Definition 4.6 .

A right moving frame is a G 𝐺 G italic_G -equivariant map ρ : β„³ β†’ G : 𝜌 β†’ β„³ 𝐺 \rho\colon\mathcal{M}\to G italic_ρ : caligraphic_M β†’ italic_G . The G 𝐺 G italic_G -equivariance means that

ρ ⁒ ( g β‹… z ) = ρ ⁒ ( z ) ⁒ g - 1 . 𝜌 β‹… 𝑔 𝑧 𝜌 𝑧 superscript 𝑔 1 \rho(g\cdot z)=\rho(z)g^{-1}. italic_ρ ( italic_g β‹… italic_z ) = italic_ρ ( italic_z ) italic_g start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT .

Definition 5

(Reversal convention applies) An edge-weight assignment w β†’ normal-β†’ 𝑀 \overrightarrow{w} β†’ start_ARG italic_w end_ARG on a tournament β„‹ β†’ = ( V , E ) normal-β†’ β„‹ 𝑉 𝐸 \overrightarrow{\mathcal{H}}=(V,E) β†’ start_ARG caligraphic_H end_ARG = ( italic_V , italic_E ) satisfies exact quantitative transitivity if

w β†’ ⁒ ( x , y ) + w β†’ ⁒ ( y , z ) = w β†’ ⁒ ( x , z ) β†’ 𝑀 π‘₯ 𝑦 β†’ 𝑀 𝑦 𝑧 β†’ 𝑀 π‘₯ 𝑧 \overrightarrow{w}(x,y)+\overrightarrow{w}(y,z)=\overrightarrow{w}(x,z) β†’ start_ARG italic_w end_ARG ( italic_x , italic_y ) + β†’ start_ARG italic_w end_ARG ( italic_y , italic_z ) = β†’ start_ARG italic_w end_ARG ( italic_x , italic_z ) (7)

holds for every three distinct vertices x , y , z ∈ V π‘₯ 𝑦 𝑧 𝑉 x,y,z\in V italic_x , italic_y , italic_z ∈ italic_V .


Definition 2.1 .

A totally associative 3 3 3 3 -ary algebra is a 𝒦 𝒦 \mathcal{K} caligraphic_K -vector space 𝒯 𝒯 \mathcal{T} caligraphic_T equipped with a trilinear operation ΞΌ πœ‡ \mu italic_ΞΌ satisfying

ΞΌ ∘ ( ΞΌ βŠ— id βŠ— id ) = ΞΌ ∘ ( id βŠ— ΞΌ βŠ— id ) = ΞΌ ∘ ( id βŠ— id βŠ— ΞΌ ) . πœ‡ tensor-product πœ‡ id id πœ‡ tensor-product id πœ‡ id πœ‡ tensor-product id id πœ‡ \displaystyle\mu\circ(\mu\otimes\operatorname{id}\otimes\operatorname{id})=\mu% \circ(\operatorname{id}\otimes\mu\otimes\operatorname{id})=\mu\circ(% \operatorname{id}\otimes\operatorname{id}\otimes\mu). italic_ΞΌ ∘ ( italic_ΞΌ βŠ— roman_id βŠ— roman_id ) = italic_ΞΌ ∘ ( roman_id βŠ— italic_ΞΌ βŠ— roman_id ) = italic_ΞΌ ∘ ( roman_id βŠ— roman_id βŠ— italic_ΞΌ ) . (2.1)
Definition 2.2 .

A weak totally associative 3 3 3 3 -ary algebra is a 𝒦 𝒦 \mathcal{K} caligraphic_K -vector space 𝒲 𝒲 \mathcal{W} caligraphic_W with a trilinear operation ΞΌ πœ‡ \mu italic_ΞΌ satisfying

ΞΌ ∘ ( ΞΌ βŠ— id βŠ— id ) = ΞΌ ∘ ( id βŠ— id βŠ— ΞΌ ) . πœ‡ tensor-product πœ‡ id id πœ‡ tensor-product id id πœ‡ \displaystyle\mu\circ(\mu\otimes\operatorname{id}\otimes\operatorname{id})=\mu% \circ(\operatorname{id}\otimes\operatorname{id}\otimes\mu). italic_ΞΌ ∘ ( italic_ΞΌ βŠ— roman_id βŠ— roman_id ) = italic_ΞΌ ∘ ( roman_id βŠ— roman_id βŠ— italic_ΞΌ ) . (2.2)
Definition 2.3 .

