Definition 2.14 .

An affine permutation of order n 𝑛 n italic_n is a bijection f : β„€ β†’ β„€ normal-: 𝑓 normal-β†’ β„€ β„€ f:\mathbb{Z}\rightarrow\mathbb{Z} italic_f : blackboard_Z β†’ blackboard_Z which satisfies the condition

(2.25) f ⁒ ( i + n ) = f ⁒ ( i ) + n 𝑓 𝑖 𝑛 𝑓 𝑖 𝑛 f(i+n)=f(i)+n italic_f ( italic_i + italic_n ) = italic_f ( italic_i ) + italic_n

for all i ∈ β„€ . 𝑖 β„€ i\in\mathbb{Z}. italic_i ∈ blackboard_Z . The affine permutations of order n 𝑛 n italic_n form a group, which we denote S ~ n . subscript normal-~ 𝑆 𝑛 \widetilde{S}_{n}. ~ start_ARG italic_S end_ARG start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT .


Definition 2.2 .

Let ( A , βˆ— ) 𝐴 βˆ— (A,\ast) ( italic_A , βˆ— ) be a k -algebra with multiplication βˆ— βˆ— \ast βˆ— . Let ( R , ∘ ) 𝑅 (R,\circ) ( italic_R , ∘ ) be a 𝐀 𝐀 \bf k bold_k -algebra with multiplication ∘ \circ ∘ . Let β„“ , r : A β†’ End k ⁒ ( R ) : β„“ π‘Ÿ β†’ 𝐴 subscript End π‘˜ 𝑅 \ell,r:A\rightarrow{\rm End}_{k}(R) roman_β„“ , italic_r : italic_A β†’ roman_End start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ( italic_R ) be two linear maps. We call ( R , βŠ™ , β„“ , r ) 𝑅 direct-product β„“ π‘Ÿ (R,\odot,\ell,r) ( italic_R , βŠ™ , roman_β„“ , italic_r ) or simply R 𝑅 R italic_R an A 𝐴 A italic_A -bimodule 𝐀 𝐀 \bf k bold_k -algebra if ( R , β„“ , r ) 𝑅 β„“ π‘Ÿ (R,\ell,r) ( italic_R , roman_β„“ , italic_r ) is an A 𝐴 A italic_A -bimodule that is compatible with the multiplication ∘ \circ ∘ on R 𝑅 R italic_R in the sense that the following equations hold.

(3) β„“ ⁒ ( x βˆ— y ) ⁒ v = β„“ ⁒ ( x ) ⁒ ( β„“ ⁒ ( y ) ⁒ v ) , v ⁒ r ⁒ ( x βˆ— y ) = ( v ⁒ r ⁒ ( x ) ) ⁒ r ⁒ ( y ) , ( β„“ ⁒ ( x ) ⁒ v ) ⁒ r ⁒ ( y ) = β„“ ⁒ ( x ) ⁒ ( v ⁒ r ⁒ ( y ) ) , formulae-sequence β„“ βˆ— π‘₯ 𝑦 𝑣 β„“ π‘₯ β„“ 𝑦 𝑣 formulae-sequence 𝑣 π‘Ÿ βˆ— π‘₯ 𝑦 𝑣 π‘Ÿ π‘₯ π‘Ÿ 𝑦 β„“ π‘₯ 𝑣 π‘Ÿ 𝑦 β„“ π‘₯ 𝑣 π‘Ÿ 𝑦 \ell(x\ast y)v=\ell(x)(\ell(y)v),\,\,vr(x\ast y)=(vr(x))r(y),\,\,(\ell(x)v)r(y% )=\ell(x)(vr(y)), roman_β„“ ( italic_x βˆ— italic_y ) italic_v = roman_β„“ ( italic_x ) ( roman_β„“ ( italic_y ) italic_v ) , italic_v italic_r ( italic_x βˆ— italic_y ) = ( italic_v italic_r ( italic_x ) ) italic_r ( italic_y ) , ( roman_β„“ ( italic_x ) italic_v ) italic_r ( italic_y ) = roman_β„“ ( italic_x ) ( italic_v italic_r ( italic_y ) ) ,
(4) β„“ ⁒ ( x ) ⁒ ( v ∘ w ) = ( β„“ ⁒ ( x ) ⁒ v ) ∘ w , ( v ∘ w ) ⁒ r ⁒ ( x ) = v ∘ ( w ⁒ r ⁒ ( x ) ) , ( v ⁒ r ⁒ ( x ) ) ∘ w = v ∘ ( β„“ ⁒ ( x ) ⁒ w ) , formulae-sequence β„“ π‘₯ 𝑣 𝑀 β„“ π‘₯ 𝑣 𝑀 formulae-sequence 𝑣 𝑀 π‘Ÿ π‘₯ 𝑣 𝑀 π‘Ÿ π‘₯ 𝑣 π‘Ÿ π‘₯ 𝑀 𝑣 β„“ π‘₯ 𝑀 \ell(x)(v\circ w)=(\ell(x)v)\circ w,\,\,(v\circ w)r(x)=v\circ(wr(x)),\,\,\,\,(% vr(x))\circ w=v\circ(\ell(x)w), roman_β„“ ( italic_x ) ( italic_v ∘ italic_w ) = ( roman_β„“ ( italic_x ) italic_v ) ∘ italic_w , ( italic_v ∘ italic_w ) italic_r ( italic_x ) = italic_v ∘ ( italic_w italic_r ( italic_x ) ) , ( italic_v italic_r ( italic_x ) ) ∘ italic_w = italic_v ∘ ( roman_β„“ ( italic_x ) italic_w ) ,

for all x , y ∈ A , v , w ∈ R . formulae-sequence π‘₯ 𝑦 𝐴 𝑣 𝑀 𝑅 x,y\in A,v,w\in R. italic_x , italic_y ∈ italic_A , italic_v , italic_w ∈ italic_R .

Definition 5.6 .

A PostLie algebra is a 𝐀 𝐀 {\bf k} bold_k -module L 𝐿 L italic_L with two bilinear operations ∘ \circ ∘ and [ , ] fragments [ , ] [\ ,\ ] [ , ] that satisfy the relations:

(38) [ x , y ] = - [ y , x ] , π‘₯ 𝑦 𝑦 π‘₯ [x,y]=-[y,x], [ italic_x , italic_y ] = - [ italic_y , italic_x ] ,
(39) [ [ x , y ] , z ] + [ [ z , x ] , y ] + [ [ y , z ] , x ] = 0 , π‘₯ 𝑦 𝑧 𝑧 π‘₯ 𝑦 𝑦 𝑧 π‘₯ 0 [[x,y],z]+[[z,x],y]+[[y,z],x]=0, [ [ italic_x , italic_y ] , italic_z ] + [ [ italic_z , italic_x ] , italic_y ] + [ [ italic_y , italic_z ] , italic_x ] = 0 ,
(40) x ∘ ( y ∘ z ) - y ∘ ( x ∘ z ) + ( y ∘ x ) ∘ z - ( x ∘ y ) ∘ z + [ y , x ] ∘ z = 0 , π‘₯ 𝑦 𝑧 𝑦 π‘₯ 𝑧 𝑦 π‘₯ 𝑧 π‘₯ 𝑦 𝑧 𝑦 π‘₯ 𝑧 0 x\circ(y\circ z)-y\circ(x\circ z)+(y\circ x)\circ z-(x\circ y)\circ z+[y,x]% \circ z=0, italic_x ∘ ( italic_y ∘ italic_z ) - italic_y ∘ ( italic_x ∘ italic_z ) + ( italic_y ∘ italic_x ) ∘ italic_z - ( italic_x ∘ italic_y ) ∘ italic_z + [ italic_y , italic_x ] ∘ italic_z = 0 ,
(41) z ∘ [ x , y ] - [ z ∘ x , y ] - [ x , z ∘ y ] = 0 , βˆ€ x , y ∈ L . formulae-sequence 𝑧 π‘₯ 𝑦 𝑧 π‘₯ 𝑦 π‘₯ 𝑧 𝑦 0 for-all π‘₯ 𝑦 𝐿 z\circ[x,y]-[z\circ x,y]-[x,z\circ y]=0,\forall x,y\in L. italic_z ∘ [ italic_x , italic_y ] - [ italic_z ∘ italic_x , italic_y ] - [ italic_x , italic_z ∘ italic_y ] = 0 , βˆ€ italic_x , italic_y ∈ italic_L .

Definition 3.5 .

Let f 𝑓 f italic_f and g 𝑔 g italic_g be two convex function. The infimal convolution of f 𝑓 f italic_f and g 𝑔 g italic_g is the function f ⁒ β–‘ ⁒ g 𝑓 β–‘ 𝑔 f\square g italic_f β–‘ italic_g defined, for x ∈ π”ž π‘₯ π”ž x\in\mathfrak{a} italic_x ∈ fraktur_a , by

f β–‘ g ( x ) = inf { f ( x - y ) + g ( y ) ; y ∈ π”ž } . fragments f β–‘ g fragments ( x ) inf fragments { f fragments ( x y ) g fragments ( y ) ; y a } . f\square g(x)=\mathrm{inf}\{f(x-y)+g(y);y\in\mathfrak{a}\}. italic_f β–‘ italic_g ( italic_x ) = roman_inf { italic_f ( italic_x - italic_y ) + italic_g ( italic_y ) ; italic_y ∈ fraktur_a } .

Definition 2.2

An implication zroupoid 𝐀 = ⟨ A , β†’ , 0 ⟩ 𝐀 𝐴 normal-β†’ 0 \mathbf{A}=\langle A,\to,0\rangle bold_A = ⟨ italic_A , β†’ , 0 ⟩ is a De Morgan algebra ( πƒπŒ πƒπŒ \mathbf{DM} bold_DM -algebra, for short ) if 𝐀 𝐀 \mathbf{A} bold_A satisfies the axiom:

A πƒπŒ πƒπŒ \mathbf{DM} bold_DM -algebra 𝐀 = ⟨ A , β†’ , 0 ⟩ 𝐀 𝐴 normal-β†’ 0 \mathbf{A}=\langle A,\to,0\rangle bold_A = ⟨ italic_A , β†’ , 0 ⟩ is a Kleene algebra ( πŠπ‹ πŠπ‹ \mathbf{KL} bold_KL -algebra, for short ) if 𝐀 𝐀 \mathbf{A} bold_A satisfies the axiom:

or, equivalently,

A πƒπŒ πƒπŒ \mathbf{DM} bold_DM -algebra 𝐀 = ⟨ A , β†’ , 0 ⟩ 𝐀 𝐴 normal-β†’ 0 \mathbf{A}=\langle A,\to,0\rangle bold_A = ⟨ italic_A , β†’ , 0 ⟩ is a Boolean algebra ( 𝐁𝐀 𝐁𝐀 \mathbf{BA} bold_BA -algebra, for short ) if 𝐀 𝐀 \mathbf{A} bold_A satisfies the axiom:

An implication zroupoid 𝐀 = ⟨ A , β†’ , 0 ⟩ 𝐀 𝐴 normal-β†’ 0 \mathbf{A}=\langle A,\to,0\rangle bold_A = ⟨ italic_A , β†’ , 0 ⟩ is a semilattice with 0 0 ( 𝐒𝐋 𝐒𝐋 \mathbf{SL} bold_SL -algebra, for short ) if 𝐀 𝐀 \mathbf{A} bold_A satisfies the axioms:

We denote by πƒπŒ πƒπŒ \mathbf{DM} bold_DM , πŠπ‹ πŠπ‹ \mathbf{KL} bold_KL , 𝐁𝐀 𝐁𝐀 \mathbf{BA} bold_BA and 𝐒𝐋 𝐒𝐋 \mathbf{SL} bold_SL , respectively, the variety of πƒπŒ πƒπŒ \mathbf{DM} bold_DM -algebras, πŠπ‹ πŠπ‹ \mathbf{KL} bold_KL -algebras, 𝐁𝐀 𝐁𝐀 \mathbf{BA} bold_BA -algebras, and 𝐒𝐋 𝐒𝐋 \mathbf{SL} bold_SL -algebras.

Definition 2.3

𝐈 2 , 0 subscript 𝐈 2 0 \mathbf{I}_{2,0} bold_I start_POSTSUBSCRIPT 2 , 0 end_POSTSUBSCRIPT denotes the subvariety of 𝐈 𝐈 \mathbf{I} bold_I defined by the identity:

x β€²β€² β‰ˆ x . superscript π‘₯ β€²β€² π‘₯ x^{\prime\prime}\approx x. italic_x start_POSTSUPERSCRIPT β€² β€² end_POSTSUPERSCRIPT β‰ˆ italic_x .

Definition 2.6 .

