Definition 2.3 .

[ 5 ] delimited-[] 5 [5] [ 5 ] A Hom-Lie algebra is a triple ( 𝔀 , [ β‹… , β‹… ] 𝔀 , Ξ± ) 𝔀 subscript normal-β‹… normal-β‹… 𝔀 𝛼 (\mathfrak{g},[\cdot,\cdot]_{\mathfrak{g}},\alpha) ( fraktur_g , [ β‹… , β‹… ] start_POSTSUBSCRIPT fraktur_g end_POSTSUBSCRIPT , italic_Ξ± ) consisting of a vector space 𝔀 𝔀 \mathfrak{g} fraktur_g , a bilinear map (bracket) [ β‹… , β‹… ] 𝔀 : 𝔀 Γ— 𝔀 β†’ 𝔀 normal-: subscript normal-β‹… normal-β‹… 𝔀 normal-β†’ 𝔀 𝔀 𝔀 [\cdot,\cdot]_{\mathfrak{g}}:\mathfrak{g}\times\mathfrak{g}\rightarrow% \mathfrak{g} [ β‹… , β‹… ] start_POSTSUBSCRIPT fraktur_g end_POSTSUBSCRIPT : fraktur_g Γ— fraktur_g β†’ fraktur_g and a map Ξ± : 𝔀 β†’ 𝔀 normal-: 𝛼 normal-β†’ 𝔀 𝔀 \alpha:\mathfrak{g}\rightarrow\mathfrak{g} italic_Ξ± : fraktur_g β†’ fraktur_g satisfying

[ x , y ] = - [ y , x ] , π‘₯ 𝑦 𝑦 π‘₯ \displaystyle[x,y]=-[y,x], [ italic_x , italic_y ] = - [ italic_y , italic_x ] ,
[ Ξ± ⁒ ( x ) , [ y , z ] ] + [ Ξ± ⁒ ( y ) , [ z , x ] ] + [ Ξ± ⁒ ( z ) , [ x , y ] ] = 0 , βˆ€ x , y , z ∈ 𝔀 . formulae-sequence 𝛼 π‘₯ 𝑦 𝑧 𝛼 𝑦 𝑧 π‘₯ 𝛼 𝑧 π‘₯ 𝑦 0 for-all π‘₯ 𝑦 𝑧 𝔀 [\alpha(x),[y,z]]+[\alpha(y),[z,x]]+[\alpha(z),[x,y]]=0,\qquad\forall x,y,z\in% \mathfrak{g}. [ italic_Ξ± ( italic_x ) , [ italic_y , italic_z ] ] + [ italic_Ξ± ( italic_y ) , [ italic_z , italic_x ] ] + [ italic_Ξ± ( italic_z ) , [ italic_x , italic_y ] ] = 0 , βˆ€ italic_x , italic_y , italic_z ∈ fraktur_g .

Definition 3.1 .

Given f ∈ F 𝑓 𝐹 f\in F italic_f ∈ italic_F , let x ∈ G ~ π‘₯ ~ 𝐺 x\in\tilde{G} italic_x ∈ ~ start_ARG italic_G end_ARG and y ∈ K ~ 𝑦 ~ 𝐾 y\in\tilde{K} italic_y ∈ ~ start_ARG italic_K end_ARG be such that x ⁒ G = y ⁒ G = f π‘₯ 𝐺 𝑦 𝐺 𝑓 xG=yG=f italic_x italic_G = italic_y italic_G = italic_f . Let Ο€ πœ‹ \pi italic_Ο€ , Ο„ 𝜏 \tau italic_Ο„ , and Ο€ 0 superscript πœ‹ 0 \pi^{0} italic_Ο€ start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT be unitary representations of G 𝐺 G italic_G , K 𝐾 K italic_K , and G 0 subscript 𝐺 0 G_{0} italic_G start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , respectively. We define f β‹… Ο€ = x β‹… Ο€ β‹… 𝑓 πœ‹ β‹… π‘₯ πœ‹ f\cdot\pi=x\cdot\pi italic_f β‹… italic_Ο€ = italic_x β‹… italic_Ο€ , f β‹… Ο„ = y β‹… Ο„ β‹… 𝑓 𝜏 β‹… 𝑦 𝜏 f\cdot\tau=y\cdot\tau italic_f β‹… italic_Ο„ = italic_y β‹… italic_Ο„ , and f β‹… Ο€ 0 = y β‹… Ο€ 0 β‹… 𝑓 superscript πœ‹ 0 β‹… 𝑦 superscript πœ‹ 0 f\cdot\pi^{0}=y\cdot\pi^{0} italic_f β‹… italic_Ο€ start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT = italic_y β‹… italic_Ο€ start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT to be the unitary representations defined by

[ f β‹… Ο€ ] ⁒ ( g ) = [ x β‹… Ο€ ] ⁒ ( g ) = Ο€ ⁒ ( x - 1 ⁒ g ⁒ x ) delimited-[] β‹… 𝑓 πœ‹ 𝑔 delimited-[] β‹… π‘₯ πœ‹ 𝑔 πœ‹ superscript π‘₯ 1 𝑔 π‘₯ [f\cdot\pi](g)=[x\cdot\pi](g)=\pi(x^{-1}gx) [ italic_f β‹… italic_Ο€ ] ( italic_g ) = [ italic_x β‹… italic_Ο€ ] ( italic_g ) = italic_Ο€ ( italic_x start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT italic_g italic_x )
[ f β‹… Ο„ ] ⁒ ( k ) = [ y β‹… Ο„ ] ⁒ ( k ) = Ο„ ⁒ ( y - 1 ⁒ k ⁒ y ) delimited-[] β‹… 𝑓 𝜏 π‘˜ delimited-[] β‹… 𝑦 𝜏 π‘˜ 𝜏 superscript 𝑦 1 π‘˜ 𝑦 [f\cdot\tau](k)=[y\cdot\tau](k)=\tau(y^{-1}ky) [ italic_f β‹… italic_Ο„ ] ( italic_k ) = [ italic_y β‹… italic_Ο„ ] ( italic_k ) = italic_Ο„ ( italic_y start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT italic_k italic_y )
[ f β‹… Ο€ 0 ] ⁒ ( g ) = [ y β‹… Ο€ 0 ] ⁒ ( g 0 ) = Ο€ 0 ⁒ ( y - 1 ⁒ g 0 ⁒ y ) delimited-[] β‹… 𝑓 superscript πœ‹ 0 𝑔 delimited-[] β‹… 𝑦 superscript πœ‹ 0 subscript 𝑔 0 superscript πœ‹ 0 superscript 𝑦 1 subscript 𝑔 0 𝑦 [f\cdot\pi^{0}](g)=[y\cdot\pi^{0}](g_{0})=\pi^{0}(y^{-1}g_{0}y) [ italic_f β‹… italic_Ο€ start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT ] ( italic_g ) = [ italic_y β‹… italic_Ο€ start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT ] ( italic_g start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) = italic_Ο€ start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT ( italic_y start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT italic_g start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT italic_y )

for all g ∈ G 𝑔 𝐺 g\in G italic_g ∈ italic_G , k ∈ K π‘˜ 𝐾 k\in K italic_k ∈ italic_K , and g 0 ∈ G 0 subscript 𝑔 0 subscript 𝐺 0 g_{0}\in G_{0} italic_g start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ∈ italic_G start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT .


Definition 1.13

Given an additive monoidal category β„³ β„³ \mathcal{M} caligraphic_M , a braided Lie algebra in β„³ β„³ \mathcal{M} caligraphic_M consists of a triple ( L , c , [ - ] : L βŠ— L β†’ L ) normal-: 𝐿 𝑐 delimited-[] normal-β†’ tensor-product 𝐿 𝐿 𝐿 \left(L,c,\left[-\right]:L\otimes L\rightarrow L\right) ( italic_L , italic_c , [ - ] : italic_L βŠ— italic_L β†’ italic_L ) where ( L , c ) 𝐿 𝑐 \left(L,c\right) ( italic_L , italic_c ) is a braided object and the following equalities hold true:

[ - ] = - [ - ] ∘ c ⁒ (skew-symmetry); delimited-[] delimited-[] 𝑐 (skew-symmetry); \displaystyle\left[-\right]=-\left[-\right]\circ c\text{ (skew-symmetry);} [ - ] = - [ - ] ∘ italic_c (skew-symmetry); (1.12)
[ - ] ∘ ( L βŠ— [ - ] ) ∘ [ Id L βŠ— ( L βŠ— L ) + ( L βŠ— c ) ⁒ a L , L , L ⁒ ( c βŠ— L ) ⁒ a L , L , L - 1 + a L , L , L ⁒ ( c βŠ— L ) ⁒ a L , L , L - 1 ⁒ ( L βŠ— c ) ] = 0 delimited-[] tensor-product 𝐿 delimited-[] delimited-[] subscript Id tensor-product 𝐿 tensor-product 𝐿 𝐿 tensor-product 𝐿 𝑐 subscript π‘Ž 𝐿 𝐿 𝐿 tensor-product 𝑐 𝐿 superscript subscript π‘Ž 𝐿 𝐿 𝐿 1 subscript π‘Ž 𝐿 𝐿 𝐿 tensor-product 𝑐 𝐿 superscript subscript π‘Ž 𝐿 𝐿 𝐿 1 tensor-product 𝐿 𝑐 0 \displaystyle\left[-\right]\circ\left(L\otimes\left[-\right]\right)\circ\left[% \mathrm{Id}_{L\otimes\left(L\otimes L\right)}+\left(L\otimes c\right)a_{L,L,L}% \left(c\otimes L\right)a_{L,L,L}^{-1}+a_{L,L,L}\left(c\otimes L\right)a_{L,L,L% }^{-1}\left(L\otimes c\right)\right]=0 [ - ] ∘ ( italic_L βŠ— [ - ] ) ∘ [ roman_Id start_POSTSUBSCRIPT italic_L βŠ— ( italic_L βŠ— italic_L ) end_POSTSUBSCRIPT + ( italic_L βŠ— italic_c ) italic_a start_POSTSUBSCRIPT italic_L , italic_L , italic_L end_POSTSUBSCRIPT ( italic_c βŠ— italic_L ) italic_a start_POSTSUBSCRIPT italic_L , italic_L , italic_L end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT + italic_a start_POSTSUBSCRIPT italic_L , italic_L , italic_L end_POSTSUBSCRIPT ( italic_c βŠ— italic_L ) italic_a start_POSTSUBSCRIPT italic_L , italic_L , italic_L end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ( italic_L βŠ— italic_c ) ] = 0 (1.13)
(Jacobi condition);
c ∘ ( L βŠ— [ - ] ) ⁒ a L , L , L = ( [ - ] βŠ— L ) ⁒ a L , L , L - 1 ⁒ ( L βŠ— c ) ⁒ a L , L , L ⁒ ( c βŠ— L ) ; 𝑐 tensor-product 𝐿 delimited-[] subscript π‘Ž 𝐿 𝐿 𝐿 tensor-product delimited-[] 𝐿 superscript subscript π‘Ž 𝐿 𝐿 𝐿 1 tensor-product 𝐿 𝑐 subscript π‘Ž 𝐿 𝐿 𝐿 tensor-product 𝑐 𝐿 \displaystyle c\circ\left(L\otimes\left[-\right]\right)a_{L,L,L}=\left(\left[-% \right]\otimes L\right)a_{L,L,L}^{-1}\left(L\otimes c\right)a_{L,L,L}\left(c% \otimes L\right); italic_c ∘ ( italic_L βŠ— [ - ] ) italic_a start_POSTSUBSCRIPT italic_L , italic_L , italic_L end_POSTSUBSCRIPT = ( [ - ] βŠ— italic_L ) italic_a start_POSTSUBSCRIPT italic_L , italic_L , italic_L end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ( italic_L βŠ— italic_c ) italic_a start_POSTSUBSCRIPT italic_L , italic_L , italic_L end_POSTSUBSCRIPT ( italic_c βŠ— italic_L ) ; (1.14)
c ∘ ( [ - ] βŠ— L ) ⁒ a L , L , L - 1 = ( L βŠ— [ - ] ) ⁒ a L , L , L ⁒ ( c βŠ— L ) ⁒ a L , L , L - 1 ⁒ ( L βŠ— c ) . 𝑐 tensor-product delimited-[] 𝐿 superscript subscript π‘Ž 𝐿 𝐿 𝐿 1 tensor-product 𝐿 delimited-[] subscript π‘Ž 𝐿 𝐿 𝐿 tensor-product 𝑐 𝐿 superscript subscript π‘Ž 𝐿 𝐿 𝐿 1 tensor-product 𝐿 𝑐 \displaystyle c\circ\left(\left[-\right]\otimes L\right)a_{L,L,L}^{-1}=\left(L% \otimes\left[-\right]\right)a_{L,L,L}\left(c\otimes L\right)a_{L,L,L}^{-1}% \left(L\otimes c\right). italic_c ∘ ( [ - ] βŠ— italic_L ) italic_a start_POSTSUBSCRIPT italic_L , italic_L , italic_L end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT = ( italic_L βŠ— [ - ] ) italic_a start_POSTSUBSCRIPT italic_L , italic_L , italic_L end_POSTSUBSCRIPT ( italic_c βŠ— italic_L ) italic_a start_POSTSUBSCRIPT italic_L , italic_L , italic_L end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ( italic_L βŠ— italic_c ) . (1.15)

Let β„³ β„³ \mathcal{M} caligraphic_M be an additive braided monoidal category. A Lie algebra in β„³ β„³ \mathcal{M} caligraphic_M consists of a pair ( L , [ - ] : L βŠ— L β†’ L ) normal-: 𝐿 delimited-[] normal-β†’ tensor-product 𝐿 𝐿 𝐿 \left(L,\left[-\right]:L\otimes L\rightarrow L\right) ( italic_L , [ - ] : italic_L βŠ— italic_L β†’ italic_L ) such that ( L , c L , L , [ - ] ) 𝐿 subscript 𝑐 𝐿 𝐿 delimited-[] \left(L,c_{L,L},\left[-\right]\right) ( italic_L , italic_c start_POSTSUBSCRIPT italic_L , italic_L end_POSTSUBSCRIPT , [ - ] ) is a braided Lie algebra in the additive monoidal category β„³ β„³ \mathcal{M} caligraphic_M , where c L , L subscript 𝑐 𝐿 𝐿 c_{L,L} italic_c start_POSTSUBSCRIPT italic_L , italic_L end_POSTSUBSCRIPT is the braiding c 𝑐 c italic_c of β„³ β„³ \mathcal{M} caligraphic_M evaluated on L 𝐿 L italic_L (note that in this case the conditions ( 1.14 ) and ( 1.15 ) are automatically satisfied).

Definition 2.3

Let π•œ normal-π•œ {\Bbbk} roman_π•œ be a field. A BiHom-associative algebra over π•œ normal-π•œ \Bbbk roman_π•œ is a 4-tuple ( A , ΞΌ , Ξ± , Ξ² ) 𝐴 πœ‡ 𝛼 𝛽 \left(A,\mu,\alpha,\beta\right) ( italic_A , italic_ΞΌ , italic_Ξ± , italic_Ξ² ) , where A 𝐴 A italic_A is a π•œ normal-π•œ \Bbbk roman_π•œ -linear space, Ξ± : A β†’ A normal-: 𝛼 normal-β†’ 𝐴 𝐴 \alpha:A\rightarrow A italic_Ξ± : italic_A β†’ italic_A , Ξ² : A β†’ A normal-: 𝛽 normal-β†’ 𝐴 𝐴 \beta:A\rightarrow A italic_Ξ² : italic_A β†’ italic_A and ΞΌ : A βŠ— A β†’ A normal-: πœ‡ normal-β†’ tensor-product 𝐴 𝐴 𝐴 \mu:A\otimes A\rightarrow A italic_ΞΌ : italic_A βŠ— italic_A β†’ italic_A are linear maps, with notation ΞΌ ⁒ ( a βŠ— a β€² ) = a ⁒ a β€² πœ‡ tensor-product π‘Ž superscript π‘Ž normal-β€² π‘Ž superscript π‘Ž normal-β€² \mu\left(a\otimes a^{\prime}\right)=aa^{\prime} italic_ΞΌ ( italic_a βŠ— italic_a start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ) = italic_a italic_a start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT , satisfying the following conditions, for all a , a β€² , a β€²β€² ∈ A : normal-: π‘Ž superscript π‘Ž normal-β€² superscript π‘Ž normal-β€²β€² 𝐴 absent a,a^{\prime},a^{\prime\prime}\in A: italic_a , italic_a start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT , italic_a start_POSTSUPERSCRIPT β€² β€² end_POSTSUPERSCRIPT ∈ italic_A :

Ξ± ∘ Ξ² = Ξ² ∘ Ξ± , 𝛼 𝛽 𝛽 𝛼 \displaystyle\alpha\circ\beta=\beta\circ\alpha, italic_Ξ± ∘ italic_Ξ² = italic_Ξ² ∘ italic_Ξ± , (2.1)
Ξ± ⁒ ( a ⁒ a β€² ) = Ξ± ⁒ ( a ) ⁒ Ξ± ⁒ ( a β€² ) ⁒ and ⁒ Ξ² ⁒ ( a ⁒ a β€² ) = Ξ² ⁒ ( a ) ⁒ Ξ² ⁒ ( a β€² ) , (multiplicativity) formulae-sequence 𝛼 π‘Ž superscript π‘Ž β€² 𝛼 π‘Ž 𝛼 superscript π‘Ž β€² and 𝛽 π‘Ž superscript π‘Ž β€² 𝛽 π‘Ž 𝛽 superscript π‘Ž β€² (multiplicativity) \displaystyle\alpha\left(aa^{\prime}\right)=\alpha\left(a\right)\alpha\left(a^% {\prime}\right)\text{ and }\beta\left(aa^{\prime}\right)=\beta\left(a\right)% \beta\left(a^{\prime}\right),\quad\text{(multiplicativity)} italic_Ξ± ( italic_a italic_a start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ) = italic_Ξ± ( italic_a ) italic_Ξ± ( italic_a start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ) and italic_Ξ² ( italic_a italic_a start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ) = italic_Ξ² ( italic_a ) italic_Ξ² ( italic_a start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ) , (multiplicativity) (2.2)
Ξ± ( a ) ( a β€² a β€²β€² ) = ( a a β€² ) Ξ² ( a β€²β€² ) . (BiHom-associativity) fragments Ξ± fragments ( a ) fragments ( superscript π‘Ž β€² superscript π‘Ž β€²β€² ) fragments ( a superscript π‘Ž β€² ) Ξ² fragments ( superscript π‘Ž β€²β€² ) . italic- (BiHom-associativity) \displaystyle\alpha\left(a\right)\left(a^{\prime}a^{\prime\prime}\right)=\left% (aa^{\prime}\right)\beta\left(a^{\prime\prime}\right).\quad\text{(BiHom-% associativity)} italic_Ξ± ( italic_a ) ( italic_a start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT italic_a start_POSTSUPERSCRIPT β€² β€² end_POSTSUPERSCRIPT ) = ( italic_a italic_a start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ) italic_Ξ² ( italic_a start_POSTSUPERSCRIPT β€² β€² end_POSTSUPERSCRIPT ) . (BiHom-associativity) (2.3)

We call Ξ± 𝛼 \alpha italic_Ξ± and Ξ² 𝛽 \beta italic_Ξ² (in this order) the structure maps of A 𝐴 A italic_A .

A morphism f : ( A , ΞΌ A , Ξ± A , Ξ² A ) β†’ ( B , ΞΌ B , Ξ± B , Ξ² B ) normal-: 𝑓 normal-β†’ 𝐴 subscript πœ‡ 𝐴 subscript 𝛼 𝐴 subscript 𝛽 𝐴 𝐡 subscript πœ‡ 𝐡 subscript 𝛼 𝐡 subscript 𝛽 𝐡 f:(A,\mu_{A},\alpha_{A},\beta_{A})\rightarrow(B,\mu_{B},\alpha_{B},\beta_{B}) italic_f : ( italic_A , italic_ΞΌ start_POSTSUBSCRIPT italic_A end_POSTSUBSCRIPT , italic_Ξ± start_POSTSUBSCRIPT italic_A end_POSTSUBSCRIPT , italic_Ξ² start_POSTSUBSCRIPT italic_A end_POSTSUBSCRIPT ) β†’ ( italic_B , italic_ΞΌ start_POSTSUBSCRIPT italic_B end_POSTSUBSCRIPT , italic_Ξ± start_POSTSUBSCRIPT italic_B end_POSTSUBSCRIPT , italic_Ξ² start_POSTSUBSCRIPT italic_B end_POSTSUBSCRIPT ) of BiHom-associative algebras is a linear map f : A β†’ B normal-: 𝑓 normal-β†’ 𝐴 𝐡 f:A\rightarrow B italic_f : italic_A β†’ italic_B such that Ξ± B ∘ f = f ∘ Ξ± A subscript 𝛼 𝐡 𝑓 𝑓 subscript 𝛼 𝐴 \alpha_{B}\circ f=f\circ\alpha_{A} italic_Ξ± start_POSTSUBSCRIPT italic_B end_POSTSUBSCRIPT ∘ italic_f = italic_f ∘ italic_Ξ± start_POSTSUBSCRIPT italic_A end_POSTSUBSCRIPT , Ξ² B ∘ f = f ∘ Ξ² A subscript 𝛽 𝐡 𝑓 𝑓 subscript 𝛽 𝐴 \beta_{B}\circ f=f\circ\beta_{A} italic_Ξ² start_POSTSUBSCRIPT italic_B end_POSTSUBSCRIPT ∘ italic_f = italic_f ∘ italic_Ξ² start_POSTSUBSCRIPT italic_A end_POSTSUBSCRIPT and f ∘ ΞΌ A = ΞΌ B ∘ ( f βŠ— f ) 𝑓 subscript πœ‡ 𝐴 subscript πœ‡ 𝐡 tensor-product 𝑓 𝑓 f\circ\mu_{A}=\mu_{B}\circ(f\otimes f) italic_f ∘ italic_ΞΌ start_POSTSUBSCRIPT italic_A end_POSTSUBSCRIPT = italic_ΞΌ start_POSTSUBSCRIPT italic_B end_POSTSUBSCRIPT ∘ ( italic_f βŠ— italic_f ) .