A partially associative 3 3 3 3 -ary algebra is a 𝒦 𝒦 \mathcal{K} caligraphic_K -vector space 𝒫 𝒫 \mathcal{P} caligraphic_P endowed with a trilinear operation ΞΌ πœ‡ \mu italic_ΞΌ satisfying

ΞΌ ∘ ( ΞΌ βŠ— id βŠ— id + id βŠ— ΞΌ βŠ— id + id βŠ— id βŠ— ΞΌ ) = 0 . πœ‡ tensor-product πœ‡ id id tensor-product id πœ‡ id tensor-product id id πœ‡ 0 \displaystyle\mu\circ(\mu\otimes\operatorname{id}\otimes\operatorname{id}+% \operatorname{id}\otimes\mu\otimes\operatorname{id}+\operatorname{id}\otimes% \operatorname{id}\otimes\mu)=0. italic_ΞΌ ∘ ( italic_ΞΌ βŠ— roman_id βŠ— roman_id + roman_id βŠ— italic_ΞΌ βŠ— roman_id + roman_id βŠ— roman_id βŠ— italic_ΞΌ ) = 0 . (2.3)

Definition 3.1 .

Let X 𝑋 X italic_X be a topological space. A pseudo-Riemannian vector bundle over X 𝑋 X italic_X is a triple ( V , g , Οƒ ) 𝑉 𝑔 𝜎 (V,g,\sigma) ( italic_V , italic_g , italic_Οƒ ) , consisting of a Riemannian vector bundle ( V , g ) β†’ X β†’ 𝑉 𝑔 𝑋 (V,g)\to X ( italic_V , italic_g ) β†’ italic_X (of finite fibre dimension), together with a self-adjoint involution Οƒ 𝜎 \sigma italic_Οƒ on V 𝑉 V italic_V . We abbreviate V Οƒ = ( V , Οƒ ) superscript 𝑉 𝜎 𝑉 𝜎 V^{\sigma}=(V,\sigma) italic_V start_POSTSUPERSCRIPT italic_Οƒ end_POSTSUPERSCRIPT = ( italic_V , italic_Οƒ ) . A special case is the trivial bundle X Γ— ℝ p , q = X Γ— ℝ p + q 𝑋 superscript ℝ 𝑝 π‘ž 𝑋 superscript ℝ 𝑝 π‘ž X\times\mathbb{R}^{p,q}=X\times\mathbb{R}^{p+q} italic_X Γ— blackboard_R start_POSTSUPERSCRIPT italic_p , italic_q end_POSTSUPERSCRIPT = italic_X Γ— blackboard_R start_POSTSUPERSCRIPT italic_p + italic_q end_POSTSUPERSCRIPT , with Οƒ = ( 1 p , - 1 q ) 𝜎 subscript 1 𝑝 subscript 1 π‘ž \sigma=(1_{p},-1_{q}) italic_Οƒ = ( 1 start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT , - 1 start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ) . Let ( E , Ξ“ ) 𝐸 Ξ“ (E,\Gamma) ( italic_E , roman_Ξ“ ) be a continuous field of graded Real Hilbert- 𝐀 𝐀 \mathbf{A} bold_A -modules on X 𝑋 X italic_X with grading ΞΉ πœ„ \iota italic_ΞΉ . A 𝐂π₯ ⁒ ( V Οƒ ) 𝐂π₯ superscript 𝑉 𝜎 \mathbf{Cl}(V^{\sigma}) bold_Cl ( italic_V start_POSTSUPERSCRIPT italic_Οƒ end_POSTSUPERSCRIPT ) -structure on E 𝐸 E italic_E is a C ⁒ ( X ) 𝐢 𝑋 C(X) italic_C ( italic_X ) -linear map c : Ξ“ ⁒ ( X ; V ) β†’ 𝐋𝐒𝐧 X , 𝐀 ⁒ ( E ) : 𝑐 β†’ Ξ“ 𝑋 𝑉 subscript 𝐋𝐒𝐧 𝑋 𝐀 𝐸 c:\Gamma(X;V)\to\mathbf{Lin}_{X,\mathbf{A}}(E) italic_c : roman_Ξ“ ( italic_X ; italic_V ) β†’ bold_Lin start_POSTSUBSCRIPT italic_X , bold_A end_POSTSUBSCRIPT ( italic_E ) which goes to Real endomorphisms, such that