The three dimensional real Heisenberg group 𝐇 ⁒ ( ℝ ) 𝐇 ℝ \textrm{\bf{H}}(\mathbb{R}) H ( blackboard_R ) is defined to be the group with underlying set ℝ 3 superscript ℝ 3 \mathbb{R}^{3} blackboard_R start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT (written as column vectors) and addition law

( r s t ) + ( r β€² s β€² t β€² ) = ( r + r β€² s + r β€² t + t β€² + r ⁒ s β€² - s ⁒ r β€² ) . π‘Ÿ 𝑠 𝑑 superscript π‘Ÿ β€² superscript 𝑠 β€² superscript 𝑑 β€² π‘Ÿ superscript π‘Ÿ β€² 𝑠 superscript π‘Ÿ β€² 𝑑 superscript 𝑑 β€² π‘Ÿ superscript 𝑠 β€² 𝑠 superscript π‘Ÿ β€² \left(\begin{array}[]{c}r\\ s\\ t\end{array}\right)+\left(\begin{array}[]{c}r^{\prime}\\ s^{\prime}\\ t^{\prime}\end{array}\right)=\left(\begin{array}[]{c}r+r^{\prime}\\ s+r^{\prime}\\ t+t^{\prime}+rs^{\prime}-sr^{\prime}\end{array}\right). ( start_ARRAY start_ROW start_CELL italic_r end_CELL end_ROW start_ROW start_CELL italic_s end_CELL end_ROW start_ROW start_CELL italic_t end_CELL end_ROW end_ARRAY ) + ( start_ARRAY start_ROW start_CELL italic_r start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT end_CELL end_ROW start_ROW start_CELL italic_s start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT end_CELL end_ROW start_ROW start_CELL italic_t start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT end_CELL end_ROW end_ARRAY ) = ( start_ARRAY start_ROW start_CELL italic_r + italic_r start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT end_CELL end_ROW start_ROW start_CELL italic_s + italic_r start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT end_CELL end_ROW start_ROW start_CELL italic_t + italic_t start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT + italic_r italic_s start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT - italic_s italic_r start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT end_CELL end_ROW end_ARRAY ) .

The integer Heisenberg group 𝐇 ⁒ ( β„€ ) 𝐇 β„€ \textrm{\bf{H}}(\mathbb{Z}) H ( blackboard_Z ) is 𝐇 ⁒ ( ℝ ) ∩ β„€ 3 𝐇 ℝ superscript β„€ 3 \textrm{\bf{H}}(\mathbb{R})\cap\mathbb{Z}^{3} H ( blackboard_R ) ∩ blackboard_Z start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT (with this definition of the group law 𝐇 ⁒ ( β„€ ) 𝐇 β„€ \textrm{\bf{H}}(\mathbb{Z}) H ( blackboard_Z ) is a group since the formula for the inverse is a polynomial expression over β„€ β„€ \mathbb{Z} blackboard_Z ).


Definition 2.3 .

A Ο€ πœ‹ \pi italic_Ο€ - Ξ΅ πœ€ \varepsilon italic_Ξ΅ -cocycle on ( A , Ξ΅ ) 𝐴 πœ€ (A,\varepsilon) ( italic_A , italic_Ξ΅ ) is called Gaussian if it is a derivation, i.e. if

Ξ· ⁒ ( a ⁒ b ) = Ξ΅ ⁒ ( a ) ⁒ Ξ· ⁒ ( b ) + Ξ· ⁒ ( b ) ⁒ Ξ΅ ⁒ ( b ) πœ‚ π‘Ž 𝑏 πœ€ π‘Ž πœ‚ 𝑏 πœ‚ 𝑏 πœ€ 𝑏 \eta(ab)=\varepsilon(a)\eta(b)+\eta(b)\varepsilon(b) italic_Ξ· ( italic_a italic_b ) = italic_Ξ΅ ( italic_a ) italic_Ξ· ( italic_b ) + italic_Ξ· ( italic_b ) italic_Ξ΅ ( italic_b )

for a , b ∈ A π‘Ž 𝑏 𝐴 a,b\in A italic_a , italic_b ∈ italic_A .

A generating functional ψ πœ“ \psi italic_ψ on ( A , Ξ΅ ) 𝐴 πœ€ (A,\varepsilon) ( italic_A , italic_Ξ΅ ) is called Gaussian , if ψ | K 3 = 0 evaluated-at πœ“ subscript 𝐾 3 0 \psi|_{K_{3}}=0 italic_ψ | start_POSTSUBSCRIPT italic_K start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT end_POSTSUBSCRIPT = 0 .

If ( Ο€ , Ξ· , ψ ) πœ‹ πœ‚ πœ“ (\pi,\eta,\psi) ( italic_Ο€ , italic_Ξ· , italic_ψ ) is a SchΓΌrmann triple over ( A , Ξ΅ ) 𝐴 πœ€ (A,\varepsilon) ( italic_A , italic_Ξ΅ ) , then Ξ· πœ‚ \eta italic_Ξ· is Gaussian if and only if ψ πœ“ \psi italic_ψ is Gaussian, in which case we call the SchΓΌrmann triple Gaussian .


Definition 5.6 .

Let Y βŠ‚ X π‘Œ 𝑋 Y\subset X italic_Y βŠ‚ italic_X be a Lagrangian submanifold and ( f , ψ ) 𝑓 πœ“ (f,\psi) ( italic_f , italic_ψ ) an exact Lagrangian isotopy. The time-reversal of ( f , ψ ) 𝑓 πœ“ (f,\psi) ( italic_f , italic_ψ ) is the pair ( f ~ , ψ ~ ) ~ 𝑓 ~ πœ“ (\widetilde{f},\widetilde{\psi}) ( ~ start_ARG italic_f end_ARG , ~ start_ARG italic_ψ end_ARG ) defined by

ψ ~ ⁒ ( t , x ) = ψ ⁒ ( 1 - t , x ) , f ~ ⁒ ( t , x ) = - f ⁒ ( 1 - t , x ) . formulae-sequence ~ πœ“ 𝑑 π‘₯ πœ“ 1 𝑑 π‘₯ ~ 𝑓 𝑑 π‘₯ 𝑓 1 𝑑 π‘₯ \widetilde{\psi}(t,x)=\psi(1-t,x),\quad\widetilde{f}(t,x)=-f(1-t,x). ~ start_ARG italic_ψ end_ARG ( italic_t , italic_x ) = italic_ψ ( 1 - italic_t , italic_x ) , ~ start_ARG italic_f end_ARG ( italic_t , italic_x ) = - italic_f ( 1 - italic_t , italic_x ) .

Definition 4.1 .

Let f 𝑓 f italic_f be a 𝔻 𝔻 \mathbb{D} blackboard_D -valued 2-functional on β„³ Γ— 𝒩 β„³ 𝒩 \mathcal{M}\times\mathcal{N} caligraphic_M Γ— caligraphic_N . If f 𝑓 f italic_f is such that for each Ξ± , Ξ² ∈ 𝔻 𝛼 𝛽 𝔻 \alpha,\beta\in\mathbb{D} italic_Ξ± , italic_Ξ² ∈ blackboard_D and for all x , y ∈ β„³ π‘₯ 𝑦 β„³ x,y\in\mathcal{M} italic_x , italic_y ∈ caligraphic_M and z , w ∈ 𝒩 𝑧 𝑀 𝒩 z,w\in\mathcal{N} italic_z , italic_w ∈ caligraphic_N we have:

  1. (i)

    f ⁒ ( x + y , z + w ) = f ⁒ ( x , z ) + f ⁒ ( y , z ) + f ⁒ ( x , w ) + f ⁒ ( y , w ) 𝑓 π‘₯ 𝑦 𝑧 𝑀 𝑓 π‘₯ 𝑧 𝑓 𝑦 𝑧 𝑓 π‘₯ 𝑀 𝑓 𝑦 𝑀 f(x+y,z+w)=f(x,z)+f(y,z)+f(x,w)+f(y,w) italic_f ( italic_x + italic_y , italic_z + italic_w ) = italic_f ( italic_x , italic_z ) + italic_f ( italic_y , italic_z ) + italic_f ( italic_x , italic_w ) + italic_f ( italic_y , italic_w ) ,

  2. (ii)

    f ⁒ ( Ξ± ⁒ x , Ξ² ⁒ z ) = Ξ± ⁒ Ξ² ⁒ f ⁒ ( x , z ) 𝑓 𝛼 π‘₯ 𝛽 𝑧 𝛼 𝛽 𝑓 π‘₯ 𝑧 f(\alpha x,\beta z)=\alpha\beta f(x,z) italic_f ( italic_Ξ± italic_x , italic_Ξ² italic_z ) = italic_Ξ± italic_Ξ² italic_f ( italic_x , italic_z ) ,

then f 𝑓 f italic_f is called a 𝔻 𝔻 \mathbb{D} blackboard_D -linear 2-functional with domain β„³ Γ— 𝒩 β„³ 𝒩 \mathcal{M}\times\mathcal{N} caligraphic_M Γ— caligraphic_N . Further, it is easy to show that if x π‘₯ x italic_x and y 𝑦 y italic_y are linear dependent in X 𝑋 X italic_X , then f ⁒ ( x , y ) = 0 𝑓 π‘₯ 𝑦 0 f(x,y)=0 italic_f ( italic_x , italic_y ) = 0 for ( x , y ) ∈ β„³ Γ— 𝒩 π‘₯ 𝑦 β„³ 𝒩 (x,y)\in\mathcal{M}\times\mathcal{N} ( italic_x , italic_y ) ∈ caligraphic_M Γ— caligraphic_N .
Let f : β„³ Γ— 𝒩 β†’ 𝔻 : 𝑓 β†’ β„³ 𝒩 𝔻 f:\mathcal{M}\times\mathcal{N}\rightarrow\mathbb{D} italic_f : caligraphic_M Γ— caligraphic_N β†’ blackboard_D be a 𝔻 𝔻 \mathbb{D} blackboard_D -linear 2-functional. For any x , z ∈ β„³ Γ— 𝒩 π‘₯ 𝑧 β„³ 𝒩 x,z\in\mathcal{M}\times\mathcal{N} italic_x , italic_z ∈ caligraphic_M Γ— caligraphic_N , one can write

f ⁒ ( x , z ) = Ο• ⁒ ( x , z ) + 𝐀 ⁒ ψ ⁒ ( x , z ) = e 1 ⁒ f 1 ⁒ ( x , z ) + e 2 ⁒ f 2 ⁒ ( x , z ) , 𝑓 π‘₯ 𝑧 italic-Ο• π‘₯ 𝑧 𝐀 πœ“ π‘₯ 𝑧 subscript 𝑒 1 subscript 𝑓 1 π‘₯ 𝑧 subscript 𝑒 2 subscript 𝑓 2 π‘₯ 𝑧 \displaystyle f(x,z)=\phi(x,z)+\textbf{k}\psi(x,z)=e_{1}f_{1}(x,z)+e_{2}f_{2}(% x,z), italic_f ( italic_x , italic_z ) = italic_Ο• ( italic_x , italic_z ) + k italic_ψ ( italic_x , italic_z ) = italic_e start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_f start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_x , italic_z ) + italic_e start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT italic_f start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( italic_x , italic_z ) , (4.1)

where Ο• ⁒ ( x , z ) ∈ ℝ italic-Ο• π‘₯ 𝑧 ℝ \phi(x,z)\in\mathbb{R} italic_Ο• ( italic_x , italic_z ) ∈ blackboard_R , ψ ⁒ ( x , z ) ∈ ℝ πœ“ π‘₯ 𝑧 ℝ \psi(x,z)\in\mathbb{R} italic_ψ ( italic_x , italic_z ) ∈ blackboard_R , f 1 ⁒ ( x , z ) ∈ ℝ subscript 𝑓 1 π‘₯ 𝑧 ℝ f_{1}(x,z)\in\mathbb{R} italic_f start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_x , italic_z ) ∈ blackboard_R and f 2 ⁒ ( x , z ) ∈ ℝ subscript 𝑓 2 π‘₯ 𝑧 ℝ f_{2}(x,z)\in\mathbb{R} italic_f start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( italic_x , italic_z ) ∈ blackboard_R with f 1 = Ο• + ψ subscript 𝑓 1 italic-Ο• πœ“ f_{1}=\phi+\psi italic_f start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT = italic_Ο• + italic_ψ and f 2 = Ο• - ψ subscript 𝑓 2 italic-Ο• πœ“ f_{2}=\phi-\psi italic_f start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT = italic_Ο• - italic_ψ .

