

f * a = ( a * f ) * . superscript 𝑓 𝑎 superscript superscript 𝑎 𝑓 f^{*}\cdot a=(a^{*}f)^{*}. italic_f start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT ⋅ italic_a = ( italic_a start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT italic_f ) start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT .

Definition 3.1 (Dual function) .

Let f : [ a , b ] : 𝑓 𝑎 𝑏 f:[a,b]\rightarrow\mathbb{R} italic_f : [ italic_a , italic_b ] → blackboard_R . Then its dual function, denoted by f superscript 𝑓 f^{\star} italic_f start_POSTSUPERSCRIPT ⋆ end_POSTSUPERSCRIPT , is defined as f : [ - b , - a ] : superscript 𝑓 𝑏 𝑎 f^{\star}:[-b,-a]\rightarrow\mathbb{R} italic_f start_POSTSUPERSCRIPT ⋆ end_POSTSUPERSCRIPT : [ - italic_b , - italic_a ] → blackboard_R by

f ( x ) = f ( - x ) . superscript 𝑓 𝑥 𝑓 𝑥 f^{\star}(x)=f(-x). italic_f start_POSTSUPERSCRIPT ⋆ end_POSTSUPERSCRIPT ( italic_x ) = italic_f ( - italic_x ) .

Definition 1.17 .

We say that h W 1 , p ( m , N ) superscript 𝑊 1 𝑝 superscript 𝑚 𝑁 h\in W^{1,p}(\mathbb{R}^{m},N) italic_h ∈ italic_W start_POSTSUPERSCRIPT 1 , italic_p end_POSTSUPERSCRIPT ( blackboard_R start_POSTSUPERSCRIPT italic_m end_POSTSUPERSCRIPT , italic_N ) is a homogeneous function wrt the origin if for a.e. λ > 0 𝜆 0 \lambda>0 italic_λ > 0 and x m 𝑥 superscript 𝑚 x\in\mathbb{R}^{m} italic_x ∈ blackboard_R start_POSTSUPERSCRIPT italic_m end_POSTSUPERSCRIPT :

h ( λ x ) = h ( x ) , 𝜆 𝑥 𝑥 \displaystyle h(\lambda x)=h(x)\,, italic_h ( italic_λ italic_x ) = italic_h ( italic_x ) , (27)

or equivalently if h n = 0 𝑛 0 \frac{\partial h}{\partial n}=0 divide start_ARG ∂ italic_h end_ARG start_ARG ∂ italic_n end_ARG = 0 . We say that h h italic_h is a k 𝑘 k italic_k -symmetric function if h h italic_h is homogeneous and there exists a subspace V 𝑉 V italic_V of m superscript 𝑚 \mathbb{R}^{m} blackboard_R start_POSTSUPERSCRIPT italic_m end_POSTSUPERSCRIPT of dimension k 𝑘 k italic_k such that

h ( x + y ) = h ( x ) 𝑥 𝑦 𝑥 \displaystyle h(x+y)=h(x) italic_h ( italic_x + italic_y ) = italic_h ( italic_x ) (28)

for a.e. x m 𝑥 superscript 𝑚 x\in\mathbb{R}^{m} italic_x ∈ blackboard_R start_POSTSUPERSCRIPT italic_m end_POSTSUPERSCRIPT and y V 𝑦 𝑉 y\in V italic_y ∈ italic_V . Thus 0 0 -symmetric and homogeneous are synonyms in this paper.


Definition 2.18 .

A ρ 𝜌 \rho italic_ρ -representation of π 1 ( X ) subscript 𝜋 1 𝑋 \pi_{1}(X) italic_π start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_X ) is an A 𝐴 A italic_A -module M 𝑀 M italic_M endowed with a representation ϕ : π 1 ( X ) Aut groups M : italic-ϕ subscript 𝜋 1 𝑋 subscript Aut groups 𝑀 \phi\colon\pi_{1}(X)\to\operatorname{{Aut}}_{\text{groups}}M italic_ϕ : italic_π start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_X ) → roman_Aut start_POSTSUBSCRIPT groups end_POSTSUBSCRIPT italic_M , which is compatible with ρ 𝜌 \rho italic_ρ , that is:

σ ( a m ) = σ ( a ) σ ( m ) 𝜎 𝑎 𝑚 𝜎 𝑎 𝜎 𝑚 \sigma(am)=\sigma(a)\sigma(m) italic_σ ( italic_a italic_m ) = italic_σ ( italic_a ) italic_σ ( italic_m )

where σ ( m ) = ϕ ( σ ) ( m ) 𝜎 𝑚 italic-ϕ 𝜎 𝑚 \sigma(m)=\phi(\sigma)(m) italic_σ ( italic_m ) = italic_ϕ ( italic_σ ) ( italic_m ) , with m M 𝑚 𝑀 m\in M italic_m ∈ italic_M .


Definition 4.14 .

Define a cocycle-like function σ : 𝒢 × 𝒮 𝒫 : 𝜎 𝒢 𝒮 𝒫 \sigma\colon{\mathcal{G}}\times{\mathcal{S}}\rightarrow{\mathcal{P}} italic_σ : caligraphic_G × caligraphic_S → caligraphic_P by

σ ( v , s ) = j ( q ( v ) s ) v j ( s ) = j ( s q ( v ) ) v j ( s ) . 𝜎 𝑣 𝑠 𝑗 superscript 𝑞 𝑣 𝑠 𝑣 𝑗 𝑠 𝑗 superscript 𝑠 𝑞 superscript 𝑣 𝑣 𝑗 𝑠 \sigma(v,s)=j(q(v)s)^{\dagger}vj(s)=j(s^{\dagger}q(v^{\dagger}))vj(s). italic_σ ( italic_v , italic_s ) = italic_j ( italic_q ( italic_v ) italic_s ) start_POSTSUPERSCRIPT † end_POSTSUPERSCRIPT italic_v italic_j ( italic_s ) = italic_j ( italic_s start_POSTSUPERSCRIPT † end_POSTSUPERSCRIPT italic_q ( italic_v start_POSTSUPERSCRIPT † end_POSTSUPERSCRIPT ) ) italic_v italic_j ( italic_s ) .

Since

q ( σ ( v , s ) ) = s q ( v v ) s ( 𝒮 ) , 𝑞 𝜎 𝑣 𝑠 superscript 𝑠 𝑞 superscript 𝑣 𝑣 𝑠 𝒮 q(\sigma(v,s))=s^{\dagger}q(v^{\dagger}v)s\in{\mathcal{E}}({\mathcal{S}}), italic_q ( italic_σ ( italic_v , italic_s ) ) = italic_s start_POSTSUPERSCRIPT † end_POSTSUPERSCRIPT italic_q ( italic_v start_POSTSUPERSCRIPT † end_POSTSUPERSCRIPT italic_v ) italic_s ∈ caligraphic_E ( caligraphic_S ) ,

σ ( v , s ) 𝒫 𝜎 𝑣 𝑠 𝒫 \sigma(v,s)\in{\mathcal{P}} italic_σ ( italic_v , italic_s ) ∈ caligraphic_P . Thus σ 𝜎 \sigma italic_σ indeed maps 𝒢 × 𝒮 𝒢 𝒮 {\mathcal{G}}\times{\mathcal{S}} caligraphic_G × caligraphic_S into 𝒫 𝒫 {\mathcal{P}} caligraphic_P .


Definition 2.1 .

A map σ : R ( 2 ) 𝕋 : 𝜎 superscript 𝑅 2 𝕋 \sigma\colon R^{(2)}\to\mathbb{T} italic_σ : italic_R start_POSTSUPERSCRIPT ( 2 ) end_POSTSUPERSCRIPT → blackboard_T is a 2 2 2 2 -cocycle on R 𝑅 R italic_R if