A BiHom-associative algebra ( A , ΞΌ , Ξ± , Ξ² ) 𝐴 πœ‡ 𝛼 𝛽 (A,\mu,\alpha,\beta) ( italic_A , italic_ΞΌ , italic_Ξ± , italic_Ξ² ) is called unital if there exists an element 1 A ∈ A subscript 1 𝐴 𝐴 1_{A}\in A 1 start_POSTSUBSCRIPT italic_A end_POSTSUBSCRIPT ∈ italic_A (called a unit ) such that Ξ± ⁒ ( 1 A ) = 1 A 𝛼 subscript 1 𝐴 subscript 1 𝐴 \alpha(1_{A})=1_{A} italic_Ξ± ( 1 start_POSTSUBSCRIPT italic_A end_POSTSUBSCRIPT ) = 1 start_POSTSUBSCRIPT italic_A end_POSTSUBSCRIPT , Ξ² ⁒ ( 1 A ) = 1 A 𝛽 subscript 1 𝐴 subscript 1 𝐴 \beta(1_{A})=1_{A} italic_Ξ² ( 1 start_POSTSUBSCRIPT italic_A end_POSTSUBSCRIPT ) = 1 start_POSTSUBSCRIPT italic_A end_POSTSUBSCRIPT and

a ⁒ 1 A = Ξ± ⁒ ( a ) ⁒ a ⁒ n ⁒ d ⁒ 1 A ⁒ a = Ξ² ⁒ ( a ) , βˆ€ a ∈ A . formulae-sequence π‘Ž subscript 1 𝐴 𝛼 π‘Ž π‘Ž 𝑛 𝑑 subscript 1 𝐴 π‘Ž 𝛽 π‘Ž for-all π‘Ž 𝐴 \displaystyle a1_{A}=\alpha(a)\;\;\;and\;\;\;1_{A}a=\beta(a),\;\;\;\forall\;a% \in A. italic_a 1 start_POSTSUBSCRIPT italic_A end_POSTSUBSCRIPT = italic_Ξ± ( italic_a ) italic_a italic_n italic_d 1 start_POSTSUBSCRIPT italic_A end_POSTSUBSCRIPT italic_a = italic_Ξ² ( italic_a ) , βˆ€ italic_a ∈ italic_A .

A morphism of unital BiHom-associative algebras f : A β†’ B normal-: 𝑓 normal-β†’ 𝐴 𝐡 f:A\rightarrow B italic_f : italic_A β†’ italic_B is called unital if f ⁒ ( 1 A ) = 1 B 𝑓 subscript 1 𝐴 subscript 1 𝐡 f(1_{A})=1_{B} italic_f ( 1 start_POSTSUBSCRIPT italic_A end_POSTSUBSCRIPT ) = 1 start_POSTSUBSCRIPT italic_B end_POSTSUBSCRIPT .

Definition 2.12

A BiHom-Lie algebra over a field π•œ normal-π•œ \Bbbk roman_π•œ is a 4-tuple ( L , [ - ] , Ξ± , Ξ² ) 𝐿 delimited-[] 𝛼 𝛽 \left(L,\left[-\right],\alpha,\beta\right) ( italic_L , [ - ] , italic_Ξ± , italic_Ξ² ) , where L 𝐿 L italic_L is a π•œ normal-π•œ \Bbbk roman_π•œ -linear space, Ξ± : L β†’ L normal-: 𝛼 normal-β†’ 𝐿 𝐿 \alpha:L\rightarrow L italic_Ξ± : italic_L β†’ italic_L , Ξ² : L β†’ L normal-: 𝛽 normal-β†’ 𝐿 𝐿 \beta:L\rightarrow L italic_Ξ² : italic_L β†’ italic_L and [ - ] : L βŠ— L β†’ L normal-: delimited-[] normal-β†’ tensor-product 𝐿 𝐿 𝐿 \left[-\right]:L\otimes L\rightarrow L [ - ] : italic_L βŠ— italic_L β†’ italic_L are linear maps, with notation [ - ] ⁒ ( a βŠ— a β€² ) = [ a , a β€² ] delimited-[] tensor-product π‘Ž superscript π‘Ž normal-β€² π‘Ž superscript π‘Ž normal-β€² \left[-\right]\left(a\otimes a^{\prime}\right)=\left[a,a^{\prime}\right] [ - ] ( italic_a βŠ— italic_a start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ) = [ italic_a , italic_a start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ] , satisfying the following conditions, for all a , a β€² , a β€²β€² ∈ L : normal-: π‘Ž superscript π‘Ž normal-β€² superscript π‘Ž normal-β€²β€² 𝐿 absent a,a^{\prime},a^{\prime\prime}\in L: italic_a , italic_a start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT , italic_a start_POSTSUPERSCRIPT β€² β€² end_POSTSUPERSCRIPT ∈ italic_L :

Ξ± ∘ Ξ² = Ξ² ∘ Ξ± , 𝛼 𝛽 𝛽 𝛼 \displaystyle\alpha\circ\beta=\beta\circ\alpha, italic_Ξ± ∘ italic_Ξ² = italic_Ξ² ∘ italic_Ξ± ,
Ξ± ⁒ ( [ a β€² , a β€²β€² ] ) = [ Ξ± ⁒ ( a β€² ) , Ξ± ⁒ ( a β€²β€² ) ] ⁒ and ⁒ Ξ² ⁒ ( [ a β€² , a β€²β€² ] ) = [ Ξ² ⁒ ( a β€² ) , Ξ² ⁒ ( a β€²β€² ) ] , 𝛼 superscript π‘Ž β€² superscript π‘Ž β€²β€² 𝛼 superscript π‘Ž β€² 𝛼 superscript π‘Ž β€²β€² and 𝛽 superscript π‘Ž β€² superscript π‘Ž β€²β€² 𝛽 superscript π‘Ž β€² 𝛽 superscript π‘Ž β€²β€² \displaystyle\alpha(\left[a^{\prime},a^{\prime\prime}\right])=\left[\alpha% \left(a^{\prime}\right),\alpha\left(a^{\prime\prime}\right)\right]\;\;\text{ % and }\;\;\beta(\left[a^{\prime},a^{\prime\prime}\right])=\left[\beta\left(a^{% \prime}\right),\beta\left(a^{\prime\prime}\right)\right], italic_Ξ± ( [ italic_a start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT , italic_a start_POSTSUPERSCRIPT β€² β€² end_POSTSUPERSCRIPT ] ) = [ italic_Ξ± ( italic_a start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ) , italic_Ξ± ( italic_a start_POSTSUPERSCRIPT β€² β€² end_POSTSUPERSCRIPT ) ] and italic_Ξ² ( [ italic_a start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT , italic_a start_POSTSUPERSCRIPT β€² β€² end_POSTSUPERSCRIPT ] ) = [ italic_Ξ² ( italic_a start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ) , italic_Ξ² ( italic_a start_POSTSUPERSCRIPT β€² β€² end_POSTSUPERSCRIPT ) ] ,
[ Ξ² ⁒ ( a ) , Ξ± ⁒ ( a β€² ) ] = - [ Ξ² ⁒ ( a β€² ) , Ξ± ⁒ ( a ) ] , (skew-symmetry) 𝛽 π‘Ž 𝛼 superscript π‘Ž β€² 𝛽 superscript π‘Ž β€² 𝛼 π‘Ž (skew-symmetry) \displaystyle\left[\beta\left(a\right),\alpha\left(a^{\prime}\right)\right]=-% \left[\beta\left(a^{\prime}\right),\alpha\left(a\right)\right],\;\;\;\;\text{ % (skew-symmetry)} [ italic_Ξ² ( italic_a ) , italic_Ξ± ( italic_a start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ) ] = - [ italic_Ξ² ( italic_a start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ) , italic_Ξ± ( italic_a ) ] , italic_(skew-symmetry)
[ Ξ² 2 ⁒ ( a ) , [ Ξ² ⁒ ( a β€² ) , Ξ± ⁒ ( a β€²β€² ) ] ] + [ Ξ² 2 ⁒ ( a β€² ) , [ Ξ² ⁒ ( a β€²β€² ) , Ξ± ⁒ ( a ) ] ] + [ Ξ² 2 ⁒ ( a β€²β€² ) , [ Ξ² ⁒ ( a ) , Ξ± ⁒ ( a β€² ) ] ] = 0 . superscript 𝛽 2 π‘Ž 𝛽 superscript π‘Ž β€² 𝛼 superscript π‘Ž β€²β€² superscript 𝛽 2 superscript π‘Ž β€² 𝛽 superscript π‘Ž β€²β€² 𝛼 π‘Ž superscript 𝛽 2 superscript π‘Ž β€²β€² 𝛽 π‘Ž 𝛼 superscript π‘Ž β€² 0 \displaystyle\left[\beta^{2}\left(a\right),\left[\beta\left(a^{\prime}\right),% \alpha\left(a^{\prime\prime}\right)\right]\right]+\left[\beta^{2}\left(a^{% \prime}\right),\left[\beta\left(a^{\prime\prime}\right),\alpha\left(a\right)% \right]\right]+\left[\beta^{2}\left(a^{\prime\prime}\right),\left[\beta\left(a% \right),\alpha\left(a^{\prime}\right)\right]\right]=0. [ italic_Ξ² start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_a ) , [ italic_Ξ² ( italic_a start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ) , italic_Ξ± ( italic_a start_POSTSUPERSCRIPT β€² β€² end_POSTSUPERSCRIPT ) ] ] + [ italic_Ξ² start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_a start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ) , [ italic_Ξ² ( italic_a start_POSTSUPERSCRIPT β€² β€² end_POSTSUPERSCRIPT ) , italic_Ξ± ( italic_a ) ] ] + [ italic_Ξ² start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_a start_POSTSUPERSCRIPT β€² β€² end_POSTSUPERSCRIPT ) , [ italic_Ξ² ( italic_a ) , italic_Ξ± ( italic_a start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ) ] ] = 0 .
(BiHom-Jacobi condition).