Let us first show that f 1 , f 2 : β„³ ℝ Γ— 𝒩 ℝ β†’ ℝ : subscript 𝑓 1 subscript 𝑓 2 β†’ subscript β„³ ℝ subscript 𝒩 ℝ ℝ f_{1},f_{2}:\mathcal{M}_{\mathbb{R}}\times\mathcal{N}_{\mathbb{R}}\rightarrow% \mathbb{R} italic_f start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_f start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT : caligraphic_M start_POSTSUBSCRIPT blackboard_R end_POSTSUBSCRIPT Γ— caligraphic_N start_POSTSUBSCRIPT blackboard_R end_POSTSUBSCRIPT β†’ blackboard_R are real linear 2-functionals, where β„³ ℝ subscript β„³ ℝ \mathcal{M}_{\mathbb{R}} caligraphic_M start_POSTSUBSCRIPT blackboard_R end_POSTSUBSCRIPT and 𝒩 ℝ subscript 𝒩 ℝ \mathcal{N}_{\mathbb{R}} caligraphic_N start_POSTSUBSCRIPT blackboard_R end_POSTSUBSCRIPT are real linear subspaces of X 𝑋 X italic_X .
Given Ξ± = Ξ± 1 + 𝐀 ⁒ Ξ± 2 𝛼 subscript 𝛼 1 𝐀 subscript 𝛼 2 \alpha=\alpha_{1}+\textbf{k}\alpha_{2} italic_Ξ± = italic_Ξ± start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT + k italic_Ξ± start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , Ξ² = Ξ² 1 + 𝐀 ⁒ Ξ² 2 ∈ 𝔻 𝛽 subscript 𝛽 1 𝐀 subscript 𝛽 2 𝔻 \beta=\beta_{1}+\textbf{k}\beta_{2}\in\mathbb{D} italic_Ξ² = italic_Ξ² start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT + k italic_Ξ² start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ∈ blackboard_D with x , y ∈ β„³ π‘₯ 𝑦 β„³ x,y\in\mathcal{M} italic_x , italic_y ∈ caligraphic_M and z , w ∈ 𝒩 𝑧 𝑀 𝒩 z,w\in\mathcal{N} italic_z , italic_w ∈ caligraphic_N , one has:

f ⁒ ( x + y , z + w ) = e 1 ⁒ f 1 ⁒ ( x + y , z + w ) + e 2 ⁒ f 2 ⁒ ( x + y , z + w ) ⁒ implies 𝑓 π‘₯ 𝑦 𝑧 𝑀 subscript 𝑒 1 subscript 𝑓 1 π‘₯ 𝑦 𝑧 𝑀 subscript 𝑒 2 subscript 𝑓 2 π‘₯ 𝑦 𝑧 𝑀 implies \displaystyle f(x+y,z+w)=e_{1}f_{1}(x+y,z+w)+e_{2}f_{2}(x+y,z+w)\;\;\text{implies} italic_f ( italic_x + italic_y , italic_z + italic_w ) = italic_e start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_f start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_x + italic_y , italic_z + italic_w ) + italic_e start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT italic_f start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( italic_x + italic_y , italic_z + italic_w ) implies
f ⁒ ( x , z ) + f ⁒ ( y , z ) + f ⁒ ( x , w ) + f ⁒ ( y , w ) = e 1 ⁒ f 1 ⁒ ( x + y , z + w ) + e 2 ⁒ f 2 ⁒ ( x + y , z + w ) . 𝑓 π‘₯ 𝑧 𝑓 𝑦 𝑧 𝑓 π‘₯ 𝑀 𝑓 𝑦 𝑀 subscript 𝑒 1 subscript 𝑓 1 π‘₯ 𝑦 𝑧 𝑀 subscript 𝑒 2 subscript 𝑓 2 π‘₯ 𝑦 𝑧 𝑀 \displaystyle f(x,z)+f(y,z)+f(x,w)+f(y,w)=e_{1}f_{1}(x+y,z+w)+e_{2}f_{2}(x+y,z% +w). italic_f ( italic_x , italic_z ) + italic_f ( italic_y , italic_z ) + italic_f ( italic_x , italic_w ) + italic_f ( italic_y , italic_w ) = italic_e start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_f start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_x + italic_y , italic_z + italic_w ) + italic_e start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT italic_f start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( italic_x + italic_y , italic_z + italic_w ) .

Then e 1 ( f 1 ( x , z ) + f 1 ( y , z ) + f 1 ( x , w ) + f 1 ( y , w ) ) + e 2 ( f 2 ( x , z ) + f 2 ( y , z ) fragments subscript 𝑒 1 fragments ( subscript 𝑓 1 fragments ( x , z ) subscript 𝑓 1 fragments ( y , z ) subscript 𝑓 1 fragments ( x , w ) subscript 𝑓 1 fragments ( y , w ) ) subscript 𝑒 2 fragments ( subscript 𝑓 2 fragments ( x , z ) subscript 𝑓 2 fragments ( y , z ) e_{1}(f_{1}(x,z)+f_{1}(y,z)+f_{1}(x,w)+f_{1}(y,w))+e_{2}(f_{2}(x,z)+f_{2}(y,z) italic_e start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_f start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_x , italic_z ) + italic_f start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_y , italic_z ) + italic_f start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_x , italic_w ) + italic_f start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_y , italic_w ) ) + italic_e start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( italic_f start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( italic_x , italic_z ) + italic_f start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( italic_y , italic_z )
+ f 2 ( x , w ) + f 2 ( y , w ) ) = e 1 f 1 ( x + y , z + w ) + e 2 f 2 ( x + y , z + w ) . fragments subscript 𝑓 2 fragments ( x , w ) subscript 𝑓 2 fragments ( y , w ) ) e 1 f 1 ( x y , z w ) e 2 f 2 ( x y , z w ) . ~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}+f_{2}(x,w)+f_{2}(y,w))=e_{1}f_{1}(x+y,z+w% )+e_{2}f_{2}(x+y,z+w). + italic_f start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( italic_x , italic_w ) + italic_f start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( italic_y , italic_w ) ) = italic_e start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_f start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_x + italic_y , italic_z + italic_w ) + italic_e start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT italic_f start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( italic_x + italic_y , italic_z + italic_w ) .

Hence f 1 ⁒ ( x , z ) + f 1 ⁒ ( y , z ) + f 1 ⁒ ( x , w ) + f 1 ⁒ ( y , w ) = f 1 ⁒ ( x + y , z + w ) subscript 𝑓 1 π‘₯ 𝑧 subscript 𝑓 1 𝑦 𝑧 subscript 𝑓 1 π‘₯ 𝑀 subscript 𝑓 1 𝑦 𝑀 subscript 𝑓 1 π‘₯ 𝑦 𝑧 𝑀 f_{1}(x,z)+f_{1}(y,z)+f_{1}(x,w)+f_{1}(y,w)=f_{1}(x+y,z+w) italic_f start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_x , italic_z ) + italic_f start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_y , italic_z ) + italic_f start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_x , italic_w ) + italic_f start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_y , italic_w ) = italic_f start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_x + italic_y , italic_z + italic_w ) and

f 2 ⁒ ( x , z ) + f 2 ⁒ ( y , z ) + f 2 ⁒ ( x , w ) + f 2 ⁒ ( y , w ) = f 2 ⁒ ( x + y , z + w ) . subscript 𝑓 2 π‘₯ 𝑧 subscript 𝑓 2 𝑦 𝑧 subscript 𝑓 2 π‘₯ 𝑀 subscript 𝑓 2 𝑦 𝑀 subscript 𝑓 2 π‘₯ 𝑦 𝑧 𝑀 f_{2}(x,z)+f_{2}(y,z)+f_{2}(x,w)+f_{2}(y,w)=f_{2}(x+y,z+w). italic_f start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( italic_x , italic_z ) + italic_f start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( italic_y , italic_z ) + italic_f start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( italic_x , italic_w ) + italic_f start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( italic_y , italic_w ) = italic_f start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( italic_x + italic_y , italic_z + italic_w ) .

Further, f ⁒ ( Ξ± ⁒ x , Ξ² ⁒ z ) = e 1 ⁒ f 1 ⁒ ( Ξ± ⁒ x , Ξ² ⁒ z ) + e 2 ⁒ f 2 ⁒ ( Ξ± ⁒ x , Ξ² ⁒ z ) 𝑓 𝛼 π‘₯ 𝛽 𝑧 subscript 𝑒 1 subscript 𝑓 1 𝛼 π‘₯ 𝛽 𝑧 subscript 𝑒 2 subscript 𝑓 2 𝛼 π‘₯ 𝛽 𝑧 f(\alpha x,\beta z)=e_{1}f_{1}(\alpha x,\beta z)+e_{2}f_{2}(\alpha x,\beta z) italic_f ( italic_Ξ± italic_x , italic_Ξ² italic_z ) = italic_e start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_f start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_Ξ± italic_x , italic_Ξ² italic_z ) + italic_e start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT italic_f start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( italic_Ξ± italic_x , italic_Ξ² italic_z ) implies
Ξ± ⁒ Ξ² ⁒ f ⁒ ( x , z ) = e 1 ⁒ f 1 ⁒ ( Ξ± ⁒ x , Ξ² ⁒ z ) + e 2 ⁒ f 2 ⁒ ( Ξ± ⁒ x , Ξ² ⁒ z ) . 𝛼 𝛽 𝑓 π‘₯ 𝑧 subscript 𝑒 1 subscript 𝑓 1 𝛼 π‘₯ 𝛽 𝑧 subscript 𝑒 2 subscript 𝑓 2 𝛼 π‘₯ 𝛽 𝑧 ~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}\alpha\beta f(x,z)=e_{1}f_{1}(\alpha x,% \beta z)+e_{2}f_{2}(\alpha x,\beta z). italic_Ξ± italic_Ξ² italic_f ( italic_x , italic_z ) = italic_e start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_f start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_Ξ± italic_x , italic_Ξ² italic_z ) + italic_e start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT italic_f start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( italic_Ξ± italic_x , italic_Ξ² italic_z ) .

That is, e 1 ⁒ ( ( Ξ± 1 + Ξ± 2 ) ⁒ ( Ξ² 1 + Ξ² 2 ) ⁒ f 1 ⁒ ( x , z ) ) + e 2 ⁒ ( ( Ξ± 1 - Ξ± 2 ) ⁒ ( Ξ² 1 - Ξ² 2 ) ⁒ f 2 ⁒ ( x , z ) ) subscript 𝑒 1 subscript 𝛼 1 subscript 𝛼 2 subscript 𝛽 1 subscript 𝛽 2 subscript 𝑓 1 π‘₯ 𝑧 subscript 𝑒 2 subscript 𝛼 1 subscript 𝛼 2 subscript 𝛽 1 subscript 𝛽 2 subscript 𝑓 2 π‘₯ 𝑧 e_{1}((\alpha_{1}+\alpha_{2})(\beta_{1}+\beta_{2})f_{1}(x,z))+e_{2}((\alpha_{1% }-\alpha_{2})(\beta_{1}-\beta_{2})f_{2}(x,z)) italic_e start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( ( italic_Ξ± start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT + italic_Ξ± start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) ( italic_Ξ² start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT + italic_Ξ² start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) italic_f start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_x , italic_z ) ) + italic_e start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( ( italic_Ξ± start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT - italic_Ξ± start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) ( italic_Ξ² start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT - italic_Ξ² start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) italic_f start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( italic_x , italic_z ) )
= e 1 ⁒ f 1 ⁒ ( ( Ξ± 1 + 𝐀 ⁒ Ξ± 2 ) ⁒ x , ( Ξ² 1 + 𝐀 ⁒ Ξ² 2 ) ⁒ z ) + e 2 ⁒ f 2 ⁒ ( ( Ξ± 1 + 𝐀 ⁒ Ξ± 2 ) ⁒ x , ( Ξ² 1 + 𝐀 ⁒ Ξ² 2 ) ⁒ z ) absent subscript 𝑒 1 subscript 𝑓 1 subscript 𝛼 1 𝐀 subscript 𝛼 2 π‘₯ subscript 𝛽 1 𝐀 subscript 𝛽 2 𝑧 subscript 𝑒 2 subscript 𝑓 2 subscript 𝛼 1 𝐀 subscript 𝛼 2 π‘₯ subscript 𝛽 1 𝐀 subscript 𝛽 2 𝑧 ~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}=e_{1}f_{1}((\alpha_{1}+\textbf{k}\alpha_{2})% x,(\beta_{1}+\textbf{k}\beta_{2})z)+e_{2}f_{2}((\alpha_{1}+\textbf{k}\alpha_{2% })x,(\beta_{1}+\textbf{k}\beta_{2})z) = italic_e start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_f start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( ( italic_Ξ± start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT + k italic_Ξ± start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) italic_x , ( italic_Ξ² start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT + k italic_Ξ² start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) italic_z ) + italic_e start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT italic_f start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( ( italic_Ξ± start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT + k italic_Ξ± start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) italic_x , ( italic_Ξ² start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT + k italic_Ξ² start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) italic_z ) .

This implies ( Ξ± 1 + Ξ± 2 ) ⁒ ( Ξ² 1 + Ξ² 2 ) ⁒ f 1 ⁒ ( x , z ) = f 1 ⁒ ( ( Ξ± 1 + 𝐀 ⁒ Ξ± 2 ) ⁒ x , ( Ξ² 1 + 𝐀 ⁒ Ξ² 2 ) ⁒ z ) subscript 𝛼 1 subscript 𝛼 2 subscript 𝛽 1 subscript 𝛽 2 subscript 𝑓 1 π‘₯ 𝑧 subscript 𝑓 1 subscript 𝛼 1 𝐀 subscript 𝛼 2 π‘₯ subscript 𝛽 1 𝐀 subscript 𝛽 2 𝑧 (\alpha_{1}+\alpha_{2})(\beta_{1}+\beta_{2})f_{1}(x,z)=f_{1}((\alpha_{1}+% \textbf{k}\;\alpha_{2})x,(\beta_{1}+\textbf{k}\;\beta_{2})z) ( italic_Ξ± start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT + italic_Ξ± start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) ( italic_Ξ² start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT + italic_Ξ² start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) italic_f start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_x , italic_z ) = italic_f start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( ( italic_Ξ± start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT + k italic_Ξ± start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) italic_x , ( italic_Ξ² start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT + k italic_Ξ² start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) italic_z ) and

( Ξ± 1 - Ξ± 2 ) ⁒ ( Ξ² 1 - Ξ² 2 ) ⁒ f 2 ⁒ ( x , z ) = f 2 ⁒ ( ( Ξ± 1 + 𝐀 ⁒ Ξ± 2 ) ⁒ x , ( Ξ² 1 + 𝐀 ⁒ Ξ² 2 ) ⁒ z ) . subscript 𝛼 1 subscript 𝛼 2 subscript 𝛽 1 subscript 𝛽 2 subscript 𝑓 2 π‘₯ 𝑧 subscript 𝑓 2 subscript 𝛼 1 𝐀 subscript 𝛼 2 π‘₯ subscript 𝛽 1 𝐀 subscript 𝛽 2 𝑧 (\alpha_{1}-\alpha_{2})(\beta_{1}-\beta_{2})f_{2}(x,z)=f_{2}((\alpha_{1}+% \textbf{k}\;\alpha_{2})x,(\beta_{1}+\textbf{k}\;\beta_{2})z). ( italic_Ξ± start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT - italic_Ξ± start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) ( italic_Ξ² start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT - italic_Ξ² start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) italic_f start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( italic_x , italic_z ) = italic_f start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( ( italic_Ξ± start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT + k italic_Ξ± start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) italic_x , ( italic_Ξ² start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT + k italic_Ξ² start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) italic_z ) .