σ ( x , y , z ) σ ( x , z , w ) = σ ( x , y , w ) σ ( y , z , w ) 𝜎 𝑥 𝑦 𝑧 𝜎 𝑥 𝑧 𝑤 𝜎 𝑥 𝑦 𝑤 𝜎 𝑦 𝑧 𝑤 \sigma(x,y,z)\sigma(x,z,w)=\sigma(x,y,w)\sigma(y,z,w) italic_σ ( italic_x , italic_y , italic_z ) italic_σ ( italic_x , italic_z , italic_w ) = italic_σ ( italic_x , italic_y , italic_w ) italic_σ ( italic_y , italic_z , italic_w )

for all ( x , y , z , w ) R ( 3 ) 𝑥 𝑦 𝑧 𝑤 superscript 𝑅 3 (x,y,z,w)\in R^{(3)} ( italic_x , italic_y , italic_z , italic_w ) ∈ italic_R start_POSTSUPERSCRIPT ( 3 ) end_POSTSUPERSCRIPT . We say σ 𝜎 \sigma italic_σ is normalised if σ ( x , y , z ) = 1 𝜎 𝑥 𝑦 𝑧 1 \sigma(x,y,z)=1 italic_σ ( italic_x , italic_y , italic_z ) = 1 whenever two of x 𝑥 x italic_x , y 𝑦 y italic_y and z 𝑧 z italic_z are equal. By [ 7 , Proposition 7.8] , any normalised 2 2 2 2 -cocycle σ 𝜎 \sigma italic_σ is skew-symmetric : for every permutation π 𝜋 \pi italic_π on three elements,

σ ( π ( x , y , z ) ) = { σ ( x , y , z ) if π is even , σ ( x , y , z ) - 1 if π is odd . 𝜎 𝜋 𝑥 𝑦 𝑧 cases 𝜎 𝑥 𝑦 𝑧 if π is even 𝜎 superscript 𝑥 𝑦 𝑧 1 if π is odd \sigma(\pi(x,y,z))=\begin{cases}\sigma(x,y,z)&\text{if $\pi$ is even},\\ \sigma(x,y,z)^{-1}&\text{if $\pi$ is odd}.\end{cases} italic_σ ( italic_π ( italic_x , italic_y , italic_z ) ) = { start_ROW start_CELL italic_σ ( italic_x , italic_y , italic_z ) end_CELL start_CELL if italic_π is even , end_CELL end_ROW start_ROW start_CELL italic_σ ( italic_x , italic_y , italic_z ) start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT end_CELL start_CELL if italic_π is odd . end_CELL end_ROW
Definition 2.12 .

Given α L ( X , μ ) 𝛼 superscript 𝐿 𝑋 𝜇 \alpha\in L^{\infty}(X,\mu) italic_α ∈ italic_L start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT ( italic_X , italic_μ ) , let d ( α ) : R : 𝑑 𝛼 𝑅 d(\alpha)\colon R\to\mathbb{C} italic_d ( italic_α ) : italic_R → blackboard_C be given by

d ( α ) ( x , y ) = { α ( x ) if x = y , 0 otherwise . 𝑑 𝛼 𝑥 𝑦 cases 𝛼 𝑥 if x = y , 0 otherwise d(\alpha)(x,y)=\begin{cases}\alpha(x)&\text{if~{}$x=y$,}\\ 0&\text{otherwise}.\end{cases} italic_d ( italic_α ) ( italic_x , italic_y ) = { start_ROW start_CELL italic_α ( italic_x ) end_CELL start_CELL if italic_x = italic_y , end_CELL end_ROW start_ROW start_CELL 0 end_CELL start_CELL otherwise . end_CELL end_ROW

Clearly d ( α ) Σ 0 𝑑 𝛼 subscript Σ 0 d(\alpha)\in\Sigma_{0} italic_d ( italic_α ) ∈ roman_Σ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT . We write D ( α ) = L ( d ( α ) ) 𝐷 𝛼 𝐿 𝑑 𝛼 D(\alpha)=L(d(\alpha))\in\mathcal{M} italic_D ( italic_α ) = italic_L ( italic_d ( italic_α ) ) ∈ caligraphic_M , and we define the Cartan masa of R 𝑅 R italic_R to be

𝒜 = 𝒜 ( R ) = { D ( α ) : α L ( X , μ ) } . 𝒜 𝒜 𝑅 conditional-set 𝐷 𝛼 𝛼 superscript 𝐿 𝑋 𝜇 \mathcal{A}=\mathcal{A}(R)=\{D(\alpha)\colon\alpha\in L^{\infty}(X,\mu)\}. caligraphic_A = caligraphic_A ( italic_R ) = { italic_D ( italic_α ) : italic_α ∈ italic_L start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT ( italic_X , italic_μ ) } .