c ⁒ ( v ) ⁒ ΞΉ + ΞΉ ⁒ c ⁒ ( v ) = 0 ; c ⁒ ( v ) * = - c ⁒ ( Οƒ ⁒ ( v ) ) ; c ⁒ ( v ) ⁒ c ⁒ ( w ) + c ⁒ ( w ) ⁒ c ⁒ ( v ) = - 2 ⁒ g ⁒ ( v , Οƒ ⁒ w ) . formulae-sequence 𝑐 𝑣 πœ„ πœ„ 𝑐 𝑣 0 formulae-sequence 𝑐 superscript 𝑣 𝑐 𝜎 𝑣 𝑐 𝑣 𝑐 𝑀 𝑐 𝑀 𝑐 𝑣 2 𝑔 𝑣 𝜎 𝑀 c(v)\iota+\iota c(v)=0;\;c(v)^{*}=-c(\sigma(v));\;c(v)c(w)+c(w)c(v)=-2g(v,% \sigma w). italic_c ( italic_v ) italic_ΞΉ + italic_ΞΉ italic_c ( italic_v ) = 0 ; italic_c ( italic_v ) start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT = - italic_c ( italic_Οƒ ( italic_v ) ) ; italic_c ( italic_v ) italic_c ( italic_w ) + italic_c ( italic_w ) italic_c ( italic_v ) = - 2 italic_g ( italic_v , italic_Οƒ italic_w ) .

If V = X Γ— ℝ p , q 𝑉 𝑋 superscript ℝ 𝑝 π‘ž V=X\times\mathbb{R}^{p,q} italic_V = italic_X Γ— blackboard_R start_POSTSUPERSCRIPT italic_p , italic_q end_POSTSUPERSCRIPT , we also say 𝐂π₯ p , q superscript 𝐂π₯ 𝑝 π‘ž \mathbf{Cl}^{p,q} bold_Cl start_POSTSUPERSCRIPT italic_p , italic_q end_POSTSUPERSCRIPT -structure .


Definition 1 .

A commutative monoid is a set M 𝑀 M italic_M with a distinguished element e 𝑒 e italic_e and a binary operation on M 𝑀 M italic_M denoted by β‹… normal-β‹… \cdot β‹… such that for all x , y , z ∈ M π‘₯ 𝑦 𝑧 𝑀 x,y,z\in M italic_x , italic_y , italic_z ∈ italic_M :


Definition 2.1 (Quaternion module)

Let H 𝐻 H italic_H be a left quaternion module, that is, H 𝐻 H italic_H consists of an abelian group with a left scalar multiplication ( q , u ) ↦ q ⁒ u maps-to π‘ž 𝑒 π‘ž 𝑒 (q,u)\mapsto qu ( italic_q , italic_u ) ↦ italic_q italic_u from ℍ Γ— H ℍ 𝐻 \mathbb{H}\times H blackboard_H Γ— italic_H into H 𝐻 H italic_H , such that for all u , v ∈ H 𝑒 𝑣 𝐻 u,v\in H italic_u , italic_v ∈ italic_H and p , q ∈ ℍ 𝑝 π‘ž ℍ p,q\in\mathbb{H} italic_p , italic_q ∈ blackboard_H