In particular, setting Ξ± 2 = 0 subscript 𝛼 2 0 \alpha_{2}=0 italic_Ξ± start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT = 0 and Ξ² 2 = 0 subscript 𝛽 2 0 \beta_{2}=0 italic_Ξ² start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT = 0 , we have:

Ξ± 1 ⁒ Ξ² 1 ⁒ f 1 ⁒ ( x , z ) = f 1 ⁒ ( Ξ± 1 ⁒ x , Ξ² 1 ⁒ z ) ⁒ and ⁒ Ξ± 1 ⁒ Ξ² 1 ⁒ f 2 ⁒ ( x , z ) = f 2 ⁒ ( Ξ± 1 ⁒ x , Ξ² 1 ⁒ z ) . subscript 𝛼 1 subscript 𝛽 1 subscript 𝑓 1 π‘₯ 𝑧 subscript 𝑓 1 subscript 𝛼 1 π‘₯ subscript 𝛽 1 𝑧 and subscript 𝛼 1 subscript 𝛽 1 subscript 𝑓 2 π‘₯ 𝑧 subscript 𝑓 2 subscript 𝛼 1 π‘₯ subscript 𝛽 1 𝑧 \alpha_{1}\beta_{1}f_{1}(x,z)=f_{1}(\alpha_{1}x,\beta_{1}z)\;\;\text{and}\;\;% \alpha_{1}\beta_{1}f_{2}(x,z)=f_{2}(\alpha_{1}x,\beta_{1}z). italic_Ξ± start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_Ξ² start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_f start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_x , italic_z ) = italic_f start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_Ξ± start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_x , italic_Ξ² start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_z ) and italic_Ξ± start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_Ξ² start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_f start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( italic_x , italic_z ) = italic_f start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( italic_Ξ± start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_x , italic_Ξ² start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_z ) .

Thus, the mappings f 1 subscript 𝑓 1 f_{1} italic_f start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT and f 2 subscript 𝑓 2 f_{2} italic_f start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT are real linear 2-functionals on β„³ ℝ Γ— 𝒩 ℝ subscript β„³ ℝ subscript 𝒩 ℝ \mathcal{M}_{\mathbb{R}}\times\mathcal{N}_{\mathbb{R}} caligraphic_M start_POSTSUBSCRIPT blackboard_R end_POSTSUBSCRIPT Γ— caligraphic_N start_POSTSUBSCRIPT blackboard_R end_POSTSUBSCRIPT . Similarly one can show that Ο• italic-Ο• \phi italic_Ο• and ψ πœ“ \psi italic_ψ are also real linear 2-functionals on β„³ ℝ Γ— 𝒩 ℝ subscript β„³ ℝ subscript 𝒩 ℝ \mathcal{M}_{\mathbb{R}}\times\mathcal{N}_{\mathbb{R}} caligraphic_M start_POSTSUBSCRIPT blackboard_R end_POSTSUBSCRIPT Γ— caligraphic_N start_POSTSUBSCRIPT blackboard_R end_POSTSUBSCRIPT .


Definition 4.1 (Cuspon with exponential decay) .

Given m π‘š m italic_m , s 𝑠 s italic_s , and M 𝑀 M italic_M such that m < s < M π‘š 𝑠 𝑀 m<s<M italic_m < italic_s < italic_M , let ΞΊ = 1 2 ⁒ ( s - 2 ⁒ m - M ) πœ… 1 2 𝑠 2 π‘š 𝑀 \kappa=\frac{1}{2}(s-2m-M) italic_ΞΊ = divide start_ARG 1 end_ARG start_ARG 2 end_ARG ( italic_s - 2 italic_m - italic_M ) , then the cuspon with exponential decay and speed s + ΞΊ 𝑠 πœ… s+\kappa italic_s + italic_ΞΊ is defined through

u ⁒ ( t , x ) = Ο• ⁒ ( x - ( s + ΞΊ ) ⁒ t ) + ΞΊ 𝑒 𝑑 π‘₯ italic-Ο• π‘₯ 𝑠 πœ… 𝑑 πœ… u(t,x)=\phi(x-(s+\kappa)t)+\kappa italic_u ( italic_t , italic_x ) = italic_Ο• ( italic_x - ( italic_s + italic_ΞΊ ) italic_t ) + italic_ΞΊ

where Ο• ⁒ ( x ) italic-Ο• π‘₯ \phi(x) italic_Ο• ( italic_x ) is implicitly given through

(4.1) Ο• x 2 = ( M - Ο• ) ⁒ ( Ο• - m ) 2 ( s - Ο• ) superscript subscript italic-Ο• π‘₯ 2 𝑀 italic-Ο• superscript italic-Ο• π‘š 2 𝑠 italic-Ο• \phi_{x}^{2}=\frac{(M-\phi)(\phi-m)^{2}}{(s-\phi)} italic_Ο• start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT = divide start_ARG ( italic_M - italic_Ο• ) ( italic_Ο• - italic_m ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG ( italic_s - italic_Ο• ) end_ARG

and satisfies

(4.2a) Ο• ⁒ ( - x ) = Ο• ⁒ ( x ) italic-Ο• π‘₯ italic-Ο• π‘₯ \displaystyle\phi(-x)=\phi(x) italic_Ο• ( - italic_x ) = italic_Ο• ( italic_x )
(4.2b) Ο• ⁒ ( 0 ) = s italic-Ο• 0 𝑠 \displaystyle\phi(0)=s italic_Ο• ( 0 ) = italic_s
(4.2c) Ο• x ⁒ ( x ) < 0 π‘“π‘œπ‘Ÿ x > 0 formulae-sequence subscript italic-Ο• π‘₯ π‘₯ 0 π‘“π‘œπ‘Ÿ π‘₯ 0 \displaystyle\phi_{x}(x)<0\quad\text{for}\quad x>0 italic_Ο• start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT ( italic_x ) < 0 for italic_x > 0
(4.2d) lim x β†’ ∞ ⁑ Ο• ⁒ ( x ) = m . subscript β†’ π‘₯ italic-Ο• π‘₯ π‘š \displaystyle\lim_{x\to\infty}\phi(x)=m. roman_lim start_POSTSUBSCRIPT italic_x β†’ ∞ end_POSTSUBSCRIPT italic_Ο• ( italic_x ) = italic_m .

Definition 2.1 .

A groupoid over a set M 𝑀 M italic_M is a set G 𝐺 G italic_G equipped with source and target mappings Ξ± , Ξ² : G β†’ M : 𝛼 𝛽 β†’ 𝐺 𝑀 \alpha,\beta:G\to M italic_Ξ± , italic_Ξ² : italic_G β†’ italic_M , a multiplication map m π‘š m italic_m from G 2 = def { ( g , h ) ∈ G Γ— G | Ξ² ⁒ ( g ) = Ξ± ⁒ ( h ) } superscript def subscript 𝐺 2 conditional-set 𝑔 β„Ž 𝐺 𝐺 𝛽 𝑔 𝛼 β„Ž G_{2}\stackrel{{\scriptstyle\mbox{\tiny{def}}}}{{=}}\{(g,h)\in G\times G|\ % \beta(g)=\alpha(h)\} italic_G start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_RELOP SUPERSCRIPTOP start_ARG = end_ARG start_ARG def end_ARG end_RELOP { ( italic_g , italic_h ) ∈ italic_G Γ— italic_G | italic_Ξ² ( italic_g ) = italic_Ξ± ( italic_h ) } to G 𝐺 G italic_G , an injective units mapping Ο΅ : M β†’ G : italic-Ο΅ β†’ 𝑀 𝐺 \epsilon:M\rightarrow G italic_Ο΅ : italic_M β†’ italic_G , and an inversion mapping ΞΉ : G β†’ G : πœ„ β†’ 𝐺 𝐺 \iota:G\rightarrow G italic_ΞΉ : italic_G β†’ italic_G , satisfying the following properties (where we write g ⁒ h 𝑔 β„Ž gh italic_g italic_h for m ⁒ ( g , h ) π‘š 𝑔 β„Ž m(g,h) italic_m ( italic_g , italic_h ) and g - 1 superscript 𝑔 1 g^{-1} italic_g start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT for ΞΉ ⁒ ( g ) πœ„ 𝑔 \iota(g) italic_ΞΉ ( italic_g ) ):

Definition 3.6 .

A semiloopoid will be called a left inverse semiloopoid if there is a left inversion map ΞΉ l : G β†’ G : subscript πœ„ 𝑙 β†’ 𝐺 𝐺 \mathchar 28947\relax_{l}:G\to G italic_ΞΉ start_POSTSUBSCRIPT italic_l end_POSTSUBSCRIPT : italic_G β†’ italic_G such that for each ( g , h ) ∈ G 2 𝑔 β„Ž subscript 𝐺 2 (g,h)\in G_{2} ( italic_g , italic_h ) ∈ italic_G start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT also ( ΞΉ l ⁒ ( g ) , g ⁒ h ) ∈ G 2 subscript πœ„ 𝑙 𝑔 𝑔 β„Ž subscript 𝐺 2 (\mathchar 28947\relax_{l}(g),gh)\in G_{2} ( italic_ΞΉ start_POSTSUBSCRIPT italic_l end_POSTSUBSCRIPT ( italic_g ) , italic_g italic_h ) ∈ italic_G start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT and ΞΉ l ⁒ ( g ) ⁒ ( g ⁒ h ) = h subscript πœ„ 𝑙 𝑔 𝑔 β„Ž β„Ž \mathchar 28947\relax_{l}(g)(gh)=h italic_ΞΉ start_POSTSUBSCRIPT italic_l end_POSTSUBSCRIPT ( italic_g ) ( italic_g italic_h ) = italic_h . A right inverse semiloopoid can be defined analogously.

A semiloopoid will be called an inverse semiloopoid if there is an inversion map ΞΉ : G β†’ G : πœ„ β†’ 𝐺 𝐺 \mathchar 28947\relax:G\to G italic_ΞΉ : italic_G β†’ italic_G , to be denoted simply by ΞΉ ⁒ ( g ) = g - 1 πœ„ 𝑔 superscript 𝑔 1 \mathchar 28947\relax(g)=g^{-1} italic_ΞΉ ( italic_g ) = italic_g start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT , such that, for each ( g , h ) , ( u , g ) ∈ G 2 𝑔 β„Ž 𝑒 𝑔 subscript 𝐺 2 (g,h),(u,g)\in G_{2} ( italic_g , italic_h ) , ( italic_u , italic_g ) ∈ italic_G start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , also ( g - 1 , g ⁒ h ) , ( u ⁒ g , g - 1 ) ∈ G 2 superscript 𝑔 1 𝑔 β„Ž 𝑒 𝑔 superscript 𝑔 1 subscript 𝐺 2 (g^{-1},gh),(ug,g^{-1})\in G_{2} ( italic_g start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT , italic_g italic_h ) , ( italic_u italic_g , italic_g start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ) ∈ italic_G start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT and

g - 1 ⁒ ( g ⁒ h ) = h , ( u ⁒ g ) ⁒ g - 1 = u . formulae-sequence superscript 𝑔 1 𝑔 β„Ž β„Ž 𝑒 𝑔 superscript 𝑔 1 𝑒 g^{-1}(gh)=h\,,\quad(ug)g^{-1}=u\,. italic_g start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ( italic_g italic_h ) = italic_h , ( italic_u italic_g ) italic_g start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT = italic_u .

Definition 3.3 .