By [ 8 ] , 𝒜 ( R ) 𝒜 𝑅 \mathcal{A}(R) caligraphic_A ( italic_R ) is a Cartan masa in the von Neumann algebra ( R , σ ) 𝑅 𝜎 \mathcal{M}(R,\sigma) caligraphic_M ( italic_R , italic_σ ) .

Note that if ξ H 𝜉 𝐻 \xi\in H italic_ξ ∈ italic_H and ( x , y ) R 𝑥 𝑦 𝑅 (x,y)\in R ( italic_x , italic_y ) ∈ italic_R , then

D ( α ) ξ ( x , y ) 𝐷 𝛼 𝜉 𝑥 𝑦 \displaystyle D(\alpha)\xi(x,y) italic_D ( italic_α ) italic_ξ ( italic_x , italic_y ) = \displaystyle= = z x d ( α ) ( x , z ) ξ ( z , y ) σ ( x , z , y ) = α ( x ) ξ ( x , y ) σ ( x , x , y ) subscript similar-to 𝑧 𝑥 𝑑 𝛼 𝑥 𝑧 𝜉 𝑧 𝑦 𝜎 𝑥 𝑧 𝑦 𝛼 𝑥 𝜉 𝑥 𝑦 𝜎 𝑥 𝑥 𝑦 \displaystyle\sum_{z\sim x}d(\alpha)(x,z)\xi(z,y)\sigma(x,z,y)=\alpha(x)\xi(x,% y)\sigma(x,x,y) ∑ start_POSTSUBSCRIPT italic_z ∼ italic_x end_POSTSUBSCRIPT italic_d ( italic_α ) ( italic_x , italic_z ) italic_ξ ( italic_z , italic_y ) italic_σ ( italic_x , italic_z , italic_y ) = italic_α ( italic_x ) italic_ξ ( italic_x , italic_y ) italic_σ ( italic_x , italic_x , italic_y )
= \displaystyle= = α ( x ) ξ ( x , y ) . 𝛼 𝑥 𝜉 𝑥 𝑦 \displaystyle\alpha(x)\xi(x,y). italic_α ( italic_x ) italic_ξ ( italic_x , italic_y ) .

Since this does not depend on the normalised 2 2 2 2 -cocycle σ 𝜎 \sigma italic_σ , this shows that 𝒜 ( R ) 𝒜 𝑅 \mathcal{A}(R) caligraphic_A ( italic_R ) does not depend on σ 𝜎 \sigma italic_σ .


Definition 4.2 .

We say that a segment z , z 𝑧 superscript 𝑧 \llbracket z,z^{\prime}\rrbracket ⟦ italic_z , italic_z start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ⟧ is an optimal ray for ϕ ¯ ¯ italic-ϕ \bar{\phi} ¯ start_ARG italic_ϕ end_ARG if

ϕ ¯ ( z ) - ϕ ¯ ( z ) = 𝚌 ¯ ( z - z ) . ¯ italic-ϕ superscript 𝑧 ¯ italic-ϕ 𝑧 ¯ 𝚌 superscript 𝑧 𝑧 \bar{\phi}(z^{\prime})-{\bar{\phi}}(z)=\bar{\mathtt{c}}(z^{\prime}-z). ¯ start_ARG italic_ϕ end_ARG ( italic_z start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) - ¯ start_ARG italic_ϕ end_ARG ( italic_z ) = ¯ start_ARG typewriter_c end_ARG ( italic_z start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT - italic_z ) .

We say that a segment z , z 𝑧 superscript 𝑧 \llbracket z,z^{\prime}\rrbracket ⟦ italic_z , italic_z start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ⟧ is a maximal optimal ray if it is maximal with respect to set inclusion.


Definition 3.6 .