( p + q ) ⁒ u = p ⁒ u + q ⁒ u , p ⁒ ( u + v ) = p ⁒ u + q ⁒ u , ( p ⁒ q ) ⁒ u = p ⁒ ( q ⁒ u ) . formulae-sequence 𝑝 π‘ž 𝑒 𝑝 𝑒 π‘ž 𝑒 formulae-sequence 𝑝 𝑒 𝑣 𝑝 𝑒 π‘ž 𝑒 𝑝 π‘ž 𝑒 𝑝 π‘ž 𝑒 (p+q)u=pu+qu,~{}~{}p(u+v)=pu+qu,~{}~{}(pq)u=p(qu). ( italic_p + italic_q ) italic_u = italic_p italic_u + italic_q italic_u , italic_p ( italic_u + italic_v ) = italic_p italic_u + italic_q italic_u , ( italic_p italic_q ) italic_u = italic_p ( italic_q italic_u ) .

Definition 2.1 .

An element Ο‰ ∈ β„± ⁒ ( ℝ 2 ) πœ” β„± superscript ℝ 2 \omega\in{\cal F}({\mathbb{R}}^{2}) italic_Ο‰ ∈ caligraphic_F ( blackboard_R start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) is Ξ“ Ξ· subscript normal-Ξ“ πœ‚ \Gamma_{\eta} roman_Ξ“ start_POSTSUBSCRIPT italic_Ξ· end_POSTSUBSCRIPT -equivariant if, for all Ξ³ ∈ Ξ“ 𝛾 normal-Ξ“ \gamma\in\Gamma italic_Ξ³ ∈ roman_Ξ“ ,

Ο‰ ⁒ ( Ξ³ β‹… ( x , y , d ⁒ x , d ⁒ y ) ) = Ξ· ⁒ ( Ξ³ ) ⁒ Ο‰ ⁒ ( x , y , d ⁒ x , d ⁒ y ) . πœ” β‹… 𝛾 π‘₯ 𝑦 𝑑 π‘₯ 𝑑 𝑦 πœ‚ 𝛾 πœ” π‘₯ 𝑦 𝑑 π‘₯ 𝑑 𝑦 \omega(\gamma\cdot(x,y,dx,dy))\ =\ \eta(\gamma)\omega(x,y,dx,dy). italic_Ο‰ ( italic_Ξ³ β‹… ( italic_x , italic_y , italic_d italic_x , italic_d italic_y ) ) = italic_Ξ· ( italic_Ξ³ ) italic_Ο‰ ( italic_x , italic_y , italic_d italic_x , italic_d italic_y ) . (2.2)

Definition 1 .

A modified double Poisson bracket on π’œ π’œ \mathcal{A} caligraphic_A is a map π’œ βŠ— π’œ β†’ π’œ βŠ— π’œ normal-β†’ tensor-product π’œ π’œ tensor-product π’œ π’œ \mathcal{A}\otimes\mathcal{A}\rightarrow\mathcal{A}\otimes\mathcal{A} caligraphic_A βŠ— caligraphic_A β†’ caligraphic_A βŠ— caligraphic_A s.t. for all a , b , c ∈ π’œ π‘Ž 𝑏 𝑐 π’œ a,b,c\in\mathcal{A} italic_a , italic_b , italic_c ∈ caligraphic_A