Let A , B 𝐴 𝐡 A,B italic_A , italic_B be two C * superscript 𝐢 C^{*} italic_C start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT -algebras. Let Ξ± : 𝐾 0 ⁒ A β†’ K 0 ⁒ B normal-: 𝛼 normal-β†’ subscript 𝐾 0 𝐴 subscript 𝐾 0 𝐡 \alpha:\text{K}_{0}A\rightarrow K_{0}B italic_Ξ± : K start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT italic_A β†’ italic_K start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT italic_B be a scaled ordered homomorphism, and ΞΎ : 𝑇 ⁒ B β†’ 𝑇 ⁒ A normal-: πœ‰ normal-β†’ 𝑇 𝐡 𝑇 𝐴 \xi:\text{T}B\rightarrow\text{T}A italic_ΞΎ : T italic_B β†’ T italic_A be an affine map. We say that Ξ± 𝛼 \alpha italic_Ξ± and ΞΎ πœ‰ \xi italic_ΞΎ are compatible if

Ο„ ⁒ ( Ξ± ⁒ ( x ) ) = ( ΞΎ ⁒ ( Ο„ ) ) ⁒ ( x ) 𝜏 𝛼 π‘₯ πœ‰ 𝜏 π‘₯ \tau(\alpha(x))=(\xi(\tau))(x) italic_Ο„ ( italic_Ξ± ( italic_x ) ) = ( italic_ΞΎ ( italic_Ο„ ) ) ( italic_x )

for all x ∈ 𝐾 0 ⁒ A π‘₯ subscript 𝐾 0 𝐴 x\in\text{K}_{0}A italic_x ∈ K start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT italic_A and Ο„ ∈ 𝑇 ⁒ B 𝜏 𝑇 𝐡 \tau\in\text{T}B italic_Ο„ ∈ T italic_B .


Definition 1 .

The (left) groupoid representation of G 𝐺 G italic_G is the unitary representation Ο€ πœ‹ \pi italic_Ο€ in L 2 ⁒ ( β„› , Ξ½ r ) superscript 𝐿 2 β„› subscript 𝜈 π‘Ÿ L^{2}(\mathcal{\mathcal{R}},\nu_{r}) italic_L start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( caligraphic_R , italic_Ξ½ start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT ) defined by

( Ο€ ⁒ ( g ) ⁒ f ) ⁒ ( ( x , y ) ) = f ⁒ ( g - 1 ⁒ x , y ) . πœ‹ 𝑔 𝑓 π‘₯ 𝑦 𝑓 superscript 𝑔 1 π‘₯ 𝑦 (\pi(g)f)((x,y))=f(g^{-1}x,y). ( italic_Ο€ ( italic_g ) italic_f ) ( ( italic_x , italic_y ) ) = italic_f ( italic_g start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT italic_x , italic_y ) .

Definition 2.3 .

Let A Β― βŠ‚ A Β― 𝐴 𝐴 \bar{A}\subset A Β― start_ARG italic_A end_ARG βŠ‚ italic_A be the kernel of the augmentation, define B ⁒ A = ( T ⁒ ( s ⁒ A Β― ) , d ) 𝐡 𝐴 𝑇 𝑠 Β― 𝐴 𝑑 BA=(T(s\bar{A}),d) italic_B italic_A = ( italic_T ( italic_s Β― start_ARG italic_A end_ARG ) , italic_d ) , where s 𝑠 s italic_s denotes suspension and d 𝑑 d italic_d is generated as a coderivation by

d ⁒ ( s ⁒ ( a ) ) = s ⁒ ( a βŠ— a ) - s ⁒ ( a βŠ— 1 ) - s ⁒ ( 1 βŠ— a ) . 𝑑 𝑠 π‘Ž 𝑠 tensor-product π‘Ž π‘Ž 𝑠 tensor-product π‘Ž 1 𝑠 tensor-product 1 π‘Ž d(s(a))=s(a\otimes a)-s(a\otimes 1)-s(1\otimes a). italic_d ( italic_s ( italic_a ) ) = italic_s ( italic_a βŠ— italic_a ) - italic_s ( italic_a βŠ— 1 ) - italic_s ( 1 βŠ— italic_a ) .

Dually, let C = C Β― βŠ• k 𝐢 direct-sum Β― 𝐢 π‘˜ C=\bar{C}\oplus k italic_C = Β― start_ARG italic_C end_ARG βŠ• italic_k , and define Ξ© ⁒ C = ( T ⁒ ( s - 1 ⁒ C Β― ) , d ) Ξ© 𝐢 𝑇 superscript 𝑠 1 Β― 𝐢 𝑑 \Omega C=(T(s^{-1}\bar{C}),d) roman_Ξ© italic_C = ( italic_T ( italic_s start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT Β― start_ARG italic_C end_ARG ) , italic_d ) where d 𝑑 d italic_d is generated as a derivation by the equation

d ⁒ ( s - 1 ⁒ c ) = s - 1 ⁒ ( Ξ” Β― ⁒ ( c ) ) = s - 1 ⁒ ( Ξ” ⁒ ( c ) - c βŠ— 1 - 1 βŠ— c ) . 𝑑 superscript 𝑠 1 𝑐 superscript 𝑠 1 Β― Ξ” 𝑐 superscript 𝑠 1 Ξ” 𝑐 tensor-product 𝑐 1 tensor-product 1 𝑐 d(s^{-1}c)=s^{-1}(\bar{\Delta}(c))=s^{-1}(\Delta(c)-c\otimes 1-1\otimes c). italic_d ( italic_s start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT italic_c ) = italic_s start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ( Β― start_ARG roman_Ξ” end_ARG ( italic_c ) ) = italic_s start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ( roman_Ξ” ( italic_c ) - italic_c βŠ— 1 - 1 βŠ— italic_c ) .

Definition 2.14 .

Let Ξ³ , p ∈ ℝ 𝛾 𝑝 ℝ \gamma,p\in\mathbb{R} italic_Ξ³ , italic_p ∈ blackboard_R such that Ξ³ > p β‰₯ 1 𝛾 𝑝 1 \gamma>p\geq 1 italic_Ξ³ > italic_p β‰₯ 1 . Let M 𝑀 M italic_M be a 𝐿𝑖𝑝 - Ξ³ 𝐿𝑖𝑝 𝛾 \textrm{Lip}-\gamma Lip - italic_Ξ³ manifold and U π‘ˆ U italic_U be an open subset of M 𝑀 M italic_M . Let X 𝑋 X italic_X be a p 𝑝 p italic_p -rough path on M 𝑀 M italic_M . We say that X 𝑋 X italic_X misses U π‘ˆ U italic_U if for every Banach space-valued 𝐿𝑖𝑝 - ( Ξ³ - 1 ) 𝐿𝑖𝑝 𝛾 1 \textrm{Lip}-(\gamma-1) Lip - ( italic_Ξ³ - 1 ) compactly one-form Ξ± 𝛼 \alpha italic_Ξ± on M 𝑀 M italic_M , we have:

𝑠𝑒𝑝𝑝 ⁒ ( Ξ± ) βŠ† U β‡’ X ⁒ ( Ξ± ) = 0 𝑠𝑒𝑝𝑝 𝛼 π‘ˆ β‡’ 𝑋 𝛼 0 \textrm{supp}(\alpha)\subseteq U\Rightarrow X(\alpha)=0 supp ( italic_Ξ± ) βŠ† italic_U β‡’ italic_X ( italic_Ξ± ) = 0

Definition \thethm .

For a process transition label Ξ» πœ† \lambda italic_Ξ» , define π—Œπ–Ύπ—… ( Ξ» ) π—Œπ–Ύπ—… πœ† \mathop{\mathsf{sel}}(\lambda) sansserif_sel ( italic_Ξ» ) by

π—Œπ–Ύπ—… ( k ! ⁒ v ) = π—Œπ–Ύπ—… ( k ⁒ ? ⁒ v ) = π—Œπ–Ύπ—… ( Ο„ ) = βˆ… π—Œπ–Ύπ—… π‘˜ 𝑣 π—Œπ–Ύπ—… π‘˜ ? 𝑣 π—Œπ–Ύπ—… 𝜏 \displaystyle\mathop{\mathsf{sel}}(k!v)=\mathop{\mathsf{sel}}(k?v)=\mathop{% \mathsf{sel}}(Ο„)=\emptyset sansserif_sel ( italic_k ! italic_v ) = sansserif_sel ( italic_k ? italic_v ) = sansserif_sel ( italic_Ο„ ) = βˆ…
π—Œπ–Ύπ—… ( k & l ) = π—Œπ–Ύπ—… ( k βŠ• l ) = π—Œπ–Ύπ—… ( Ο„ : l ) = l fragments π—Œπ–Ύπ—… fragments ( k l ) π—Œπ–Ύπ—… fragments ( k βŠ• l ) π—Œπ–Ύπ—… fragments ( Ο„ : l ) l \displaystyle\mathop{\mathsf{sel}}(k\&l)=\mathop{\mathsf{sel}}(kβŠ•l)=\mathop{% \mathsf{sel}}(\tau:l)=l sansserif_sel ( italic_k & italic_l ) = sansserif_sel ( italic_k βŠ• italic_l ) = sansserif_sel ( italic_Ο„ : italic_l ) = italic_l

Given a trace Ξ± 𝛼 \alpha italic_Ξ± we lift π—Œπ–Ύπ—… ( - ) π—Œπ–Ύπ—… \mathop{\mathsf{sel}}(-) sansserif_sel ( - ) pointwise, that is, π—Œπ–Ύπ—… ( Ξ± ) = { π—Œπ–Ύπ—… ( Ξ» ) | Ξ± = Ο• ⁒ Ξ» ⁒ Ξ± β€² } π—Œπ–Ύπ—… 𝛼 conditional-set π—Œπ–Ύπ—… πœ† 𝛼 italic-Ο• πœ† superscript 𝛼 β€² \mathop{\mathsf{sel}}(\alpha)=\{\mathop{\mathsf{sel}}(\lambda)|\alpha=\phi% \lambda\alpha^{\prime}\} sansserif_sel ( italic_Ξ± ) = { sansserif_sel ( italic_Ξ» ) | italic_Ξ± = italic_Ο• italic_Ξ» italic_Ξ± start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT } .


Definition 3.6 (Extended static feedback transformations) .

A local diffeomorphism of the manifold of states, controls and time, 𝒙 , 𝒖 , t 𝒙 𝒖 𝑑 \bm{x},\ \bm{u},\ t bold_italic_x , bold_italic_u , italic_t of the form

t ↦ t , 𝒙 ↦ 𝒙 Β― = 𝜢 ⁒ ( t , 𝒙 ) , 𝒖 ↦ 𝒖 Β― = 𝜷 ⁒ ( t , 𝒙 , 𝒖 ) formulae-sequence formulae-sequence maps-to 𝑑 𝑑 maps-to 𝒙 bold-Β― 𝒙 𝜢 𝑑 𝒙 maps-to 𝒖 bold-Β― 𝒖 𝜷 𝑑 𝒙 𝒖 t\mapsto t,\ \bm{x}\mapsto\bm{\bar{x}}=\bm{\alpha}(t,\bm{x}),\ \bm{u}\mapsto% \bm{\bar{u}}=\bm{\beta}(t,\bm{x},\bm{u}) italic_t ↦ italic_t , bold_italic_x ↦ bold_Β― start_ARG bold_italic_x end_ARG = bold_italic_Ξ± ( italic_t , bold_italic_x ) , bold_italic_u ↦ bold_Β― start_ARG bold_italic_u end_ARG = bold_italic_Ξ² ( italic_t , bold_italic_x , bold_italic_u )

identifying a pair of control systems { βˆ‚ t + 𝒇 ⁒ ( t , 𝒙 , 𝒖 ) ⁒ βˆ‚ 𝒙 , βˆ‚ 𝒖 } subscript 𝑑 𝒇 𝑑 𝒙 𝒖 subscript 𝒙 subscript 𝒖 \{\partial_{t}+\bm{f}(t,\bm{x},\bm{u})\partial_{\bm{x}},\ \partial_{\bm{u}}\} { βˆ‚ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT + bold_italic_f ( italic_t , bold_italic_x , bold_italic_u ) βˆ‚ start_POSTSUBSCRIPT bold_italic_x end_POSTSUBSCRIPT , βˆ‚ start_POSTSUBSCRIPT bold_italic_u end_POSTSUBSCRIPT } and { βˆ‚ t + 𝒇 Β― ⁒ ( t , 𝒙 Β― , 𝒖 Β― ) ⁒ βˆ‚ 𝒙 Β― , βˆ‚ 𝒖 Β― } subscript 𝑑 bold-Β― 𝒇 𝑑 bold-Β― 𝒙 bold-Β― 𝒖 subscript bold-Β― 𝒙 subscript bold-Β― 𝒖 \{\partial_{t}+\bm{\bar{f}}(t,\bm{\bar{x}},\bm{\bar{u}})\partial_{\bm{\bar{x}}% },\ \partial_{\bm{\bar{u}}}\} { βˆ‚ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT + bold_Β― start_ARG bold_italic_f end_ARG ( italic_t , bold_Β― start_ARG bold_italic_x end_ARG , bold_Β― start_ARG bold_italic_u end_ARG ) βˆ‚ start_POSTSUBSCRIPT bold_Β― start_ARG bold_italic_x end_ARG end_POSTSUBSCRIPT , βˆ‚ start_POSTSUBSCRIPT bold_Β― start_ARG bold_italic_u end_ARG end_POSTSUBSCRIPT } will be called an extended static feedback transformation (ESFT).


Definition 6.11 .