We call Ξ± 𝛼 \alpha italic_Ξ± and Ξ² 𝛽 \beta italic_Ξ² (in this order) the structure maps of L 𝐿 L italic_L .

A morphism f : ( L , [ - ] , Ξ± , Ξ² ) β†’ ( L β€² , [ - ] β€² , Ξ± β€² , Ξ² β€² ) normal-: 𝑓 normal-β†’ 𝐿 delimited-[] 𝛼 𝛽 superscript 𝐿 normal-β€² superscript delimited-[] normal-β€² superscript 𝛼 normal-β€² superscript 𝛽 normal-β€² f:\left(L,\left[-\right],\alpha,\beta\right)\rightarrow\left(L^{\prime},\left[% -\right]^{\prime},\alpha^{\prime},\beta^{\prime}\right) italic_f : ( italic_L , [ - ] , italic_Ξ± , italic_Ξ² ) β†’ ( italic_L start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT , [ - ] start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT , italic_Ξ± start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT , italic_Ξ² start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ) of BiHom-Lie algebras is a linear map f : L β†’ L β€² normal-: 𝑓 normal-β†’ 𝐿 superscript 𝐿 normal-β€² f:L\rightarrow L^{\prime} italic_f : italic_L β†’ italic_L start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT such that Ξ± β€² ∘ f = f ∘ Ξ± superscript 𝛼 normal-β€² 𝑓 𝑓 𝛼 \alpha^{\prime}\circ f=f\circ\alpha italic_Ξ± start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ∘ italic_f = italic_f ∘ italic_Ξ± , Ξ² β€² ∘ f = f ∘ Ξ² superscript 𝛽 normal-β€² 𝑓 𝑓 𝛽 \beta^{\prime}\circ f=f\circ\beta italic_Ξ² start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ∘ italic_f = italic_f ∘ italic_Ξ² and f ⁒ ( [ x , y ] ) = [ f ⁒ ( x ) , f ⁒ ( y ) ] β€² 𝑓 π‘₯ 𝑦 superscript 𝑓 π‘₯ 𝑓 𝑦 normal-β€² f(\left[x,y\right])=[f(x),f(y)]^{\prime} italic_f ( [ italic_x , italic_y ] ) = [ italic_f ( italic_x ) , italic_f ( italic_y ) ] start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT , for all x , y ∈ L π‘₯ 𝑦 𝐿 x,y\in L italic_x , italic_y ∈ italic_L .

Definition 4.1

A BiHom-coassociative coalgebra is a 4-tuple ( C , Ξ” , ψ , Ο‰ ) 𝐢 normal-Ξ” πœ“ πœ” (C,\Delta,\psi,\omega) ( italic_C , roman_Ξ” , italic_ψ , italic_Ο‰ ) , in which C 𝐢 C italic_C is a linear space, ψ , Ο‰ : C β†’ C normal-: πœ“ πœ” normal-β†’ 𝐢 𝐢 \psi,\omega:C\rightarrow C italic_ψ , italic_Ο‰ : italic_C β†’ italic_C and Ξ” : C β†’ C βŠ— C normal-: normal-Ξ” normal-β†’ 𝐢 tensor-product 𝐢 𝐢 \Delta:C\rightarrow C\otimes C roman_Ξ” : italic_C β†’ italic_C βŠ— italic_C are linear maps, such that:

ψ ∘ Ο‰ = Ο‰ ∘ ψ , πœ“ πœ” πœ” πœ“ \displaystyle\psi\circ\omega=\omega\circ\psi, italic_ψ ∘ italic_Ο‰ = italic_Ο‰ ∘ italic_ψ ,
( ψ βŠ— ψ ) ∘ Ξ” = Ξ” ∘ ψ , tensor-product πœ“ πœ“ Ξ” Ξ” πœ“ \displaystyle(\psi\otimes\psi)\circ\Delta=\Delta\circ\psi, ( italic_ψ βŠ— italic_ψ ) ∘ roman_Ξ” = roman_Ξ” ∘ italic_ψ ,
( Ο‰ βŠ— Ο‰ ) ∘ Ξ” = Ξ” ∘ Ο‰ , tensor-product πœ” πœ” Ξ” Ξ” πœ” \displaystyle(\omega\otimes\omega)\circ\Delta=\Delta\circ\omega, ( italic_Ο‰ βŠ— italic_Ο‰ ) ∘ roman_Ξ” = roman_Ξ” ∘ italic_Ο‰ ,
( Ξ” βŠ— ψ ) ∘ Ξ” = ( Ο‰ βŠ— Ξ” ) ∘ Ξ” . tensor-product Ξ” πœ“ Ξ” tensor-product πœ” Ξ” Ξ” \displaystyle(\Delta\otimes\psi)\circ\Delta=(\omega\otimes\Delta)\circ\Delta. ( roman_Ξ” βŠ— italic_ψ ) ∘ roman_Ξ” = ( italic_Ο‰ βŠ— roman_Ξ” ) ∘ roman_Ξ” .

We call ψ πœ“ \psi italic_ψ and Ο‰ πœ” \omega italic_Ο‰ (in this order) the structure maps of C 𝐢 C italic_C .

A morphism g : ( C , Ξ” C , ψ C , Ο‰ C ) β†’ ( D , Ξ” D , ψ D , Ο‰ D ) normal-: 𝑔 normal-β†’ 𝐢 subscript normal-Ξ” 𝐢 subscript πœ“ 𝐢 subscript πœ” 𝐢 𝐷 subscript normal-Ξ” 𝐷 subscript πœ“ 𝐷 subscript πœ” 𝐷 g:(C,\Delta_{C},\psi_{C},\omega_{C})\rightarrow(D,\Delta_{D},\psi_{D},\omega_{% D}) italic_g : ( italic_C , roman_Ξ” start_POSTSUBSCRIPT italic_C end_POSTSUBSCRIPT , italic_ψ start_POSTSUBSCRIPT italic_C end_POSTSUBSCRIPT , italic_Ο‰ start_POSTSUBSCRIPT italic_C end_POSTSUBSCRIPT ) β†’ ( italic_D , roman_Ξ” start_POSTSUBSCRIPT italic_D end_POSTSUBSCRIPT , italic_ψ start_POSTSUBSCRIPT italic_D end_POSTSUBSCRIPT , italic_Ο‰ start_POSTSUBSCRIPT italic_D end_POSTSUBSCRIPT ) of BiHom-coassociative coalgebras is a linear map g : C β†’ D normal-: 𝑔 normal-β†’ 𝐢 𝐷 g:C\rightarrow D italic_g : italic_C β†’ italic_D such that ψ D ∘ g = g ∘ ψ C subscript πœ“ 𝐷 𝑔 𝑔 subscript πœ“ 𝐢 \psi_{D}\circ g=g\circ\psi_{C} italic_ψ start_POSTSUBSCRIPT italic_D end_POSTSUBSCRIPT ∘ italic_g = italic_g ∘ italic_ψ start_POSTSUBSCRIPT italic_C end_POSTSUBSCRIPT , Ο‰ D ∘ g = g ∘ Ο‰ C subscript πœ” 𝐷 𝑔 𝑔 subscript πœ” 𝐢 \omega_{D}\circ g=g\circ\omega_{C} italic_Ο‰ start_POSTSUBSCRIPT italic_D end_POSTSUBSCRIPT ∘ italic_g = italic_g ∘ italic_Ο‰ start_POSTSUBSCRIPT italic_C end_POSTSUBSCRIPT and ( g βŠ— g ) ∘ Ξ” C = Ξ” D ∘ g tensor-product 𝑔 𝑔 subscript normal-Ξ” 𝐢 subscript normal-Ξ” 𝐷 𝑔 (g\otimes g)\circ\Delta_{C}=\Delta_{D}\circ g ( italic_g βŠ— italic_g ) ∘ roman_Ξ” start_POSTSUBSCRIPT italic_C end_POSTSUBSCRIPT = roman_Ξ” start_POSTSUBSCRIPT italic_D end_POSTSUBSCRIPT ∘ italic_g .

A BiHom-coassociative coalgebra ( C , Ξ” , ψ , Ο‰ ) 𝐢 normal-Ξ” πœ“ πœ” (C,\Delta,\psi,\omega) ( italic_C , roman_Ξ” , italic_ψ , italic_Ο‰ ) is called counital if there exists a linear map Ξ΅ : C β†’ π•œ normal-: πœ€ normal-β†’ 𝐢 normal-π•œ \varepsilon:C\rightarrow\Bbbk italic_Ξ΅ : italic_C β†’ roman_π•œ (called a counit ) such that

Ξ΅ ∘ ψ = Ξ΅ , Ξ΅ ∘ Ο‰ = Ξ΅ , formulae-sequence πœ€ πœ“ πœ€ πœ€ πœ” πœ€ \displaystyle\varepsilon\circ\psi=\varepsilon,\quad\varepsilon\circ\omega=\varepsilon, italic_Ξ΅ ∘ italic_ψ = italic_Ξ΅ , italic_Ξ΅ ∘ italic_Ο‰ = italic_Ξ΅ ,
( i ⁒ d C βŠ— Ξ΅ ) ∘ Ξ” = Ο‰ a ⁒ n ⁒ d ( Ξ΅ βŠ— i ⁒ d C ) ∘ Ξ” = ψ . formulae-sequence tensor-product 𝑖 subscript 𝑑 𝐢 πœ€ Ξ” πœ” π‘Ž 𝑛 𝑑 tensor-product πœ€ 𝑖 subscript 𝑑 𝐢 Ξ” πœ“ \displaystyle(id_{C}\otimes\varepsilon)\circ\Delta=\omega\quad and\quad(% \varepsilon\otimes id_{C})\circ\Delta=\psi. ( italic_i italic_d start_POSTSUBSCRIPT italic_C end_POSTSUBSCRIPT βŠ— italic_Ξ΅ ) ∘ roman_Ξ” = italic_Ο‰ italic_a italic_n italic_d ( italic_Ξ΅ βŠ— italic_i italic_d start_POSTSUBSCRIPT italic_C end_POSTSUBSCRIPT ) ∘ roman_Ξ” = italic_ψ .