(1a) { { a βŠ— b c } } = ( b βŠ— 1 ) { { a βŠ— c } } + { { a βŠ— b } } ( 1 βŠ— c ) fragments fragments { { a tensor-product b c fragments fragments } } fragments ( b tensor-product 1 ) fragments fragments { { a tensor-product c fragments fragments } } fragments fragments { { a tensor-product b fragments fragments } } fragments ( 1 tensor-product c ) \displaystyle\mathopen{\{\!\!\{}a\otimes bc\mathopen{\}\!\!\}}=(b\otimes 1)% \mathopen{\{\!\!\{}a\otimes c\mathopen{\}\!\!\}}+\mathopen{\{\!\!\{}a\otimes b% \mathopen{\}\!\!\}}(1\otimes c) start_OPEN { { end_OPEN italic_a βŠ— italic_b italic_c start_OPEN } } end_OPEN = ( italic_b βŠ— 1 ) start_OPEN { { end_OPEN italic_a βŠ— italic_c start_OPEN } } end_OPEN + start_OPEN { { end_OPEN italic_a βŠ— italic_b start_OPEN } } end_OPEN ( 1 βŠ— italic_c )
(1b) { { a b βŠ— c } } = ( 1 βŠ— a ) { { b βŠ— c } } + { { a βŠ— c } } ( b βŠ— 1 ) fragments fragments { { a b tensor-product c fragments fragments } } fragments ( 1 tensor-product a ) fragments fragments { { b tensor-product c fragments fragments } } fragments fragments { { a tensor-product c fragments fragments } } fragments ( b tensor-product 1 ) \displaystyle\mathopen{\{\!\!\{}ab\otimes c\mathopen{\}\!\!\}}=(1\otimes a)% \mathopen{\{\!\!\{}b\otimes c\mathopen{\}\!\!\}}+\mathopen{\{\!\!\{}a\otimes c% \mathopen{\}\!\!\}}(b\otimes 1) start_OPEN { { end_OPEN italic_a italic_b βŠ— italic_c start_OPEN } } end_OPEN = ( 1 βŠ— italic_a ) start_OPEN { { end_OPEN italic_b βŠ— italic_c start_OPEN } } end_OPEN + start_OPEN { { end_OPEN italic_a βŠ— italic_c start_OPEN } } end_OPEN ( italic_b βŠ— 1 )
(1c) { a βŠ— { b βŠ— c } } - { b βŠ— { a βŠ— c } } = { { a βŠ— b } βŠ— c } where { _ } := ΞΌ ∘ { { _ } } fragments { a tensor-product fragments { b tensor-product c } } { b tensor-product fragments { a tensor-product c } } { fragments { a tensor-product b } tensor-product c } italic- where italic- { _ } assign ΞΌ fragments { { _ fragments } } \displaystyle\{a\otimes\{b\otimes c\}\}-\{b\otimes\{a\otimes c\}\}=\{\{a% \otimes b\}\otimes c\}\quad\mathrm{where}\quad\{\_\}:=\mu\circ\mathopen{\{\!\!% \{}\_\mathopen{\}\!\!\}} { italic_a βŠ— { italic_b βŠ— italic_c } } - { italic_b βŠ— { italic_a βŠ— italic_c } } = { { italic_a βŠ— italic_b } βŠ— italic_c } roman_where { _ } := italic_ΞΌ ∘ start_OPEN { { end_OPEN _ start_OPEN } } end_OPEN
(1d) { a , b } + { b , a } = 0 mod [ π’œ , π’œ ] fragments { a , b } { b , a } 0 modulo [ A , A ] \displaystyle\{a,b\}+\{b,a\}=0\,\bmod[\mathcal{A},\mathcal{A}] { italic_a , italic_b } + { italic_b , italic_a } = 0 roman_mod [ caligraphic_A , caligraphic_A ]
Definition 22 .

For a finitely generated associative algebra π’œ π’œ \mathcal{A} caligraphic_A , let Ξ΄ : π’œ β†’ π’œ βŠ— π’œ normal-: 𝛿 normal-β†’ π’œ tensor-product π’œ π’œ \delta:\mathcal{A}\rightarrow\mathcal{A}\otimes\mathcal{A} italic_Ξ΄ : caligraphic_A β†’ caligraphic_A βŠ— caligraphic_A be a linear map satisfying the following form of Leibnitz identity

Ξ΄ ⁒ ( a ⁒ b ) = ( a βŠ— 1 ) ⁒ Ξ΄ ⁒ ( b ) + Ξ΄ ⁒ ( a ) ⁒ ( 1 βŠ— b ) . 𝛿 π‘Ž 𝑏 tensor-product π‘Ž 1 𝛿 𝑏 𝛿 π‘Ž tensor-product 1 𝑏 \displaystyle\delta(ab)=(a\otimes 1)\,\delta(b)+\delta(a)\,(1\otimes b). italic_Ξ΄ ( italic_a italic_b ) = ( italic_a βŠ— 1 ) italic_Ξ΄ ( italic_b ) + italic_Ξ΄ ( italic_a ) ( 1 βŠ— italic_b ) .