[ 19 ] Let ΞΌ ∈ β„³ πœ‡ β„³ \mu\in\mathcal{M} italic_ΞΌ ∈ caligraphic_M . A continuous and bounded stochastic process x : ℝ β†’ L 2 ⁒ ( Ξ© , P , H ) : π‘₯ β†’ ℝ superscript 𝐿 2 Ξ© 𝑃 𝐻 x:\mathbb{R}\to L^{2}(\Omega,P,H) italic_x : blackboard_R β†’ italic_L start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( roman_Ξ© , italic_P , italic_H ) is said to be square-mean ΞΌ πœ‡ \mu italic_ΞΌ -pseudo almost automorphic if

x = y + z π‘₯ 𝑦 𝑧 x=y+z italic_x = italic_y + italic_z

where y 𝑦 y italic_y is square-mean almost automorphic and z 𝑧 z italic_z square-mean ΞΌ πœ‡ \mu italic_ΞΌ -ergodic.


Definition 4.1 .

Define I ⁒ ( P , Οƒ , Ο‡ ) 𝐼 𝑃 𝜎 πœ’ I(P,\sigma,\chi) italic_I ( italic_P , italic_Οƒ , italic_Ο‡ ) , the space of principal series, to be the space of smooth functions f : G β†’ V : 𝑓 β†’ 𝐺 𝑉 f:G\to V italic_f : italic_G β†’ italic_V such that

f ⁒ ( n ⁒ a ⁒ m ⁒ x ) = Ξ΄ ⁒ ( a ) 1 / 2 ⁒ Ο‡ ⁒ ( a ) ⁒ Οƒ ⁒ ( m ) ⁒ f ⁒ ( x ) 𝑓 𝑛 π‘Ž π‘š π‘₯ 𝛿 superscript π‘Ž 1 2 πœ’ π‘Ž 𝜎 π‘š 𝑓 π‘₯ f(namx)=\delta(a)^{1/2}\chi(a)\sigma(m)f(x) italic_f ( italic_n italic_a italic_m italic_x ) = italic_Ξ΄ ( italic_a ) start_POSTSUPERSCRIPT 1 / 2 end_POSTSUPERSCRIPT italic_Ο‡ ( italic_a ) italic_Οƒ ( italic_m ) italic_f ( italic_x )

βˆ€ n ∈ N for-all 𝑛 𝑁 \forall n\in N βˆ€ italic_n ∈ italic_N , βˆ€ a ∈ A for-all π‘Ž 𝐴 \forall a\in A βˆ€ italic_a ∈ italic_A , βˆ€ m ∈ M for-all π‘š 𝑀 \forall m\in M βˆ€ italic_m ∈ italic_M , βˆ€ x ∈ G for-all π‘₯ 𝐺 \forall x\in G βˆ€ italic_x ∈ italic_G . G 𝐺 G italic_G acts on I ⁒ ( P , Οƒ , Ο‡ ) 𝐼 𝑃 𝜎 πœ’ I(P,\sigma,\chi) italic_I ( italic_P , italic_Οƒ , italic_Ο‡ ) by right translation: ρ ⁒ ( g ) ⁒ f ⁒ ( x ) = f ⁒ ( x ⁒ g ) 𝜌 𝑔 𝑓 π‘₯ 𝑓 π‘₯ 𝑔 \rho(g)f(x)=f(xg) italic_ρ ( italic_g ) italic_f ( italic_x ) = italic_f ( italic_x italic_g ) . This defines a representation of G 𝐺 G italic_G called the principal series representation, or induced representation of G 𝐺 G italic_G . For simplicity, we denote this representation by I ⁒ ( Οƒ , Ο‡ ) 𝐼 𝜎 πœ’ I(\sigma,\chi) italic_I ( italic_Οƒ , italic_Ο‡ ) , I ⁒ ( Ο‡ ) 𝐼 πœ’ I(\chi) italic_I ( italic_Ο‡ ) when there is no confusion.


Definition 1.2 .

Let N = ( B , E , M 0 ⁒ pre , post ) 𝑁 𝐡 𝐸 subscript 𝑀 0 normal-pre normal-post N=(B,E,M_{0}\mathrm{pre},\mathrm{post}) italic_N = ( italic_B , italic_E , italic_M start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT roman_pre , roman_post ) be a Petri net with events E 𝐸 E italic_E . Define E * := E βˆͺ { * } assign subscript 𝐸 𝐸 E_{*}:=E\cup\{*\} italic_E start_POSTSUBSCRIPT * end_POSTSUBSCRIPT := italic_E βˆͺ { * } . We extend the pre and post condition maps to * * * by taking

pre ⁒ ( * ) = βˆ… , post ⁒ ( * ) = βˆ… . formulae-sequence pre post \mathrm{pre}(*)=\varnothing,\qquad\mathrm{post}(*)=\varnothing. roman_pre ( * ) = βˆ… , roman_post ( * ) = βˆ… .

Definition 3.1 .

Let 𝔐 R subscript 𝔐 𝑅 \mathfrak{M}_{R} fraktur_M start_POSTSUBSCRIPT italic_R end_POSTSUBSCRIPT be an ( W βŠ— β„€ p R ) ⁒ [ [ v ] ] subscript tensor-product subscript β„€ 𝑝 π‘Š 𝑅 delimited-[] delimited-[] 𝑣 (W\otimes_{\mathbb{Z}_{p}}R)[\![v]\!] ( italic_W βŠ— start_POSTSUBSCRIPT blackboard_Z start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT end_POSTSUBSCRIPT italic_R ) [ [ italic_v ] ] -module. A semilinear action of Ξ” Ξ” \Delta roman_Ξ” on 𝔐 R subscript 𝔐 𝑅 \mathfrak{M}_{R} fraktur_M start_POSTSUBSCRIPT italic_R end_POSTSUBSCRIPT is collection of g ^ ^ 𝑔 \widehat{g} ^ start_ARG italic_g end_ARG -semilinear bijections g ^ : 𝔐 R β†’ 𝔐 R : ^ 𝑔 β†’ subscript 𝔐 𝑅 subscript 𝔐 𝑅 \widehat{g}:\mathfrak{M}_{R}\rightarrow\mathfrak{M}_{R} ^ start_ARG italic_g end_ARG : fraktur_M start_POSTSUBSCRIPT italic_R end_POSTSUBSCRIPT β†’ fraktur_M start_POSTSUBSCRIPT italic_R end_POSTSUBSCRIPT for each g ∈ Ξ” 𝑔 Ξ” g\in\Delta italic_g ∈ roman_Ξ” such that

g ^ ∘ h ^ = g ⁒ h ^ ^ 𝑔 ^ β„Ž ^ 𝑔 β„Ž \widehat{g}\circ\widehat{h}=\widehat{gh} ^ start_ARG italic_g end_ARG ∘ ^ start_ARG italic_h end_ARG = ^ start_ARG italic_g italic_h end_ARG

for all g , h ∈ Ξ” 𝑔 β„Ž Ξ” g,h\in\Delta italic_g , italic_h ∈ roman_Ξ” .


Definition 5.1 .

(Sufficient statistic)

Let ( M , Ξ© , p ) 𝑀 Ξ© 𝑝 (M,{\Omega},p) ( italic_M , roman_Ξ© , italic_p ) be a parametrized measure model. Then ΞΊ : Ξ© β†’ Ξ© β€² : πœ… β†’ Ξ© superscript Ξ© β€² \kappa:{\Omega}\to{\Omega}^{\prime} italic_ΞΊ : roman_Ξ© β†’ roman_Ξ© start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT is called a sufficient statistic for p 𝑝 p italic_p if there is a ΞΌ ∈ β„³ ⁒ ( Ξ© ) πœ‡ β„³ Ξ© \mu\in{\mathcal{M}}({\Omega}) italic_ΞΌ ∈ caligraphic_M ( roman_Ξ© ) such that

p ⁒ ( ΞΎ ) = Ο• β€² ⁒ ( ΞΊ ⁒ ( β‹… ) ; ΞΎ ) ⁒ ΞΌ 𝑝 πœ‰ superscript italic-Ο• β€² πœ… β‹… πœ‰ πœ‡ p(\xi)=\phi^{\prime}(\kappa(\cdot);\xi)\mu italic_p ( italic_ΞΎ ) = italic_Ο• start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ( italic_ΞΊ ( β‹… ) ; italic_ΞΎ ) italic_ΞΌ

for some Ο• β€² ⁒ ( β‹… ; ΞΎ ) ∈ L 1 ⁒ ( Ξ© β€² , ΞΌ β€² ) superscript italic-Ο• β€² β‹… πœ‰ superscript 𝐿 1 superscript Ξ© β€² superscript πœ‡ β€² \phi^{\prime}(\cdot;\xi)\in L^{1}({\Omega}^{\prime},\mu^{\prime}) italic_Ο• start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ( β‹… ; italic_ΞΎ ) ∈ italic_L start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT ( roman_Ξ© start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT , italic_ΞΌ start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ) . In this case,

p β€² ⁒ ( ΞΎ ) = ΞΊ * ⁒ p ⁒ ( ΞΎ ) = Ο• β€² ⁒ ( β‹… ; ΞΎ ) ⁒ ΞΌ β€² , superscript 𝑝 β€² πœ‰ subscript πœ… 𝑝 πœ‰ superscript italic-Ο• β€² β‹… πœ‰ superscript πœ‡ β€² p^{\prime}(\xi)=\kappa_{*}p(\xi)=\phi^{\prime}(\cdot;\xi)\mu^{\prime}, italic_p start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ( italic_ΞΎ ) = italic_ΞΊ start_POSTSUBSCRIPT * end_POSTSUBSCRIPT italic_p ( italic_ΞΎ ) = italic_Ο• start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ( β‹… ; italic_ΞΎ ) italic_ΞΌ start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ,

where ΞΌ β€² = ΞΊ * ⁒ ( ΞΌ ) superscript πœ‡ β€² subscript πœ… πœ‡ \mu^{\prime}=\kappa_{*}(\mu) italic_ΞΌ start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT = italic_ΞΊ start_POSTSUBSCRIPT * end_POSTSUBSCRIPT ( italic_ΞΌ ) .


Definition 4.1 .

Let S 𝑆 S italic_S be a finite dimensional linear space and S * superscript 𝑆 S^{*} italic_S start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT its dual space. A set Ξ› βŠ‚ S * Ξ› superscript 𝑆 \Lambda\subset S^{*} roman_Ξ› βŠ‚ italic_S start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT is said to be a determining set for S 𝑆 S italic_S if for any s ∈ S 𝑠 𝑆 s\in S italic_s ∈ italic_S

Ξ» ⁒ ( s ) = 0 βˆ€ Ξ» ∈ Ξ› ⟹ s = 0 , formulae-sequence πœ† 𝑠 0 formulae-sequence for-all πœ† Ξ› ⟹ 𝑠 0 \lambda(s)=0\quad\forall\lambda\in\Lambda\quad\Longrightarrow\quad s=0, italic_Ξ» ( italic_s ) = 0 βˆ€ italic_Ξ» ∈ roman_Ξ› ⟹ italic_s = 0 ,

and Ξ› Ξ› \Lambda roman_Ξ› is a minimal determining set (MDS) for the space S 𝑆 S italic_S if there is no smaller determining set.


Definition 5.1 .

A group H 𝐻 H italic_H of automorphisms of 𝒯 q subscript 𝒯 π‘ž \mathcal{T}_{q} caligraphic_T start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT is self-similar if, for all g ∈ H , x ∈ { 0 , … , q - 1 } formulae-sequence 𝑔 𝐻 π‘₯ 0 … π‘ž 1 g\in H,x\in\{0,\ldots,q-1\} italic_g ∈ italic_H , italic_x ∈ { 0 , … , italic_q - 1 } , there exist h ∈ H , y ∈ { 0 , … , q - 1 } formulae-sequence β„Ž 𝐻 𝑦 0 … π‘ž 1 h\in H,y\in\{0,\ldots,q-1\} italic_h ∈ italic_H , italic_y ∈ { 0 , … , italic_q - 1 } such that

g ⁒ ( x ⁒ w ) = y ⁒ h ⁒ ( w ) , 𝑔 π‘₯ 𝑀 𝑦 β„Ž 𝑀 g(xw)=yh(w), italic_g ( italic_x italic_w ) = italic_y italic_h ( italic_w ) ,

for all finite words w 𝑀 w italic_w over the alphabet { 0 , … , q - 1 } 0 … π‘ž 1 \{0,\ldots,q-1\} { 0 , … , italic_q - 1 } .


Definition 2.2 .

An affine permutation of order n 𝑛 n italic_n is a bijection f : β„€ β†’ β„€ normal-: 𝑓 normal-β†’ β„€ β„€ f:\mathbb{Z}\rightarrow\mathbb{Z} italic_f : blackboard_Z β†’ blackboard_Z which satisfies the condition

(3) f ⁒ ( i + n ) = f ⁒ ( i ) + n 𝑓 𝑖 𝑛 𝑓 𝑖 𝑛 f(i+n)=f(i)+n italic_f ( italic_i + italic_n ) = italic_f ( italic_i ) + italic_n

for all i ∈ β„€ . 𝑖 β„€ i\in\mathbb{Z}. italic_i ∈ blackboard_Z . The affine permutations of order n 𝑛 n italic_n form a group, which we denote S ~ n . subscript normal-~ 𝑆 𝑛 \widetilde{S}_{n}. ~ start_ARG italic_S end_ARG start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT .


Definition 5.25 .