A morphism of counital BiHom-coassociative coalgebras g : C β†’ D normal-: 𝑔 normal-β†’ 𝐢 𝐷 g:C\rightarrow D italic_g : italic_C β†’ italic_D is called counital if Ξ΅ D ∘ g = Ξ΅ C subscript πœ€ 𝐷 𝑔 subscript πœ€ 𝐢 \varepsilon_{D}\circ g=\varepsilon_{C} italic_Ξ΅ start_POSTSUBSCRIPT italic_D end_POSTSUBSCRIPT ∘ italic_g = italic_Ξ΅ start_POSTSUBSCRIPT italic_C end_POSTSUBSCRIPT , where Ξ΅ C subscript πœ€ 𝐢 \varepsilon_{C} italic_Ξ΅ start_POSTSUBSCRIPT italic_C end_POSTSUBSCRIPT and Ξ΅ D subscript πœ€ 𝐷 \varepsilon_{D} italic_Ξ΅ start_POSTSUBSCRIPT italic_D end_POSTSUBSCRIPT are the counits of C 𝐢 C italic_C and D 𝐷 D italic_D , respectively.


Definition 1 .

A surface M 𝑀 M italic_M is a translation surface if it can be parametrized by a patch

(2.1) x ⁒ ( u , v ) = ( u , v , f ⁒ ( u ) + g ⁒ ( v ) ) . π‘₯ 𝑒 𝑣 𝑒 𝑣 𝑓 𝑒 𝑔 𝑣 x(u,v)=\left(u,v,f(u)+g(v)\right). italic_x ( italic_u , italic_v ) = ( italic_u , italic_v , italic_f ( italic_u ) + italic_g ( italic_v ) ) .
Definition 2 .

A surface M 𝑀 M italic_M is a factorable surface if it can be parametrized by a patch

(2.2) x ⁒ ( u , v ) = ( u , v , f ⁒ ( u ) ⁒ g ⁒ ( v ) ) . π‘₯ 𝑒 𝑣 𝑒 𝑣 𝑓 𝑒 𝑔 𝑣 x(u,v)=\left(u,v,f(u)g(v)\right). italic_x ( italic_u , italic_v ) = ( italic_u , italic_v , italic_f ( italic_u ) italic_g ( italic_v ) ) .

Definition A.1 ( [ 10 ] ) .

Let v = ( a , b ) 𝑣 π‘Ž 𝑏 v=(a,b) italic_v = ( italic_a , italic_b ) be a vertex in the hexagonal lattice. Then the type of v 𝑣 v italic_v is

Ο„ ⁒ ( v ) = a + b + 1 ( mod 2 ) . 𝜏 𝑣 annotated π‘Ž 𝑏 1 pmod 2 \tau(v)=a+b+1\pmod{2}. italic_Ο„ ( italic_v ) = italic_a + italic_b + 1 start_MODIFIER ( roman_mod start_ARG 2 end_ARG ) end_MODIFIER .

Definition 2.1.3 .

Let D 𝐷 D italic_D be normed ring. Element a ∈ D π‘Ž 𝐷 a\in D italic_a ∈ italic_D is called limit of a sequence { a n } subscript π‘Ž 𝑛 \{a_{n}\} { italic_a start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT }

a = π‘Ž absent a= italic_a =

if for every Ο΅ ∈ R italic-Ο΅ 𝑅 \epsilon\in R italic_Ο΅ ∈ italic_R , Ο΅ > 0 italic-Ο΅ 0 \epsilon>0 italic_Ο΅ > 0 , there exists positive integer n 0 subscript 𝑛 0 n_{0} italic_n start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT depending on Ο΅ italic-Ο΅ \epsilon italic_Ο΅ and such, that

| a n - a | < Ο΅ subscript π‘Ž 𝑛 π‘Ž italic-Ο΅ |a_{n}-a|<\epsilon | italic_a start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT - italic_a | < italic_Ο΅

for every n > n 0 𝑛 subscript 𝑛 0 n>n_{0} italic_n > italic_n start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT . ∎


Definition 2.1.1

A quandle is a set Q β‰  βˆ… 𝑄 Q\not=\emptyset italic_Q β‰  βˆ… with a binary operation ⊳ : Q Γ— Q normal-: normal-⊳ 𝑄 𝑄 {\,\vartriangleright\,}:Q\times Q ⊳ : italic_Q Γ— italic_Q β†’ Q normal-β†’ absent 𝑄 \rightarrow Q β†’ italic_Q with the following properties,

a ⁒ ⊳ ⁒ a = a , π‘Ž ⊳ π‘Ž π‘Ž \displaystyle a{\,\vartriangleright\,}a=a, italic_a ⊳ italic_a = italic_a , (2.1.1a)
a ⁒ ⊳ ⁒ ( b ⁒ ⊳ ⁒ c ) = ( a ⁒ ⊳ ⁒ b ) ⁒ ⊳ ⁒ ( a ⁒ ⊳ ⁒ c ) π‘Ž ⊳ 𝑏 ⊳ 𝑐 π‘Ž ⊳ 𝑏 ⊳ π‘Ž ⊳ 𝑐 \displaystyle a{\,\vartriangleright\,}(b{\,\vartriangleright\,}c)=(a{\,% \vartriangleright\,}b){\,\vartriangleright\,}(a{\,\vartriangleright\,}c) italic_a ⊳ ( italic_b ⊳ italic_c ) = ( italic_a ⊳ italic_b ) ⊳ ( italic_a ⊳ italic_c ) (2.1.1b)

for any a , b , c ∈ Q π‘Ž 𝑏 𝑐 𝑄 a,b,c\in Q italic_a , italic_b , italic_c ∈ italic_Q . Moreover, for any a , b ∈ Q π‘Ž 𝑏 𝑄 a,b\in Q italic_a , italic_b ∈ italic_Q , the equation a ⁒ ⊳ ⁒ c = b π‘Ž normal-⊳ 𝑐 𝑏 a{\,\vartriangleright\,}c=b italic_a ⊳ italic_c = italic_b has a unique solution c ∈ Q 𝑐 𝑄 c\in Q italic_c ∈ italic_Q

Definition 2.2.1

Let Q , Q β€² 𝑄 superscript 𝑄 normal-β€² Q,Q^{\prime} italic_Q , italic_Q start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT be quandles and let Ο• : Q β†’ Q β€² normal-: italic-Ο• normal-β†’ 𝑄 superscript 𝑄 normal-β€² \phi:Q\rightarrow Q^{\prime} italic_Ο• : italic_Q β†’ italic_Q start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT be a mapping. Ο• italic-Ο• \phi italic_Ο• is a quandle morphism if xxxxxxxxxxxx

Ο• ⁒ ( a ⁒ ⊳ ⁒ b ) = Ο• ⁒ ( a ) ⁒ ⊳ ⁒ Ο• β€² ⁒ ( b ) italic-Ο• π‘Ž ⊳ 𝑏 italic-Ο• π‘Ž ⊳ superscript italic-Ο• β€² 𝑏 \phi(a{\,\vartriangleright\,}b)=\phi(a){\,\vartriangleright\,}\!{}^{\prime}\,% \phi(b) italic_Ο• ( italic_a ⊳ italic_b ) = italic_Ο• ( italic_a ) ⊳ start_FLOATSUPERSCRIPT β€² end_FLOATSUPERSCRIPT italic_Ο• ( italic_b ) (2.2.1)

for arbitrary a , b ∈ Q π‘Ž 𝑏 𝑄 a,b\in Q italic_a , italic_b ∈ italic_Q . If Q 𝑄 Q italic_Q , Q β€² superscript 𝑄 normal-β€² Q^{\prime} italic_Q start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT are both pointed, it is further required that

Ο• ⁒ ( 1 Q ) = 1 Q β€² . italic-Ο• subscript 1 𝑄 subscript 1 superscript 𝑄 β€² \phi(1_{Q})=1_{Q^{\prime}}. italic_Ο• ( 1 start_POSTSUBSCRIPT italic_Q end_POSTSUBSCRIPT ) = 1 start_POSTSUBSCRIPT italic_Q start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT end_POSTSUBSCRIPT . (2.2.2)
Definition 3.1.1

A trace over G 𝐺 G italic_G is a mapping tr : G β†’ β„‚ normal-: normal-tr normal-β†’ 𝐺 β„‚ \operatorname{tr}:G\rightarrow\mathbb{C} roman_tr : italic_G β†’ blackboard_C such that

tr ⁑ ( a ⁒ b ⁒ a - 1 ) = tr ⁑ ( b ) tr π‘Ž 𝑏 superscript π‘Ž 1 tr 𝑏 \operatorname{tr}(aba^{-1})=\operatorname{tr}(b) roman_tr ( italic_a italic_b italic_a start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ) = roman_tr ( italic_b ) (3.1.1)

for arbitrary a , b ∈ G π‘Ž 𝑏 𝐺 a,b\in G italic_a , italic_b ∈ italic_G .


Definition 2.2 .