Then we call Ξ΄ 𝛿 \delta italic_Ξ΄ a noncommutative vector field . The space of all noncommutative vector fields for a given algebra π’œ π’œ \mathcal{A} caligraphic_A we denote by π’Ÿ π’œ subscript π’Ÿ π’œ \mathcal{D}_{\mathcal{A}} caligraphic_D start_POSTSUBSCRIPT caligraphic_A end_POSTSUBSCRIPT in what follows.


Definition 2.3 .

Let G 𝐺 G italic_G be an abelian group. A map Ξ΅ : G Γ— G β†’ 𝕂 * : πœ€ β†’ 𝐺 𝐺 superscript 𝕂 \varepsilon:G\times G\rightarrow{\bf\mathbb{K}^{*}} italic_Ξ΅ : italic_G Γ— italic_G β†’ blackboard_K start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT is called a skew-symmetric bicharacter on G 𝐺 G italic_G if the following identities hold,

  1. (i)

    Ξ΅ ⁒ ( a , b ) ⁒ Ξ΅ ⁒ ( b , a ) = 1 πœ€ π‘Ž 𝑏 πœ€ 𝑏 π‘Ž 1 \varepsilon(a,b)\varepsilon(b,a)=1 italic_Ξ΅ ( italic_a , italic_b ) italic_Ξ΅ ( italic_b , italic_a ) = 1 ,

  2. (ii)

    Ξ΅ ⁒ ( a , b + c ) = Ξ΅ ⁒ ( a , b ) ⁒ Ξ΅ ⁒ ( a , c ) πœ€ π‘Ž 𝑏 𝑐 πœ€ π‘Ž 𝑏 πœ€ π‘Ž 𝑐 \varepsilon(a,b+c)=\varepsilon(a,b)\varepsilon(a,c) italic_Ξ΅ ( italic_a , italic_b + italic_c ) = italic_Ξ΅ ( italic_a , italic_b ) italic_Ξ΅ ( italic_a , italic_c ) ,

  3. (iii)

    Ξ΅ ⁒ ( a + b , c ) = Ξ΅ ⁒ ( a , c ) ⁒ Ξ΅ ⁒ ( b , c ) πœ€ π‘Ž 𝑏 𝑐 πœ€ π‘Ž 𝑐 πœ€ 𝑏 𝑐 \varepsilon(a+b,c)=\varepsilon(a,c)\varepsilon(b,c) italic_Ξ΅ ( italic_a + italic_b , italic_c ) = italic_Ξ΅ ( italic_a , italic_c ) italic_Ξ΅ ( italic_b , italic_c ) ,

a , b , c ∈ G π‘Ž 𝑏 𝑐 𝐺 a,b,c\in G italic_a , italic_b , italic_c ∈ italic_G ,

Definition 2.5 .

A Lie color algebra is a triple ( A , [ β‹… , β‹… ] , Ξ΅ ) 𝐴 β‹… β‹… πœ€ (A,[\cdot,\cdot],\varepsilon) ( italic_A , [ β‹… , β‹… ] , italic_Ξ΅ ) in which ( A , [ β‹… , β‹… ] ) 𝐴 β‹… β‹… (A,[\cdot,\cdot]) ( italic_A , [ β‹… , β‹… ] ) is a G 𝐺 G italic_G -graded algebra and Ξ΅ : G Γ— G β†’ 𝕂 * : πœ€ β†’ 𝐺 𝐺 superscript 𝕂 \varepsilon:G\times G\rightarrow{\bf\mathbb{K}^{*}} italic_Ξ΅ : italic_G Γ— italic_G β†’ blackboard_K start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT is a bicharacter such that