A set K ∈ 𝒦 n ⁒ ( A , B ) 𝐾 superscript 𝒦 𝑛 𝐴 𝐡 K\in\mathcal{K}^{n}(A,B) italic_K ∈ caligraphic_K start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT ( italic_A , italic_B ) is called extremal if βˆ€ T , P ∈ 𝒦 n ⁒ ( A , B ) for-all 𝑇 𝑃 superscript 𝒦 𝑛 𝐴 𝐡 \quad\forall T,P\in\mathcal{K}^{n}(A,B) βˆ€ italic_T , italic_P ∈ caligraphic_K start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT ( italic_A , italic_B ) :

K = T ∨ P ⟹ K = T , or K = P . formulae-sequence 𝐾 𝑇 𝑃 ⟹ formulae-sequence 𝐾 𝑇 or 𝐾 𝑃 K=T\vee P\qquad\Longrightarrow\qquad K=T,\quad\text{ or }\quad K=P. italic_K = italic_T ∨ italic_P ⟹ italic_K = italic_T , or italic_K = italic_P .
Definition 5.26 .

A function f ∈ C ⁒ v ⁒ x T ⁒ ( K ) 𝑓 𝐢 𝑣 subscript π‘₯ 𝑇 𝐾 f\in Cvx_{T}(K) italic_f ∈ italic_C italic_v italic_x start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT ( italic_K ) is called extremal if βˆ€ g , h ∈ C ⁒ v ⁒ x T ⁒ ( K ) for-all 𝑔 β„Ž 𝐢 𝑣 subscript π‘₯ 𝑇 𝐾 \quad\forall g,h\in Cvx_{T}(K) βˆ€ italic_g , italic_h ∈ italic_C italic_v italic_x start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT ( italic_K ) :

f = inf ^ ⁒ { h , g } ⟹ f = h , or f = g . formulae-sequence 𝑓 ^ infimum β„Ž 𝑔 ⟹ formulae-sequence 𝑓 β„Ž or 𝑓 𝑔 f=\hat{\inf}\{h,g\}\qquad\Longrightarrow\qquad f=h,\quad\text{ or }\quad f=g. italic_f = ^ start_ARG roman_inf end_ARG { italic_h , italic_g } ⟹ italic_f = italic_h , or italic_f = italic_g .

Another formulation of which is:

e ⁒ p ⁒ i ⁒ ( f ) = e ⁒ p ⁒ i ⁒ ( h ) ∨ e ⁒ p ⁒ i ⁒ ( g ) ⟹ f = h , or f = g , formulae-sequence 𝑒 𝑝 𝑖 𝑓 𝑒 𝑝 𝑖 β„Ž 𝑒 𝑝 𝑖 𝑔 ⟹ formulae-sequence 𝑓 β„Ž or 𝑓 𝑔 epi(f)=epi(h)\vee epi(g)\qquad\Longrightarrow\qquad f=h,\quad\text{ or }\quad f% =g, italic_e italic_p italic_i ( italic_f ) = italic_e italic_p italic_i ( italic_h ) ∨ italic_e italic_p italic_i ( italic_g ) ⟹ italic_f = italic_h , or italic_f = italic_g ,

which (in the case T β‰  βˆ… 𝑇 T\neq\emptyset italic_T β‰  βˆ… ), means that e ⁒ p ⁒ i ⁒ ( f ) 𝑒 𝑝 𝑖 𝑓 epi(f) italic_e italic_p italic_i ( italic_f ) is extremal in 𝒦 n + 1 ⁒ ( e ⁒ p ⁒ i ⁒ ( 1 T ) , e ⁒ p ⁒ i ⁒ ( 1 K ) ) superscript 𝒦 𝑛 1 𝑒 𝑝 𝑖 subscript 1 𝑇 𝑒 𝑝 𝑖 subscript 1 𝐾 {\cal K}^{n+1}(epi(1_{T}),epi(1_{K})) caligraphic_K start_POSTSUPERSCRIPT italic_n + 1 end_POSTSUPERSCRIPT ( italic_e italic_p italic_i ( 1 start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT ) , italic_e italic_p italic_i ( 1 start_POSTSUBSCRIPT italic_K end_POSTSUBSCRIPT ) ) .


Definition 2.4 .

[Euler’s Theorem] A real valued function Ο† ⁒ ( x , ΞΎ ) ∈ C ∞ ⁒ ( ℝ n Γ— ℝ n βˆ– { 0 } ) πœ‘ π‘₯ πœ‰ superscript 𝐢 superscript ℝ 𝑛 superscript ℝ 𝑛 0 \varphi(x,\xi)\in C^{\infty}(\mathbb{R}^{n}\times\mathbb{R}^{n}\setminus\{0\}) italic_Ο† ( italic_x , italic_ΞΎ ) ∈ italic_C start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT ( blackboard_R start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT Γ— blackboard_R start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT βˆ– { 0 } ) is said to be positively homogeneous of degree 1 in ΞΎ πœ‰ \xi italic_ΞΎ , if for all Ξ» > 0 πœ† 0 \lambda>0 italic_Ξ» > 0 , there holds

Ο† ⁒ ( x , Ξ» ⁒ ΞΎ ) = Ξ» ⁒ Ο† ⁒ ( x , ΞΎ ) . πœ‘ π‘₯ πœ† πœ‰ πœ† πœ‘ π‘₯ πœ‰ \varphi(x,\lambda\xi)=\lambda\varphi(x,\xi). italic_Ο† ( italic_x , italic_Ξ» italic_ΞΎ ) = italic_Ξ» italic_Ο† ( italic_x , italic_ΞΎ ) .

Moreover, Ο† ⁒ ( x , ΞΎ ) πœ‘ π‘₯ πœ‰ \varphi(x,\xi) italic_Ο† ( italic_x , italic_ΞΎ ) is positively homogeneous of degree 1 if and only if

Ο† ⁒ ( x , ΞΎ ) = ΞΎ β‹… βˆ‡ ΞΎ ⁑ Ο† ⁒ ( x , ΞΎ ) . πœ‘ π‘₯ πœ‰ β‹… πœ‰ subscript βˆ‡ πœ‰ πœ‘ π‘₯ πœ‰ \varphi(x,\xi)=\xi\cdot\nabla_{\xi}\varphi(x,\xi). italic_Ο† ( italic_x , italic_ΞΎ ) = italic_ΞΎ β‹… βˆ‡ start_POSTSUBSCRIPT italic_ΞΎ end_POSTSUBSCRIPT italic_Ο† ( italic_x , italic_ΞΎ ) .

Definition 4.1 (Wolff solutions) .

For directions ρ , ρ βŸ‚ ∈ ℝ n 𝜌 superscript 𝜌 perpendicular-to superscript ℝ 𝑛 \rho,\rho^{\perp}\in\mathbb{R}^{n} italic_ρ , italic_ρ start_POSTSUPERSCRIPT βŸ‚ end_POSTSUPERSCRIPT ∈ blackboard_R start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT , parameters t ∈ ℝ , Ο„ > 0 formulae-sequence 𝑑 ℝ 𝜏 0 t\in\mathbb{R},\tau>0 italic_t ∈ blackboard_R , italic_Ο„ > 0 , and for points x ∈ ℝ n π‘₯ superscript ℝ 𝑛 x\in\mathbb{R}^{n} italic_x ∈ blackboard_R start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT we define the functions

(4.2) u ⁒ ( x , Ο„ , t , ρ , ρ βŸ‚ ) = exp ⁑ ( Ο„ ⁒ ( x β‹… ρ - t ) ) ⁒ w ⁒ ( Ο„ ⁒ x β‹… ρ βŸ‚ ) , 𝑒 π‘₯ 𝜏 𝑑 𝜌 superscript 𝜌 perpendicular-to 𝜏 β‹… π‘₯ 𝜌 𝑑 𝑀 β‹… 𝜏 π‘₯ superscript 𝜌 perpendicular-to u(x,\tau,t,\rho,\rho^{\perp})=\exp\left(\tau\left(x\cdot\rho-t\right)\right)w% \left(\tau x\cdot\rho^{\perp}\right), italic_u ( italic_x , italic_Ο„ , italic_t , italic_ρ , italic_ρ start_POSTSUPERSCRIPT βŸ‚ end_POSTSUPERSCRIPT ) = roman_exp ( italic_Ο„ ( italic_x β‹… italic_ρ - italic_t ) ) italic_w ( italic_Ο„ italic_x β‹… italic_ρ start_POSTSUPERSCRIPT βŸ‚ end_POSTSUPERSCRIPT ) ,

where w 𝑀 w italic_w is defined in lemma 4.2 . When ρ , ρ βŸ‚ ∈ ℝ n 𝜌 superscript 𝜌 perpendicular-to superscript ℝ 𝑛 \rho,\rho^{\perp}\in\mathbb{R}^{n} italic_ρ , italic_ρ start_POSTSUPERSCRIPT βŸ‚ end_POSTSUPERSCRIPT ∈ blackboard_R start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT satisfy | ρ | = | ρ βŸ‚ | = 1 𝜌 superscript 𝜌 perpendicular-to 1 \left\lvert\rho\right\rvert=\left\lvert\rho^{\perp}\right\rvert=1 | italic_ρ | = | italic_ρ start_POSTSUPERSCRIPT βŸ‚ end_POSTSUPERSCRIPT | = 1 and ρ β‹… ρ βŸ‚ = 0 β‹… 𝜌 superscript 𝜌 perpendicular-to 0 \rho\cdot\rho^{\perp}=0 italic_ρ β‹… italic_ρ start_POSTSUPERSCRIPT βŸ‚ end_POSTSUPERSCRIPT = 0 , we call them the Wolff solutions to the p 𝑝 p italic_p -Laplace equation. We also write f = u | βˆ‚ ⁑ Ξ© 𝑓 evaluated-at 𝑒 Ξ© f=u|_{\partial\Omega} italic_f = italic_u | start_POSTSUBSCRIPT βˆ‚ roman_Ξ© end_POSTSUBSCRIPT .


Definition 2.4 .

We say that Ο† ⁒ ( y , ΞΎ ) πœ‘ 𝑦 πœ‰ \varphi(y,\xi) italic_Ο† ( italic_y , italic_ΞΎ ) is positively homogeneous of order 1 1 1 1 if

(2.4) Ο† ⁒ ( y , Ξ» ⁒ ΞΎ ) = Ξ» ⁒ Ο† ⁒ ( y , ΞΎ ) πœ‘ 𝑦 πœ† πœ‰ πœ† πœ‘ 𝑦 πœ‰ \varphi(y,\lambda\xi)=\lambda\varphi(y,\xi) italic_Ο† ( italic_y , italic_Ξ» italic_ΞΎ ) = italic_Ξ» italic_Ο† ( italic_y , italic_ΞΎ )

holds for all y ∈ ℝ n 𝑦 superscript ℝ 𝑛 y\in{\mathbb{R}}^{n} italic_y ∈ blackboard_R start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT , ΞΎ β‰  0 πœ‰ 0 \xi\neq 0 italic_ΞΎ β‰  0 and Ξ» > 0 πœ† 0 \lambda>0 italic_Ξ» > 0 . We also say that Ο† ⁒ ( y , ΞΎ ) πœ‘ 𝑦 πœ‰ \varphi(y,\xi) italic_Ο† ( italic_y , italic_ΞΎ ) is positively homogeneous of order 1 1 1 1 for large ΞΎ πœ‰ \xi italic_ΞΎ if there exist a constant R > 0 𝑅 0 R>0 italic_R > 0 such that ( 2.4 ) holds for all y ∈ ℝ n 𝑦 superscript ℝ 𝑛 y\in{\mathbb{R}}^{n} italic_y ∈ blackboard_R start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT , | ΞΎ | β‰₯ R πœ‰ 𝑅 |\xi|\geq R | italic_ΞΎ | β‰₯ italic_R and Ξ» β‰₯ 1 πœ† 1 \lambda\geq 1 italic_Ξ» β‰₯ 1 .


Definition 4.1 .

For n ∈ β„€ 𝑛 β„€ n\in\mathbb{Z} italic_n ∈ blackboard_Z let

Ο΅ ⁒ ( n ) = { 2 n ≑ 0 ( mod 2 ) 1 n ≑ 1 ( mod 2 ) italic-Ο΅ 𝑛 cases 2 𝑛 annotated 0 pmod 2 1 𝑛 annotated 1 pmod 2 \epsilon(n)=\begin{cases}2&n\equiv 0\pmod{2}\\ 1&n\equiv 1\pmod{2}\end{cases} italic_Ο΅ ( italic_n ) = { start_ROW start_CELL 2 end_CELL start_CELL italic_n ≑ 0 start_MODIFIER ( roman_mod start_ARG 2 end_ARG ) end_MODIFIER end_CELL end_ROW start_ROW start_CELL 1 end_CELL start_CELL italic_n ≑ 1 start_MODIFIER ( roman_mod start_ARG 2 end_ARG ) end_MODIFIER end_CELL end_ROW

.


Definition 5 (Jorgensen, 1987) .