Let 𝚺 = ( N , Σ , β ) 𝚺 𝑁 Σ 𝛽 \mathbf{\Sigma}=(N,\Sigma,\beta) bold_Σ = ( italic_N , roman_Σ , italic_β ) be a stacky fan and 𝝆 = { ρ 1 , , ρ r } Σ ( 1 ) 𝝆 subscript 𝜌 1 subscript 𝜌 𝑟 Σ 1 \boldsymbol{\rho}=\{\rho_{1},\ldots,\rho_{r}\}\subset\Sigma(1) bold_italic_ρ = { italic_ρ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … , italic_ρ start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT } ⊂ roman_Σ ( 1 ) a set of rays. For each ρ i 𝝆 subscript 𝜌 𝑖 𝝆 \rho_{i}\in\boldsymbol{\rho} italic_ρ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ∈ bold_italic_ρ , we associate a weight d i subscript 𝑑 𝑖 d_{i} italic_d start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT , which is a positive integer. Denote the function taking each ray to its weight by 𝒅 𝒅 \boldsymbol{d} bold_italic_d . Consider the group homomorphism β : Σ ( 1 ) N : superscript 𝛽 superscript Σ 1 𝑁 \beta^{\prime}\colon\mathbb{Z}^{\Sigma(1)}\to N italic_β start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT : blackboard_Z start_POSTSUPERSCRIPT roman_Σ ( 1 ) end_POSTSUPERSCRIPT → italic_N defined by

β ( ρ ) = { 𝒅 ( ρ ) β ( ρ ) if ρ 𝝆 β ( ρ ) otherwise. superscript 𝛽 𝜌 cases 𝒅 𝜌 𝛽 𝜌 if 𝜌 𝝆 𝛽 𝜌 otherwise. \beta^{\prime}(\rho)=\left\{\begin{array}[]{ll}\boldsymbol{d}(\rho)\beta(\rho)% &\text{if }\rho\in\boldsymbol{\rho}\\ \beta(\rho)&\text{otherwise.}\end{array}\right. italic_β start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( italic_ρ ) = { start_ARRAY start_ROW start_CELL bold_italic_d ( italic_ρ ) italic_β ( italic_ρ ) end_CELL start_CELL if italic_ρ ∈ bold_italic_ρ end_CELL end_ROW start_ROW start_CELL italic_β ( italic_ρ ) end_CELL start_CELL otherwise. end_CELL end_ROW end_ARRAY

We denote the stacky fan given by the triple ( N , Σ , β ) 𝑁 Σ superscript 𝛽 (N,\Sigma,\beta^{\prime}) ( italic_N , roman_Σ , italic_β start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) by 𝚺 𝒅 - 1 𝝆 subscript 𝚺 superscript 𝒅 1 𝝆 \mathbf{\Sigma}_{\boldsymbol{d}^{-1}\boldsymbol{\rho}} bold_Σ start_POSTSUBSCRIPT bold_italic_d start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT bold_italic_ρ end_POSTSUBSCRIPT . The natural morphism 𝚺 𝒅 - 1 𝝆 𝚺 subscript 𝚺 superscript 𝒅 1 𝝆 𝚺 \mathbf{\Sigma}_{\boldsymbol{d}^{-1}\boldsymbol{\rho}}\to\mathbf{\Sigma} bold_Σ start_POSTSUBSCRIPT bold_italic_d start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT bold_italic_ρ end_POSTSUBSCRIPT → bold_Σ of stacky fans, which is the identity map on the underlying group N 𝑁 N italic_N , is called the root construction of 𝚺 𝚺 \mathbf{\Sigma} bold_Σ with respect to the rays in 𝝆 𝝆 \boldsymbol{\rho} bold_italic_ρ with weights 𝒅 𝒅 \boldsymbol{d} bold_italic_d .


Definition 4.21 .