Let a , b ∈ ℝ π‘Ž 𝑏 ℝ a,b\in\mathbb{R} italic_a , italic_b ∈ blackboard_R be two real numbers, one of which is positive and another negative. We consider two closed intervals I Ξ· = [ a , 0 ] subscript 𝐼 πœ‚ π‘Ž 0 I_{\eta}=[a,0] italic_I start_POSTSUBSCRIPT italic_Ξ· end_POSTSUBSCRIPT = [ italic_a , 0 ] and I ΞΎ = [ b , 0 ] subscript 𝐼 πœ‰ 𝑏 0 I_{\xi}=[b,0] italic_I start_POSTSUBSCRIPT italic_ΞΎ end_POSTSUBSCRIPT = [ italic_b , 0 ] . A commuting pair of class C r superscript 𝐢 π‘Ÿ C^{r} italic_C start_POSTSUPERSCRIPT italic_r end_POSTSUPERSCRIPT , r β‰₯ 3 π‘Ÿ 3 r\geq 3 italic_r β‰₯ 3 ( C ∞ superscript 𝐢 C^{\infty} italic_C start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT , analytic) acting on the intervals I Ξ· subscript 𝐼 πœ‚ I_{\eta} italic_I start_POSTSUBSCRIPT italic_Ξ· end_POSTSUBSCRIPT , I ΞΎ subscript 𝐼 πœ‰ I_{\xi} italic_I start_POSTSUBSCRIPT italic_ΞΎ end_POSTSUBSCRIPT is a pair of maps ΞΆ = ( Ξ· , ΞΎ ) 𝜁 πœ‚ πœ‰ \zeta=(\eta,\xi) italic_ΞΆ = ( italic_Ξ· , italic_ΞΎ ) with the corresponding smoothness, such that the following properties hold:

(i) Ξ· πœ‚ \eta italic_Ξ· is an orientation-preserving homeomorphism of the closed intervals I Ξ· ↦ Ξ· ⁒ ( I Ξ· ) βŠ‚ I Ξ· βˆͺ I ΞΎ maps-to subscript 𝐼 πœ‚ πœ‚ subscript 𝐼 πœ‚ subscript 𝐼 πœ‚ subscript 𝐼 πœ‰ I_{\eta}\mapsto\eta(I_{\eta})\subset I_{\eta}\cup I_{\xi} italic_I start_POSTSUBSCRIPT italic_Ξ· end_POSTSUBSCRIPT ↦ italic_Ξ· ( italic_I start_POSTSUBSCRIPT italic_Ξ· end_POSTSUBSCRIPT ) βŠ‚ italic_I start_POSTSUBSCRIPT italic_Ξ· end_POSTSUBSCRIPT βˆͺ italic_I start_POSTSUBSCRIPT italic_ΞΎ end_POSTSUBSCRIPT ; ΞΎ πœ‰ \xi italic_ΞΎ is an orientation-preserving homeomorphism I ΞΎ ↦ ΞΎ ⁒ ( I ΞΎ ) βŠ‚ I Ξ· βˆͺ I ΞΎ maps-to subscript 𝐼 πœ‰ πœ‰ subscript 𝐼 πœ‰ subscript 𝐼 πœ‚ subscript 𝐼 πœ‰ I_{\xi}\mapsto\xi(I_{\xi})\subset I_{\eta}\cup I_{\xi} italic_I start_POSTSUBSCRIPT italic_ΞΎ end_POSTSUBSCRIPT ↦ italic_ΞΎ ( italic_I start_POSTSUBSCRIPT italic_ΞΎ end_POSTSUBSCRIPT ) βŠ‚ italic_I start_POSTSUBSCRIPT italic_Ξ· end_POSTSUBSCRIPT βˆͺ italic_I start_POSTSUBSCRIPT italic_ΞΎ end_POSTSUBSCRIPT ; a = ΞΎ ⁒ ( 0 ) π‘Ž πœ‰ 0 a=\xi(0) italic_a = italic_ΞΎ ( 0 ) and b = Ξ· ⁒ ( 0 ) 𝑏 πœ‚ 0 b=\eta(0) italic_b = italic_Ξ· ( 0 ) ;

(ii) Ξ· β€² ⁒ ( x ) β‰  0 superscript πœ‚ β€² π‘₯ 0 \eta^{\prime}(x)\neq 0 italic_Ξ· start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ( italic_x ) β‰  0 for all x ∈ I ^ Ξ· βˆ– { 0 } π‘₯ subscript ^ 𝐼 πœ‚ 0 x\in\hat{I}_{\eta}\setminus\{0\} italic_x ∈ ^ start_ARG italic_I end_ARG start_POSTSUBSCRIPT italic_Ξ· end_POSTSUBSCRIPT βˆ– { 0 } , and ΞΎ β€² ⁒ ( y ) β‰  0 superscript πœ‰ β€² 𝑦 0 \xi^{\prime}(y)\neq 0 italic_ΞΎ start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ( italic_y ) β‰  0 for all y ∈ I ^ ΞΎ βˆ– { 0 } 𝑦 subscript ^ 𝐼 πœ‰ 0 y\in\hat{I}_{\xi}\setminus\{0\} italic_y ∈ ^ start_ARG italic_I end_ARG start_POSTSUBSCRIPT italic_ΞΎ end_POSTSUBSCRIPT βˆ– { 0 } ; and 0 0 is a cubic critical point for both maps;

(iii) there exist homeomorphic extensions of Ξ· πœ‚ \eta italic_Ξ· and ΞΎ πœ‰ \xi italic_ΞΎ of the same smoothness to interval neighborhoods I ^ Ξ· β‹‘ I Ξ· double-superset-of subscript ^ 𝐼 πœ‚ subscript 𝐼 πœ‚ \hat{I}_{\eta}\Supset I_{\eta} ^ start_ARG italic_I end_ARG start_POSTSUBSCRIPT italic_Ξ· end_POSTSUBSCRIPT β‹‘ italic_I start_POSTSUBSCRIPT italic_Ξ· end_POSTSUBSCRIPT and I ^ ΞΎ β‹‘ I ΞΎ double-superset-of subscript ^ 𝐼 πœ‰ subscript 𝐼 πœ‰ \hat{I}_{\xi}\Supset I_{\xi} ^ start_ARG italic_I end_ARG start_POSTSUBSCRIPT italic_ΞΎ end_POSTSUBSCRIPT β‹‘ italic_I start_POSTSUBSCRIPT italic_ΞΎ end_POSTSUBSCRIPT which commute:

Ξ· ∘ ΞΎ = ΞΎ ∘ Ξ· πœ‚ πœ‰ πœ‰ πœ‚ \eta\circ\xi=\xi\circ\eta italic_Ξ· ∘ italic_ΞΎ = italic_ΞΎ ∘ italic_Ξ·

where defined;

(iv) ΞΎ ∘ Ξ· ⁒ ( 0 ) ∈ I Ξ· πœ‰ πœ‚ 0 subscript 𝐼 πœ‚ \xi\circ\eta(0)\in I_{\eta} italic_ΞΎ ∘ italic_Ξ· ( 0 ) ∈ italic_I start_POSTSUBSCRIPT italic_Ξ· end_POSTSUBSCRIPT .


Definition 2.1 ( [ 19 , p.19] , [ 20 ] ) .

A Smale space ( X , Ο† ) 𝑋 πœ‘ (X,\varphi) ( italic_X , italic_Ο† ) consists of a compact metric space X 𝑋 X italic_X with metric d 𝑑 d italic_d along with a homeomorphism Ο† : X β†’ X : πœ‘ β†’ 𝑋 𝑋 \varphi:X\to X italic_Ο† : italic_X β†’ italic_X such that there exist constants Ξ΅ X > 0 , 0 < Ξ» < 1 formulae-sequence subscript πœ€ 𝑋 0 0 πœ† 1 \varepsilon_{X}>0,0<\lambda<1 italic_Ξ΅ start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT > 0 , 0 < italic_Ξ» < 1 and a continuous bracket map

{ ( x , y ) ∈ X Γ— X ∣ d ⁒ ( x , y ) ≀ Ξ΅ X } ↦ [ x , y ] ∈ X maps-to conditional-set π‘₯ 𝑦 𝑋 𝑋 𝑑 π‘₯ 𝑦 subscript πœ€ 𝑋 π‘₯ 𝑦 𝑋 \{(x,y)\in X\times X\mid d(x,y)\leq\varepsilon_{X}\}\mapsto[x,y]\in X { ( italic_x , italic_y ) ∈ italic_X Γ— italic_X ∣ italic_d ( italic_x , italic_y ) ≀ italic_Ξ΅ start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT } ↦ [ italic_x , italic_y ] ∈ italic_X

satisfying the bracket axioms:

for any x , y , z π‘₯ 𝑦 𝑧 x,y,z italic_x , italic_y , italic_z in X 𝑋 X italic_X when both sides are defined. In addition, ( X , Ο† ) 𝑋 πœ‘ (X,\varphi) ( italic_X , italic_Ο† ) is required to satisfy the contraction axioms:


Definition 10 (Physical bits) .

A physical bit is the bit physically transfered over the channel. A physical bit represents some type of coded realization of a payload bit. The number of physical bits, denoted # ⁒ physical bits # physical bits \#\text{physical bits} # physical bits , is

# ⁒ payload bits = # ⁒ physical bits β‹… code rate . # payload bits β‹… # physical bits code rate \#\text{payload bits}=\#\text{physical bits}\cdot\text{code rate}. # payload bits = # physical bits β‹… code rate .

When measuring signal-to-noise ratio (SNR), it will be done with respect to physical bits.


Definition 2.3 .

( L , ∨ , ∧ ) 𝐿 (L,\vee,\wedge) ( italic_L , ∨ , ∧ ) is distributive if βˆ€ a , b , c ∈ L for-all π‘Ž 𝑏 𝑐 𝐿 \forall a,b,c\in L βˆ€ italic_a , italic_b , italic_c ∈ italic_L :

a ∨ ( b ∧ c ) = ( a ∨ b ) ∧ ( a ∨ c ) π‘Ž 𝑏 𝑐 π‘Ž 𝑏 π‘Ž 𝑐 a\vee(b\wedge c)=(a\vee b)\wedge(a\vee c) italic_a ∨ ( italic_b ∧ italic_c ) = ( italic_a ∨ italic_b ) ∧ ( italic_a ∨ italic_c )

(or equivalently: a ∧ ( b ∨ c ) = ( a ∧ b ) ∨ ( a ∧ c ) π‘Ž 𝑏 𝑐 π‘Ž 𝑏 π‘Ž 𝑐 a\wedge(b\vee c)=(a\wedge b)\vee(a\wedge c) italic_a ∧ ( italic_b ∨ italic_c ) = ( italic_a ∧ italic_b ) ∨ ( italic_a ∧ italic_c ) )


Definition 7 (GrΓΆbner basis) .

For a fixed monomial order, a basis 𝒒 = { g 1 , g 2 , … , g s } 𝒒 subscript 𝑔 1 subscript 𝑔 2 … subscript 𝑔 𝑠 \mathcal{G}=\left\{g_{1},g_{2},\ldots,g_{s}\right\} caligraphic_G = { italic_g start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_g start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , … , italic_g start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT } of a polynomial ideal J βŠ‚ ℝ ⁒ [ 𝐱 ] 𝐽 ℝ delimited-[] 𝐱 J\subset\mathbb{R}\left[\mathbf{x}\right] italic_J βŠ‚ blackboard_R [ bold_x ] is a GrΓΆbner basis (or standard basis) if for all f ∈ ℝ ⁒ [ 𝐱 ] 𝑓 ℝ delimited-[] 𝐱 f\in\mathbb{R}\left[\mathbf{x}\right] italic_f ∈ blackboard_R [ bold_x ] there exist a unique r ∈ ℝ ⁒ [ 𝐱 ] π‘Ÿ ℝ delimited-[] 𝐱 r\in\mathbb{R}\left[\mathbf{x}\right] italic_r ∈ blackboard_R [ bold_x ] and g ∈ J 𝑔 𝐽 g\in J italic_g ∈ italic_J such that

f = g + r 𝑓 𝑔 π‘Ÿ f=g+r italic_f = italic_g + italic_r

and no monomial of r π‘Ÿ r italic_r is divisible by any of the leading monomials in 𝒒 𝒒 \mathcal{G} caligraphic_G , i.e., by any of the monomials LM ⁑ ( g 1 ) , LM ⁑ ( g 2 ) , … , LM ⁑ ( g s ) LM subscript 𝑔 1 LM subscript 𝑔 2 … LM subscript 𝑔 𝑠 \operatorname{LM}\left(g_{1}\right),\operatorname{LM}\left(g_{2}\right),\ldots% ,\operatorname{LM}\left(g_{s}\right) roman_LM ( italic_g start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) , roman_LM ( italic_g start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) , … , roman_LM ( italic_g start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT ) .