[ x , y ] = - Ξ΅ ⁒ ( x , y ) ⁒ [ y , x ] , ( Ξ΅ ⁒ -skew-symmetry ) π‘₯ 𝑦 πœ€ π‘₯ 𝑦 𝑦 π‘₯ πœ€ -skew-symmetry \displaystyle[x,y]=-\varepsilon(x,y)[y,x],\qquad\qquad\qquad\qquad(\varepsilon% \mbox{-skew-symmetry}) [ italic_x , italic_y ] = - italic_Ξ΅ ( italic_x , italic_y ) [ italic_y , italic_x ] , ( italic_Ξ΅ -skew-symmetry ) (2.2)
Ξ΅ ⁒ ( z , x ) ⁒ [ x , [ y , z ] ] + Ξ΅ ⁒ ( x , y ) ⁒ [ y , [ z , x ] ] + Ξ΅ ⁒ ( y , z ) ⁒ [ z , [ x , y ] ] = 0 , ( Ξ΅ ⁒ -Jacobi identity ) πœ€ 𝑧 π‘₯ π‘₯ 𝑦 𝑧 πœ€ π‘₯ 𝑦 𝑦 𝑧 π‘₯ πœ€ 𝑦 𝑧 𝑧 π‘₯ 𝑦 0 πœ€ -Jacobi identity \displaystyle\varepsilon(z,x)[x,[y,z]]+\varepsilon(x,y)[y,[z,x]]+\varepsilon(y% ,z)[z,[x,y]]=0,\;(\varepsilon\mbox{-Jacobi identity}) italic_Ξ΅ ( italic_z , italic_x ) [ italic_x , [ italic_y , italic_z ] ] + italic_Ξ΅ ( italic_x , italic_y ) [ italic_y , [ italic_z , italic_x ] ] + italic_Ξ΅ ( italic_y , italic_z ) [ italic_z , [ italic_x , italic_y ] ] = 0 , ( italic_Ξ΅ -Jacobi identity ) (2.3)

for any x , y , z ∈ β„‹ ⁒ ( A ) π‘₯ 𝑦 𝑧 β„‹ 𝐴 x,y,z\in\mathcal{H}(A) italic_x , italic_y , italic_z ∈ caligraphic_H ( italic_A ) .

Definition 2.6 .

1) An averaging operator over an associative color algebra ( A , β‹… , Ξ΅ ) 𝐴 β‹… πœ€ (A,\cdot,\varepsilon) ( italic_A , β‹… , italic_Ξ΅ ) is an even linear map Ξ± : A β†’ A : 𝛼 β†’ 𝐴 𝐴 \alpha:A\rightarrow A italic_Ξ± : italic_A β†’ italic_A such that

Ξ± ⁒ ( Ξ± ⁒ ( x ) β‹… y ) = Ξ± ⁒ ( x ) β‹… Ξ± ⁒ ( y ) = Ξ± ⁒ ( x β‹… Ξ± ⁒ ( y ) ) , 𝛼 β‹… 𝛼 π‘₯ 𝑦 β‹… 𝛼 π‘₯ 𝛼 𝑦 𝛼 β‹… π‘₯ 𝛼 𝑦 \alpha(\alpha(x)\cdot y)=\alpha(x)\cdot\alpha(y)=\alpha(x\cdot\alpha(y)), italic_Ξ± ( italic_Ξ± ( italic_x ) β‹… italic_y ) = italic_Ξ± ( italic_x ) β‹… italic_Ξ± ( italic_y ) = italic_Ξ± ( italic_x β‹… italic_Ξ± ( italic_y ) ) ,

for all x , y ∈ β„‹ ⁒ ( A ) π‘₯ 𝑦 β„‹ 𝐴 x,y\in\mathcal{H}(A) italic_x , italic_y ∈ caligraphic_H ( italic_A ) .
2) An averaging operator over a Lie color algebra ( A , [ β‹… , β‹… ] , Ξ΅ ) 𝐴 β‹… β‹… πœ€ (A,[\cdot,\cdot],\varepsilon) ( italic_A , [ β‹… , β‹… ] , italic_Ξ΅ ) is an even linear map Ξ± : A β†’ A : 𝛼 β†’ 𝐴 𝐴 \alpha:A\rightarrow A italic_Ξ± : italic_A β†’ italic_A such that