Let G 𝐺 G italic_G be a finite group. A map φ : G E : 𝜑 𝐺 𝐸 \varphi:G\rightarrow E italic_φ : italic_G → italic_E satisfying the condition

φ ( h g h - 1 ) = φ ( g ) 𝜑 𝑔 superscript 1 𝜑 𝑔 \varphi(hgh^{-1})=\varphi(g) italic_φ ( italic_h italic_g italic_h start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ) = italic_φ ( italic_g )

for all g , h G 𝑔 𝐺 g,h\in G italic_g , italic_h ∈ italic_G , is called class function .

If ρ : G GL ( V ) : 𝜌 𝐺 GL 𝑉 \rho:G\rightarrow\operatorname{GL}(V) italic_ρ : italic_G → roman_GL ( italic_V ) is a representation of G 𝐺 G italic_G on a finite dimensional E 𝐸 E italic_E -vector space, then χ ρ : G E : subscript 𝜒 𝜌 𝐺 𝐸 \chi_{\rho}:G\rightarrow E italic_χ start_POSTSUBSCRIPT italic_ρ end_POSTSUBSCRIPT : italic_G → italic_E , χ ρ ( g ) := χ V ( g ) := Tr ( ρ ( g ) ) assign subscript 𝜒 𝜌 𝑔 subscript 𝜒 𝑉 𝑔 assign Tr 𝜌 𝑔 \chi_{\rho}(g):=\chi_{V}(g):=\operatorname{Tr}(\rho(g)) italic_χ start_POSTSUBSCRIPT italic_ρ end_POSTSUBSCRIPT ( italic_g ) := italic_χ start_POSTSUBSCRIPT italic_V end_POSTSUBSCRIPT ( italic_g ) := roman_Tr ( italic_ρ ( italic_g ) ) is a class function; it is called the character of ρ 𝜌 \rho italic_ρ .

If ρ 𝜌 \rho italic_ρ is irreducible, then its character is also called irreducible.


Definition 4.1 (Probability Algebra) .

A probability algebra is a pair ( 𝒜 , μ ) 𝒜 𝜇 (\mathcal{A},\mu) ( caligraphic_A , italic_μ ) , where 𝒜 𝒜 \mathcal{A} caligraphic_A is a boolean algebra and μ : A [ 0 , 1 ] : 𝜇 𝐴 0 1 \mu:A\rightarrow[0,1] italic_μ : italic_A → [ 0 , 1 ] is a function satisfying the following properties:

  1. i)

    μ ( 1 ) = 1 𝜇 1 1 \mu(1)=1 italic_μ ( 1 ) = 1 ;

  2. ii)

    μ ( a b ) + μ ( a b ) = μ ( a ) + μ ( b ) 𝜇 𝑎 𝑏 𝜇 𝑎 𝑏 𝜇 𝑎 𝜇 𝑏 \mu(a\vee b)+\mu(a\wedge b)=\mu(a)+\mu(b) italic_μ ( italic_a ∨ italic_b ) + italic_μ ( italic_a ∧ italic_b ) = italic_μ ( italic_a ) + italic_μ ( italic_b ) ;

  3. iii)

    μ ( a ) = 0 iff a = 0 𝜇 𝑎 0 iff 𝑎 0 \mu(a)=0\text{ iff }a=0 italic_μ ( italic_a ) = 0 iff italic_a = 0 .


Definition 5.3 .

Let { a , b } 𝑎 𝑏 \{a,b\} { italic_a , italic_b } be an edge in B ~ ~ B \widetilde{\pazocal{B}} ~ start_ARG roman_B end_ARG and assume without loss of generality that a 𝑎 a italic_a lies in s 0 subscript 𝑠 0 s_{0} italic_s start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT and b 𝑏 b italic_b lies in s 1 subscript 𝑠 1 s_{1} italic_s start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT . We say { a , b } 𝑎 𝑏 \{a,b\} { italic_a , italic_b } is