Definition 3 .

Let ( 𝔀 , [ β‹… , β‹… ] ) 𝔀 normal-β‹… normal-β‹… (\mathfrak{g},[\cdot,\cdot]) ( fraktur_g , [ β‹… , β‹… ] ) be a Lie algebra, and let β–· : 𝔀 βŠ— 𝔀 β†’ 𝔀 fragments normal-β–· normal-: g tensor-product g normal-β†’ g \triangleright:{\mathfrak{g}}\otimes{\mathfrak{g}}\rightarrow\mathfrak{g} β–· : fraktur_g βŠ— fraktur_g β†’ fraktur_g be a binary product such that, for all x , y , z ∈ 𝔀 π‘₯ 𝑦 𝑧 𝔀 x,y,z\in\mathfrak{g} italic_x , italic_y , italic_z ∈ fraktur_g ,

(14) x β–· [ y , z ] = [ x β–· y , z ] + [ y , x β–· z ] , β–· π‘₯ 𝑦 𝑧 β–· π‘₯ 𝑦 𝑧 𝑦 β–· π‘₯ 𝑧 x\triangleright[y,z]=[x\triangleright y,z]+[y,x\triangleright z], italic_x β–· [ italic_y , italic_z ] = [ italic_x β–· italic_y , italic_z ] + [ italic_y , italic_x β–· italic_z ] ,

and

(15) [ x , y ] β–· z = a β–· ⁒ ( x , y , z ) - a β–· ⁒ ( y , x , z ) . β–· π‘₯ 𝑦 𝑧 subscript a β–· π‘₯ 𝑦 𝑧 subscript a β–· 𝑦 π‘₯ 𝑧 [x,y]\triangleright z={\rm{a}}_{\triangleright}(x,y,z)-{\rm{a}}_{% \triangleright}(y,x,z). [ italic_x , italic_y ] β–· italic_z = roman_a start_POSTSUBSCRIPT β–· end_POSTSUBSCRIPT ( italic_x , italic_y , italic_z ) - roman_a start_POSTSUBSCRIPT β–· end_POSTSUBSCRIPT ( italic_y , italic_x , italic_z ) .

Then the triplet ( 𝔀 , [ β‹… , β‹… ] , β–· ) 𝔀 normal-β‹… normal-β‹… normal-β–· (\mathfrak{g},[\cdot,\cdot],\triangleright) ( fraktur_g , [ β‹… , β‹… ] , β–· ) is called a post-Lie algebra .


Definition 2.13 .

Let π”₯ π”₯ \mathfrak{h} fraktur_h be a Lie algebra, G 𝐺 G italic_G a group, Ο† : G β†’ Aut Lie ⁒ ( π”₯ ) : πœ‘ β†’ 𝐺 subscript Aut Lie π”₯ \varphi:G\to{\rm Aut}_{\rm Lie}(\mathfrak{h}) italic_Ο† : italic_G β†’ roman_Aut start_POSTSUBSCRIPT roman_Lie end_POSTSUBSCRIPT ( fraktur_h ) a morphism of groups, Ξ³ ∈ G 𝛾 𝐺 \gamma\in G italic_Ξ³ ∈ italic_G and π”₯ Ξ³ := { y - Ξ³ β–· y | y ∈ π”₯ } assign subscript π”₯ 𝛾 conditional-set β–· 𝑦 𝛾 𝑦 𝑦 π”₯ \mathfrak{h}_{\gamma}:=\{y-\gamma\triangleright y\,|\,y\in\mathfrak{h}\} fraktur_h start_POSTSUBSCRIPT italic_Ξ³ end_POSTSUBSCRIPT := { italic_y - italic_Ξ³ β–· italic_y | italic_y ∈ fraktur_h } . The action Ο† πœ‘ \varphi italic_Ο† is called Ξ³ 𝛾 \gamma italic_Ξ³ -abelian if:

[ g β–· z , g β€² β–· z β€² ] = 0 β–· 𝑔 𝑧 β–· superscript 𝑔 β€² superscript 𝑧 β€² 0 [g\triangleright z,\,g^{\prime}\triangleright z^{\prime}]=0 [ italic_g β–· italic_z , italic_g start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT β–· italic_z start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ] = 0 (24)

for all g β‰  g β€² ∈ G 𝑔 superscript 𝑔 β€² 𝐺 g\neq g^{\prime}\in G italic_g β‰  italic_g start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ∈ italic_G and z 𝑧 z italic_z , z β€² ∈ π”₯ Ξ³ superscript 𝑧 β€² subscript π”₯ 𝛾 z^{\prime}\in\mathfrak{h}_{\gamma} italic_z start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ∈ fraktur_h start_POSTSUBSCRIPT italic_Ξ³ end_POSTSUBSCRIPT .


Definition 1 (Paths) .

(I) For any two chromosomes x normal-x x italic_x and y normal-y y italic_y in π’œ π’œ \mathcal{A} caligraphic_A , the path from x π‘₯ x italic_x to y 𝑦 y italic_y is the function

[ x ↔ y ] ( a , β„“ ) = { 1 if x or y , but not both, inherits from a at β„“ 0 π‘œπ‘‘β„Žπ‘’π‘Ÿπ‘€π‘–π‘ π‘’ . fragments fragments [ x ↔ y ] fragments ( a , β„“ ) cases 1 if x or y , but not both, inherits from a at β„“ 0 π‘œπ‘‘β„Žπ‘’π‘Ÿπ‘€π‘–π‘ π‘’ \displaystyle{{[x\leftrightarrow y]}}(a,\ell)=\begin{cases}1&\text{if $x$ or $% y$, but not both, inherits from $a$ at $\ell$}\\ 0&\text{otherwise}.\end{cases} [ italic_x ↔ italic_y ] ( italic_a , roman_β„“ ) = { start_ROW start_CELL 1 end_CELL start_CELL if italic_x or italic_y , but not both, inherits from italic_a at roman_β„“ end_CELL end_ROW start_ROW start_CELL 0 end_CELL start_CELL otherwise . end_CELL end_ROW (10)

(II) For any two collections of chromosomes X normal-X X italic_X and Y normal-Y Y italic_Y , having | X | normal-X |X| | italic_X | and | Y | normal-Y |Y| | italic_Y | elements each, the path from X 𝑋 X italic_X to Y π‘Œ Y italic_Y is the function

[ X ↔ Y ] ( a , β„“ ) = 1 C ⁒ ( X , Y ) βˆ‘ x , y [ x ↔ y ] ( a , β„“ ) , fragments fragments [ X ↔ Y ] fragments ( a , β„“ ) 1 𝐢 𝑋 π‘Œ subscript π‘₯ 𝑦 fragments [ x ↔ y ] fragments ( a , β„“ ) , \displaystyle{{[X\leftrightarrow Y]}}(a,\ell)=\frac{1}{C(X,Y)}\sum_{x,y}{{[x% \leftrightarrow y]}}(a,\ell), [ italic_X ↔ italic_Y ] ( italic_a , roman_β„“ ) = divide start_ARG 1 end_ARG start_ARG italic_C ( italic_X , italic_Y ) end_ARG βˆ‘ start_POSTSUBSCRIPT italic_x , italic_y end_POSTSUBSCRIPT [ italic_x ↔ italic_y ] ( italic_a , roman_β„“ ) , (11)

where the sum is over distinct pairs x ∈ X π‘₯ 𝑋 x\in X italic_x ∈ italic_X and y ∈ Y 𝑦 π‘Œ y\in Y italic_y ∈ italic_Y with x β‰  y π‘₯ 𝑦 x\neq y italic_x β‰  italic_y , and C ⁒ ( X , Y ) 𝐢 𝑋 π‘Œ C(X,Y) italic_C ( italic_X , italic_Y ) is the number of such pairs. These are depicted in figure 1 .


Definition 2.1 .

The Heisenberg group ℍ n superscript ℍ 𝑛 \mathbb{H}^{n} blackboard_H start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT is ℝ 2 ⁒ n + 1 superscript ℝ 2 𝑛 1 \mathbb{R}^{2n+1} blackboard_R start_POSTSUPERSCRIPT 2 italic_n + 1 end_POSTSUPERSCRIPT equipped with the non commutative group law:

( a , b , c ) ⁒ ( a β€² , b β€² , c β€² ) = ( a + a β€² , b + b β€² , c + c β€² - 2 ⁒ ( ⟨ a , b β€² ⟩ - ⟨ b , a β€² ⟩ ) ) . π‘Ž 𝑏 𝑐 superscript π‘Ž β€² superscript 𝑏 β€² superscript 𝑐 β€² π‘Ž superscript π‘Ž β€² 𝑏 superscript 𝑏 β€² 𝑐 superscript 𝑐 β€² 2 π‘Ž superscript 𝑏 β€² 𝑏 superscript π‘Ž β€² (a,b,c)(a^{\prime},b^{\prime},c^{\prime})=(a+a^{\prime},\,b+b^{\prime},\,c+c^{% \prime}-2(\langle a,b^{\prime}\rangle-\langle b,a^{\prime}\rangle)). ( italic_a , italic_b , italic_c ) ( italic_a start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT , italic_b start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT , italic_c start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ) = ( italic_a + italic_a start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT , italic_b + italic_b start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT , italic_c + italic_c start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT - 2 ( ⟨ italic_a , italic_b start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ⟩ - ⟨ italic_b , italic_a start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ⟩ ) ) .

Definition 3.6 .