Let ΞΊ ∈ ℝ + + πœ… subscript ℝ absent \kappa\in\mathbb{R}_{++} italic_ΞΊ ∈ blackboard_R start_POSTSUBSCRIPT + + end_POSTSUBSCRIPT and ρ ∈ ℝ 𝜌 ℝ \rho\in\mathbb{R} italic_ρ ∈ blackboard_R be shape and dispersion parameters, respectively. An exponential dispersion model satisfying

Οƒ 2 ⁒ ( ΞΈ ) = ΞΊ ⁒ ΞΌ ⁒ ( ΞΈ ) ρ superscript 𝜎 2 πœƒ πœ… πœ‡ superscript πœƒ 𝜌 \displaystyle\sigma^{2}(\theta)=\kappa\mu(\theta)^{\rho} italic_Οƒ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_ΞΈ ) = italic_ΞΊ italic_ΞΌ ( italic_ΞΈ ) start_POSTSUPERSCRIPT italic_ρ end_POSTSUPERSCRIPT (5)

is called a Tweedie model .


Definition 3.1 .

A non-empty structure ( π’œ , + ) π’œ (\mathcal{A},+) ( caligraphic_A , + ) is called an assembly if

  1. (1)

    βˆ€ x βˆ€ y βˆ€ z ( x + ( y + z ) = ( x + y ) + z ) . fragments for-all x for-all y for-all z fragments ( x fragments ( y z ) fragments ( x y ) z ) . \forall x\forall y\forall z(x+\left(y+z\right)=\left(x+y\right)+z). βˆ€ italic_x βˆ€ italic_y βˆ€ italic_z ( italic_x + ( italic_y + italic_z ) = ( italic_x + italic_y ) + italic_z ) .

  2. (2)

    βˆ€ x βˆ€ y ( x + y = y + x ) . fragments for-all x for-all y fragments ( x y y x ) . \forall x\forall y(x+y=y+x). βˆ€ italic_x βˆ€ italic_y ( italic_x + italic_y = italic_y + italic_x ) .

  3. (3)

    βˆ€ x βˆƒ e ( x + e = x ∧ βˆ€ f ( x + f = x β†’ e + f = e ) ) . fragments for-all x e fragments ( x e x for-all f fragments ( x f x β†’ e f e ) ) . \forall x\exists e\left(x+e=x\wedge\forall f\left(x+f=x\rightarrow e+f=e\right% )\right). βˆ€ italic_x βˆƒ italic_e ( italic_x + italic_e = italic_x ∧ βˆ€ italic_f ( italic_x + italic_f = italic_x β†’ italic_e + italic_f = italic_e ) ) .

  4. (4)

    βˆ€ x βˆƒ s ( x + s = e ( x ) ∧ e ( s ) = e ( x ) ) . fragments for-all x s fragments ( x s e fragments ( x ) e fragments ( s ) e fragments ( x ) ) . \forall x\exists s\left(x+s=e\left(x\right)\wedge e\left(s\right)=e\left(x% \right)\right). βˆ€ italic_x βˆƒ italic_s ( italic_x + italic_s = italic_e ( italic_x ) ∧ italic_e ( italic_s ) = italic_e ( italic_x ) ) .

  5. (5)

    βˆ€ x βˆ€ y ( e ( x + y ) = e ( x ) ∨ e ( x + y ) = e ( y ) ) . fragments for-all x for-all y fragments ( e fragments ( x y ) e fragments ( x ) e fragments ( x y ) e fragments ( y ) ) . \forall x\forall y\left(e\left(x+y\right)=e\left(x\right)\vee e\left(x+y\right% )=e\left(y\right)\right). βˆ€ italic_x βˆ€ italic_y ( italic_e ( italic_x + italic_y ) = italic_e ( italic_x ) ∨ italic_e ( italic_x + italic_y ) = italic_e ( italic_y ) ) .


Definition 4.2 .

Let S βŠ† ℝ n 𝑆 superscript ℝ 𝑛 S\subseteq\mathbb{R}^{n} italic_S βŠ† blackboard_R start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT be compact and 1 < p < ∞ 1 𝑝 1<p<\infty 1 < italic_p < ∞ . Let w 𝑀 w italic_w be a weight. The set S 𝑆 S italic_S is L w p subscript superscript 𝐿 𝑝 𝑀 L^{p}_{w} italic_L start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_w end_POSTSUBSCRIPT -removable with for the equation div ⁑ v = 0 normal-div 𝑣 0 \operatorname{div}v=0 roman_div italic_v = 0 (in the distributional sense) if for any v ∈ L w p ⁒ ( ℝ n , ℝ n ) 𝑣 subscript superscript 𝐿 𝑝 𝑀 superscript ℝ 𝑛 superscript ℝ 𝑛 v\in L^{p}_{w}(\mathbb{R}^{n},\mathbb{R}^{n}) italic_v ∈ italic_L start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_w end_POSTSUBSCRIPT ( blackboard_R start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT , blackboard_R start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT ) , the validity of the equality

(4.1) ⟨ div ⁑ v , Ο† ⟩ = 0 div 𝑣 πœ‘ 0 \langle\operatorname{div}v,\varphi\rangle=0 ⟨ roman_div italic_v , italic_Ο† ⟩ = 0

for any Ο† ∈ Lip c ⁑ ( ℝ n ) πœ‘ subscript Lip 𝑐 superscript ℝ 𝑛 \varphi\in\operatorname{Lip}_{c}(\mathbb{R}^{n}) italic_Ο† ∈ roman_Lip start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT ( blackboard_R start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT ) with supp ⁑ Ο† ∩ S = βˆ… supp πœ‘ 𝑆 \operatorname{supp}\varphi\cap S=\emptyset roman_supp italic_Ο† ∩ italic_S = βˆ… implies that ( 4.1 ) also holds for any Ο† ∈ Lip c ⁑ ( ℝ n ) πœ‘ subscript Lip 𝑐 superscript ℝ 𝑛 \varphi\in\operatorname{Lip}_{c}(\mathbb{R}^{n}) italic_Ο† ∈ roman_Lip start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT ( blackboard_R start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT ) .


Definition 1 (Hybrid Truck Model) .

A truck is modeled as a hybrid system with flow map ( 1 ), flow set { x ≀ W ⁒ ( β„“ ⁒ ( t ) ) } π‘₯ π‘Š β„“ 𝑑 \{x\leq W(\ell(t))\} { italic_x ≀ italic_W ( roman_β„“ ( italic_t ) ) } , jump map ( 2 ), and jump set { x β‰₯ W ⁒ ( β„“ ⁒ ( t ) ) } π‘₯ π‘Š β„“ 𝑑 \{x\geq W(\ell(t))\} { italic_x β‰₯ italic_W ( roman_β„“ ( italic_t ) ) } :

x Λ™ ⁒ ( t ) = v ⁒ ( t ) , Λ™ π‘₯ 𝑑 𝑣 𝑑 \displaystyle\dot{x}(t)=v(t), Λ™ start_ARG italic_x end_ARG ( italic_t ) = italic_v ( italic_t ) , (1)
x + = 0 , superscript π‘₯ 0 \displaystyle x^{+}=0, italic_x start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT = 0 , β„“ + ∈ { ( i , j ) ∈ β„° : ( β‹… , i ) = β„“ } , superscript β„“ conditional-set 𝑖 𝑗 β„° β‹… 𝑖 β„“ \displaystyle\ell^{+}\in\{(i,j)\in\mathcal{E}:(\cdot,i)=\ell\}, roman_β„“ start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT ∈ { ( italic_i , italic_j ) ∈ caligraphic_E : ( β‹… , italic_i ) = roman_β„“ } , (2)

where the speed v ⁒ ( t ) ∈ [ v min , v max ] 𝑣 𝑑 subscript 𝑣 subscript 𝑣 v(t)\in[v_{\min},v_{\max}] italic_v ( italic_t ) ∈ [ italic_v start_POSTSUBSCRIPT roman_min end_POSTSUBSCRIPT , italic_v start_POSTSUBSCRIPT roman_max end_POSTSUBSCRIPT ] and the next edge β„“ + superscript β„“ \ell^{+} roman_β„“ start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT are control inputs. We assume v max β‰₯ v min > 0 subscript 𝑣 subscript 𝑣 0 v_{\max}\geq v_{\min}>0 italic_v start_POSTSUBSCRIPT roman_max end_POSTSUBSCRIPT β‰₯ italic_v start_POSTSUBSCRIPT roman_min end_POSTSUBSCRIPT > 0 , i.e., trucks cannot stop or travel backwards.


Definition 107 .

Let Z E subscript 𝑍 𝐸 Z_{E} italic_Z start_POSTSUBSCRIPT italic_E end_POSTSUBSCRIPT be a smooth variety over the perfect field E 𝐸 E italic_E (which could be of any characteristic). The variety T * ⁒ Z E Γ— 𝔸 E 1 superscript 𝑇 subscript 𝑍 𝐸 superscript subscript 𝔸 𝐸 1 T^{*}Z_{E}\times\mathbb{A}_{E}^{1} italic_T start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT italic_Z start_POSTSUBSCRIPT italic_E end_POSTSUBSCRIPT Γ— blackboard_A start_POSTSUBSCRIPT italic_E end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT has a 𝔾 m subscript 𝔾 π‘š \mathbb{G}_{m} blackboard_G start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT action given by

Ξ» ⁒ ( z , ΞΎ , a ) = ( z , Ξ» ⁒ ΞΎ , Ξ» ⁒ a ) πœ† 𝑧 πœ‰ π‘Ž 𝑧 πœ† πœ‰ πœ† π‘Ž \lambda(z,\xi,a)=(z,\lambda\xi,\lambda a) italic_Ξ» ( italic_z , italic_ΞΎ , italic_a ) = ( italic_z , italic_Ξ» italic_ΞΎ , italic_Ξ» italic_a )

which has { Z E Γ— { 0 } } subscript 𝑍 𝐸 0 \{Z_{E}\times\{0\}\} { italic_Z start_POSTSUBSCRIPT italic_E end_POSTSUBSCRIPT Γ— { 0 } } as its fixed point set. Let ( T * ⁒ Z E Γ— 𝔸 E 1 ) o := ( T * ⁒ Z E Γ— 𝔸 E 1 ) \ Z E Γ— { 0 } assign superscript superscript 𝑇 subscript 𝑍 𝐸 superscript subscript 𝔸 𝐸 1 π‘œ \ superscript 𝑇 subscript 𝑍 𝐸 superscript subscript 𝔸 𝐸 1 subscript 𝑍 𝐸 0 (T^{*}Z_{E}\times\mathbb{A}_{E}^{1})^{o}:=(T^{*}Z_{E}\times\mathbb{A}_{E}^{1})% \backslash Z_{E}\times\{0\} ( italic_T start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT italic_Z start_POSTSUBSCRIPT italic_E end_POSTSUBSCRIPT Γ— blackboard_A start_POSTSUBSCRIPT italic_E end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT italic_o end_POSTSUPERSCRIPT := ( italic_T start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT italic_Z start_POSTSUBSCRIPT italic_E end_POSTSUBSCRIPT Γ— blackboard_A start_POSTSUBSCRIPT italic_E end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT ) \ italic_Z start_POSTSUBSCRIPT italic_E end_POSTSUBSCRIPT Γ— { 0 } . Then 𝔾 m subscript 𝔾 π‘š \mathbb{G}_{m} blackboard_G start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT acts freely on this variety and so we can define

T * ⁒ Z Β― E := ( T * ⁒ Z E Γ— 𝔸 E 1 \ Z E Γ— { 0 } ) / 𝔾 m assign subscript Β― superscript 𝑇 𝑍 𝐸 \ superscript 𝑇 subscript 𝑍 𝐸 superscript subscript 𝔸 𝐸 1 subscript 𝑍 𝐸 0 subscript 𝔾 π‘š \overline{T^{*}Z}_{E}:=(T^{*}Z_{E}\times\mathbb{A}_{E}^{1}\backslash Z_{E}% \times\{0\})/\mathbb{G}_{m} Β― start_ARG italic_T start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT italic_Z end_ARG start_POSTSUBSCRIPT italic_E end_POSTSUBSCRIPT := ( italic_T start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT italic_Z start_POSTSUBSCRIPT italic_E end_POSTSUBSCRIPT Γ— blackboard_A start_POSTSUBSCRIPT italic_E end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT \ italic_Z start_POSTSUBSCRIPT italic_E end_POSTSUBSCRIPT Γ— { 0 } ) / blackboard_G start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT

As noted above, when Z E = X ~ Β― k subscript 𝑍 𝐸 subscript Β― ~ 𝑋 π‘˜ Z_{E}=\overline{\tilde{X}}_{k} italic_Z start_POSTSUBSCRIPT italic_E end_POSTSUBSCRIPT = Β― start_ARG ~ start_ARG italic_X end_ARG end_ARG start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT or β„’ ~ Β― k subscript Β― ~ β„’ π‘˜ \overline{\tilde{\mathcal{L}}}_{k} Β― start_ARG ~ start_ARG caligraphic_L end_ARG end_ARG start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT , we shall use the notation T * ⁒ ( X ~ k ) Β― Β― superscript 𝑇 subscript ~ 𝑋 π‘˜ \overline{T^{*}(\tilde{X}_{k})} Β― start_ARG italic_T start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT ( ~ start_ARG italic_X end_ARG start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) end_ARG and T * ⁒ ( β„’ ~ k ) Β― Β― superscript 𝑇 subscript ~ β„’ π‘˜ \overline{T^{*}(\tilde{\mathcal{L}}_{k})} Β― start_ARG italic_T start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT ( ~ start_ARG caligraphic_L end_ARG start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) end_ARG , respectively.