(See Figure 6 .) Let Z ~ ~ Z \widetilde{\pazocal{Z}} ~ start_ARG roman_Z end_ARG be the edges in B ~ ~ B \widetilde{\pazocal{B}} ~ start_ARG roman_B end_ARG that are Z-type and S ~ ~ S \widetilde{\pazocal{S}} ~ start_ARG roman_S end_ARG be the edges in B ~ ~ B \widetilde{\pazocal{B}} ~ start_ARG roman_B end_ARG that are S-type. Since Z ~ ~ Z \widetilde{\pazocal{Z}} ~ start_ARG roman_Z end_ARG and S ~ ~ S \widetilde{\pazocal{S}} ~ start_ARG roman_S end_ARG are X delimited-⟨⟩ 𝑋 \langle X\rangle ⟨ italic_X ⟩ -invariant, we can define Z := Z ~ / X assign Z ~ Z delimited-⟨⟩ X \pazocal{Z}:=\widetilde{\pazocal{Z}}/\langle X\rangle roman_Z := ~ start_ARG roman_Z end_ARG / ⟨ roman_X ⟩ and S := S ~ / X assign S ~ S delimited-⟨⟩ X \pazocal{S}:=\widetilde{\pazocal{S}}/\langle X\rangle roman_S := ~ start_ARG roman_S end_ARG / ⟨ roman_X ⟩ .


Définition 3.3 ( Etat produit à nombre infini de particules ) .


On appelle état produit à nombre infini de particules une suite d’opérateurs à trace γ ( n ) 𝔖 1 ( s n ) superscript 𝛾 𝑛 superscript 𝔖 1 superscript subscript 𝑠 𝑛 \gamma^{(n)}\in\mathfrak{S}^{1}(\mathfrak{H}_{s}^{n}) italic_γ start_POSTSUPERSCRIPT ( italic_n ) end_POSTSUPERSCRIPT ∈ fraktur_S start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT ( fraktur_H start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT ) avec

γ ( n ) = γ n , superscript 𝛾 𝑛 superscript 𝛾 tensor-product absent 𝑛 \gamma^{(n)}=\gamma^{\otimes n}, italic_γ start_POSTSUPERSCRIPT ( italic_n ) end_POSTSUPERSCRIPT = italic_γ start_POSTSUPERSCRIPT ⊗ italic_n end_POSTSUPERSCRIPT , (3.15)

pour tout n 0 𝑛 0 n\geq 0 italic_n ≥ 0 γ 𝛾 \gamma italic_γ est un état à une particule. Un état produit bosonique est nécessairement de la forme

γ ( n ) = | u n u n | = ( | u u | ) n , superscript 𝛾 𝑛 ket superscript 𝑢 tensor-product absent 𝑛 bra superscript 𝑢 tensor-product absent 𝑛 superscript ket 𝑢 bra 𝑢 tensor-product absent 𝑛 \gamma^{(n)}=|u^{\otimes n}\rangle\langle u^{\otimes n}|=\left(|u\rangle% \langle u|\right)^{\otimes n}, italic_γ start_POSTSUPERSCRIPT ( italic_n ) end_POSTSUPERSCRIPT = | italic_u start_POSTSUPERSCRIPT ⊗ italic_n end_POSTSUPERSCRIPT ⟩ ⟨ italic_u start_POSTSUPERSCRIPT ⊗ italic_n end_POSTSUPERSCRIPT | = ( | italic_u ⟩ ⟨ italic_u | ) start_POSTSUPERSCRIPT ⊗ italic_n end_POSTSUPERSCRIPT , (3.16)

avec u S 𝑢 𝑆 u\in S\mathfrak{H} italic_u ∈ italic_S fraktur_H . ∎

Définition 3.14 ( Etat produit abstrait à nombre infini de particules ) .


On appelle état produit abstrait un état abstrait à nombre infini de particules avec

ω ( n ) = ω n superscript 𝜔 𝑛 superscript 𝜔 tensor-product absent 𝑛 \omega^{(n)}=\omega^{\otimes n} italic_ω start_POSTSUPERSCRIPT ( italic_n ) end_POSTSUPERSCRIPT = italic_ω start_POSTSUPERSCRIPT ⊗ italic_n end_POSTSUPERSCRIPT (3.40)

pour tout n 𝑛 n\in\mathbb{N} italic_n ∈ blackboard_N , où ω ( 𝔅 ( ) ) * 𝜔 superscript 𝔅 \omega\in(\mathfrak{B}(\mathfrak{H}))^{*} italic_ω ∈ ( fraktur_B ( fraktur_H ) ) start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT est un état abstait à une particule (en particulier ω 0 𝜔 0 \omega\geq 0 italic_ω ≥ 0 et ω ( 𝟙 ) = 1 𝜔 subscript 1 1 \omega({\mathds{1}}_{\mathfrak{H}})=1 italic_ω ( blackboard_1 start_POSTSUBSCRIPT fraktur_H end_POSTSUBSCRIPT ) = 1 ). ∎


Definition 3 .