If ( B ; β‹… ) 𝐡 β‹… (B;\cdot) ( italic_B ; β‹… ) is a group, then the bijection, Ξ± : B β†’ B : 𝛼 β†’ 𝐡 𝐡 \alpha:B\rightarrow B italic_Ξ± : italic_B β†’ italic_B , is called a holomorphism of ( B ; β‹… ) 𝐡 β‹… (B;\cdot) ( italic_B ; β‹… ) if

Ξ± ⁒ ( x β‹… y - 1 β‹… z ) = Ξ± ⁒ x β‹… ( Ξ± ⁒ y ) - 1 β‹… Ξ± ⁒ z , 𝛼 β‹… π‘₯ superscript 𝑦 1 𝑧 β‹… 𝛼 π‘₯ superscript 𝛼 𝑦 1 𝛼 𝑧 \alpha(x\cdot y^{-1}\cdot z)=\alpha x\cdot(\alpha y)^{-1}\cdot\alpha z, italic_Ξ± ( italic_x β‹… italic_y start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT β‹… italic_z ) = italic_Ξ± italic_x β‹… ( italic_Ξ± italic_y ) start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT β‹… italic_Ξ± italic_z ,

for every x , y , z ∈ B π‘₯ 𝑦 𝑧 𝐡 x,y,z\in B italic_x , italic_y , italic_z ∈ italic_B .


Definition 25 (Projecting [ 8 , DefinitionΒ 4.6] ) .

Let U βŠ‚ X π‘ˆ 𝑋 U\subset X italic_U βŠ‚ italic_X be a convex subgraph. We say that X 𝑋 X italic_X projects to U π‘ˆ U italic_U if for every x ∈ X π‘₯ 𝑋 x\in X italic_x ∈ italic_X that can be connected by an edge-path to some vertex of U π‘ˆ U italic_U , there is Ο€ ⁒ ( x ) ∈ U πœ‹ π‘₯ π‘ˆ \pi(x)\in U italic_Ο€ ( italic_x ) ∈ italic_U such that for all u ∈ U 𝑒 π‘ˆ u\in U italic_u ∈ italic_U we have

d ⁒ ( x , u ) = d ⁒ ( x , Ο€ ⁒ ( x ) ) + d ⁒ ( Ο€ ⁒ ( x ) , u ) . 𝑑 π‘₯ 𝑒 𝑑 π‘₯ πœ‹ π‘₯ 𝑑 πœ‹ π‘₯ 𝑒 d(x,u)=d(x,\pi(x))+d(\pi(x),u). italic_d ( italic_x , italic_u ) = italic_d ( italic_x , italic_Ο€ ( italic_x ) ) + italic_d ( italic_Ο€ ( italic_x ) , italic_u ) .

Thus Ο€ ⁒ ( x ) πœ‹ π‘₯ \pi(x) italic_Ο€ ( italic_x ) is the unique point of U π‘ˆ U italic_U closest to x π‘₯ x italic_x . Writing X U subscript 𝑋 π‘ˆ X_{U} italic_X start_POSTSUBSCRIPT italic_U end_POSTSUBSCRIPT for the component of X 𝑋 X italic_X consisting of vertices that admit an edge path to U π‘ˆ U italic_U , there is then a map Ο€ : X U β†’ U : πœ‹ β†’ subscript 𝑋 π‘ˆ π‘ˆ \pi\colon X_{U}\to U italic_Ο€ : italic_X start_POSTSUBSCRIPT italic_U end_POSTSUBSCRIPT β†’ italic_U defined by u ↦ Ο€ ⁒ ( u ) maps-to 𝑒 πœ‹ 𝑒 u\mapsto\pi(u) italic_u ↦ italic_Ο€ ( italic_u ) .


Definition 2.6 .

Put m β‰₯ 1 π‘š 1 m\geq 1 italic_m β‰₯ 1 , p ∈ 𝒁 𝑝 𝒁 p\in\boldsymbol{Z} italic_p ∈ bold_italic_Z and d = gcd ⁑ ( p , m ) 𝑑 𝑝 π‘š d=\gcd(p,m) italic_d = roman_gcd ( italic_p , italic_m ) . Let Οƒ ∈ 𝔖 m 𝜎 subscript 𝔖 π‘š \sigma\in\mathfrak{S}_{m} italic_Οƒ ∈ fraktur_S start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT be the unique permutation such that X m p superscript subscript 𝑋 π‘š 𝑝 X_{m}^{p} italic_X start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT is the permutation matrix of Οƒ 𝜎 \sigma italic_Οƒ . We can deduce that Οƒ 𝜎 \sigma italic_Οƒ can be decomposed into d 𝑑 d italic_d cyclic permutations as

Οƒ = ( 1 , Οƒ ⁒ ( 1 ) , Οƒ 2 ⁒ ( 1 ) , … , Οƒ q - 1 ⁒ ( 1 ) ) ⁒ β‹― ⁒ ( d , Οƒ ⁒ ( d ) , Οƒ 2 ⁒ ( d ) , … , Οƒ q - 1 ⁒ ( d ) ) , 𝜎 1 𝜎 1 superscript 𝜎 2 1 … superscript 𝜎 π‘ž 1 1 β‹― 𝑑 𝜎 𝑑 superscript 𝜎 2 𝑑 … superscript 𝜎 π‘ž 1 𝑑 \displaystyle\sigma=(1,\sigma(1),\sigma^{2}(1),\ldots,\sigma^{q-1}(1))\cdots(d% ,\sigma(d),\sigma^{2}(d),\ldots,\sigma^{q-1}(d)), italic_Οƒ = ( 1 , italic_Οƒ ( 1 ) , italic_Οƒ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( 1 ) , … , italic_Οƒ start_POSTSUPERSCRIPT italic_q - 1 end_POSTSUPERSCRIPT ( 1 ) ) β‹― ( italic_d , italic_Οƒ ( italic_d ) , italic_Οƒ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_d ) , … , italic_Οƒ start_POSTSUPERSCRIPT italic_q - 1 end_POSTSUPERSCRIPT ( italic_d ) ) ,

where q = m / d π‘ž π‘š 𝑑 q=m/d italic_q = italic_m / italic_d . So we can define a permutation Ξ· ∈ 𝔖 m πœ‚ subscript 𝔖 π‘š \eta\in\mathfrak{S}_{m} italic_Ξ· ∈ fraktur_S start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT by

Ξ· ( u q + v ) = Οƒ v - 1 ( u + 1 ) ( u ∈ { 0 , … , d - 1 } , v ∈ { 1 , … , q } ) . fragments Ξ· fragments ( u q v ) superscript 𝜎 𝑣 1 fragments ( u 1 ) italic- fragments ( u fragments { 0 , … , d 1 } , v fragments { 1 , … , q } ) . \displaystyle\eta(uq+v)=\sigma^{v-1}(u+1)\quad(u\in\{0,\ldots,d-1\},\ v\in\{1,% \ldots,q\}). italic_Ξ· ( italic_u italic_q + italic_v ) = italic_Οƒ start_POSTSUPERSCRIPT italic_v - 1 end_POSTSUPERSCRIPT ( italic_u + 1 ) ( italic_u ∈ { 0 , … , italic_d - 1 } , italic_v ∈ { 1 , … , italic_q } ) .

Now we define Y m , p subscript π‘Œ π‘š 𝑝 Y_{m,p} italic_Y start_POSTSUBSCRIPT italic_m , italic_p end_POSTSUBSCRIPT as the permutation matrix of Ξ· πœ‚ \eta italic_Ξ· .


Definition 2.5 .

A Novikov algebra V 𝑉 V italic_V is a vector space over β„‚ β„‚ \mathbb{C} blackboard_C with a bilinear product ∘ : V Γ— V β†’ V fragments : V V β†’ V \circ:V\times V\rightarrow V ∘ : italic_V Γ— italic_V β†’ italic_V satisfying (for any a π‘Ž a italic_a , b 𝑏 b italic_b , c ∈ V 𝑐 𝑉 c\in V italic_c ∈ italic_V ):

(2.2) ( a ∘ b ) ∘ c - a ∘ ( b ∘ c ) = ( b ∘ a ) ∘ c - b ∘ ( a ∘ c ) , π‘Ž 𝑏 𝑐 π‘Ž 𝑏 𝑐 𝑏 π‘Ž 𝑐 𝑏 π‘Ž 𝑐 \displaystyle(a\circ b)\circ c-a\circ(b\circ c)=(b\circ a)\circ c-b\circ(a% \circ c), ( italic_a ∘ italic_b ) ∘ italic_c - italic_a ∘ ( italic_b ∘ italic_c ) = ( italic_b ∘ italic_a ) ∘ italic_c - italic_b ∘ ( italic_a ∘ italic_c ) ,
(2.3) ( a ∘ b ) ∘ c = ( a ∘ c ) ∘ b . π‘Ž 𝑏 𝑐 π‘Ž 𝑐 𝑏 \displaystyle(a\circ b)\circ c=(a\circ c)\circ b. ( italic_a ∘ italic_b ) ∘ italic_c = ( italic_a ∘ italic_c ) ∘ italic_b .
Definition 2.7 .

(see [ 16 ] or [ 27 ] ) A Gel’fand-Dorfman bialgebra V 𝑉 V italic_V is a Lie algebra ( V , [ β‹… , β‹… ] ) 𝑉 β‹… β‹… (V,[\cdot,\cdot]) ( italic_V , [ β‹… , β‹… ] ) with a binary operation ∘ \circ ∘ such that ( V , ∘ ) 𝑉 (V,\circ) ( italic_V , ∘ ) forms a Novikov algebra and the following compatibility condition holds:

(2.4) [ a ∘ b , c ] - [ a ∘ c , b ] + [ a , b ] ∘ c - [ a , c ] ∘ b - a ∘ [ b , c ] = 0 , π‘Ž 𝑏 𝑐 π‘Ž 𝑐 𝑏 π‘Ž 𝑏 𝑐 π‘Ž 𝑐 𝑏 π‘Ž 𝑏 𝑐 0 \displaystyle[a\circ b,c]-[a\circ c,b]+[a,b]\circ c-[a,c]\circ b-a\circ[b,c]=0, [ italic_a ∘ italic_b , italic_c ] - [ italic_a ∘ italic_c , italic_b ] + [ italic_a , italic_b ] ∘ italic_c - [ italic_a , italic_c ] ∘ italic_b - italic_a ∘ [ italic_b , italic_c ] = 0 ,

for a π‘Ž a italic_a , b 𝑏 b italic_b , and c ∈ V 𝑐 𝑉 c\in V italic_c ∈ italic_V . We usually denote it by ( V , ∘ , [ β‹… , β‹… ] ) 𝑉 β‹… β‹… (V,\circ,[\cdot,\cdot]) ( italic_V , ∘ , [ β‹… , β‹… ] ) .