The Invert interpolated operator I ( x ) superscript 𝐼 𝑥 I^{(x)} italic_I start_POSTSUPERSCRIPT ( italic_x ) end_POSTSUPERSCRIPT , with parameter x 𝑥 x\in\mathbb{R} italic_x ∈ blackboard_R , transforms any sequence a 𝑎 a italic_a , having ordinary generating function a ( t ) 𝑎 𝑡 a(t) italic_a ( italic_t ) , into a sequence b = I ( x ) ( a ) 𝑏 superscript 𝐼 𝑥 𝑎 b=I^{(x)}(a) italic_b = italic_I start_POSTSUPERSCRIPT ( italic_x ) end_POSTSUPERSCRIPT ( italic_a ) having ordinary generating function

b ( t ) = a ( t ) 1 - x t a ( t ) . 𝑏 𝑡 continued-fraction 𝑎 𝑡 1 𝑥 𝑡 𝑎 𝑡 b(t)=\cfrac{a(t)}{1-xta(t)}\quad. italic_b ( italic_t ) = continued-fraction start_ARG italic_a ( italic_t ) end_ARG start_ARG 1 - italic_x italic_t italic_a ( italic_t ) end_ARG .

Definition 1.6 .

For each isolated fixed point p 𝑝 p italic_p of a tangentially stably complex G 𝐺 G italic_G -manifold, the sign of p 𝑝 p italic_p is given by

σ ( p ) : = { + 1 , if the two orientations coincide ; - 1 , if the two orientations differ . : absent = 𝜎 𝑝 cases 1 if the two orientations coincide 1 if the two orientations differ \sigma(p)\mathbin{:\!\raisebox{-0.36pt}{=}}\,\begin{cases}+1,&\text{if the two% orientations coincide};\\ -1,&\text{if the two orientations differ}.\end{cases} italic_σ ( italic_p ) start_BINOP : = end_BINOP { start_ROW start_CELL + 1 , end_CELL start_CELL if the two orientations coincide ; end_CELL end_ROW start_ROW start_CELL - 1 , end_CELL start_CELL if the two orientations differ . end_CELL end_ROW

Definition 2.1.11 .

A locally conformal symplectic structure on a manifold M 𝑀 M italic_M is given by a pair ( ω , θ ) 𝜔 𝜃 (\omega,\theta) ( italic_ω , italic_θ ) , where ω 𝜔 \omega italic_ω is a non-degenerate 2-form and θ 𝜃 \theta italic_θ is a closed 1-form on M 𝑀 M italic_M satisfying the relation

d ω + θ ω = 0 . 𝑑 𝜔 𝜃 𝜔 0 d\omega+\theta\wedge\omega=0.{} italic_d italic_ω + italic_θ ∧ italic_ω = 0 . (2.1)

The form θ 𝜃 \theta italic_θ is called the Lee form of ω 𝜔 \omega italic_ω . If dim M 4 dimension 𝑀 4 \dim M\geq 4 roman_dim italic_M ≥ 4 then ω - : Ω 1 ( M ) Ω 3 ( M ) fragments ω normal-: superscript normal-Ω 1 fragments normal-( M normal-) normal-→ superscript normal-Ω 3 fragments normal-( M normal-) \omega\wedge-:\Omega^{1}(M)\to\Omega^{3}(M) italic_ω ∧ - : roman_Ω start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT ( italic_M ) → roman_Ω start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT ( italic_M ) is injective because of the non-degeneracy of ω 𝜔 \omega italic_ω . In this case, θ 𝜃 \theta italic_θ is uniquely determined by the relation ( 2.1 ).