Ξ± ⁒ ( [ Ξ± ⁒ ( x ) , y ] ) = [ Ξ± ⁒ ( x ) , Ξ± ⁒ ( y ) ] = Ξ± ⁒ ( [ x , Ξ± ⁒ ( y ) ] ) , 𝛼 𝛼 π‘₯ 𝑦 𝛼 π‘₯ 𝛼 𝑦 𝛼 π‘₯ 𝛼 𝑦 \alpha([\alpha(x),y])=[\alpha(x),\alpha(y)]=\alpha([x,\alpha(y)]), italic_Ξ± ( [ italic_Ξ± ( italic_x ) , italic_y ] ) = [ italic_Ξ± ( italic_x ) , italic_Ξ± ( italic_y ) ] = italic_Ξ± ( [ italic_x , italic_Ξ± ( italic_y ) ] ) ,

for all x , y ∈ β„‹ ⁒ ( A ) π‘₯ 𝑦 β„‹ 𝐴 x,y\in\mathcal{H}(A) italic_x , italic_y ∈ caligraphic_H ( italic_A ) .

Definition 2.8 .

[ 4 ] A Leibniz color algebra is a G 𝐺 G italic_G -graded vector space L 𝐿 L italic_L together with an even bilinear map [ - , - ] : L βŠ— L β†’ L : β†’ tensor-product 𝐿 𝐿 𝐿 [-,-]:L\otimes L\rightarrow L [ - , - ] : italic_L βŠ— italic_L β†’ italic_L and a bicharacter Ξ΅ : G βŠ— G β†’ 𝕂 * : πœ€ β†’ tensor-product 𝐺 𝐺 superscript 𝕂 \varepsilon:G\otimes G\rightarrow\mathbb{K}^{*} italic_Ξ΅ : italic_G βŠ— italic_G β†’ blackboard_K start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT such that

[ [ x , y ] , z ] = [ x , [ y , z ] ] + Ξ΅ ⁒ ( y , z ) ⁒ [ [ x , z ] , y ] π‘₯ 𝑦 𝑧 π‘₯ 𝑦 𝑧 πœ€ 𝑦 𝑧 π‘₯ 𝑧 𝑦 \displaystyle[[x,y],z]=[x,[y,z]]+\varepsilon(y,z)[[x,z],y] [ [ italic_x , italic_y ] , italic_z ] = [ italic_x , [ italic_y , italic_z ] ] + italic_Ξ΅ ( italic_y , italic_z ) [ [ italic_x , italic_z ] , italic_y ] (2.5)

holds, for all x , y , z ∈ β„‹ ⁒ ( L ) π‘₯ 𝑦 𝑧 β„‹ 𝐿 x,y,z\in\mathcal{H}(L) italic_x , italic_y , italic_z ∈ caligraphic_H ( italic_L ) .

Definition 2.21 .

[ 5 ] A color algebra ( A , β‹… , Ξ΅ ) 𝐴 β‹… πœ€ (A,\cdot,\varepsilon) ( italic_A , β‹… , italic_Ξ΅ ) is said to be a Lie admissible color algebra if, for any hogeneous elements x , y ∈ A π‘₯ 𝑦 𝐴 x,y\in A italic_x , italic_y ∈ italic_A , the bracket [ - , - ] [-,-] [ - , - ] defined by

[ x , y ] = x β‹… y - Ξ΅ ⁒ ( x , y ) ⁒ y β‹… x π‘₯ 𝑦 β‹… π‘₯ 𝑦 β‹… πœ€ π‘₯ 𝑦 𝑦 π‘₯ [x,y]=x\cdot y-\varepsilon(x,y)y\cdot x [ italic_x , italic_y ] = italic_x β‹… italic_y - italic_Ξ΅ ( italic_x , italic_y ) italic_y β‹… italic_x

satisfies the Ξ΅ πœ€ \varepsilon italic_Ξ΅ -Jacobi identity.

Definition 2.25 .

[ 5 ] A post-Lie color algebra ( L , [ - , - ] , β‹… , Ξ΅ ) 𝐿 β‹… πœ€ (L,[-,-],\cdot,\varepsilon) ( italic_L , [ - , - ] , β‹… , italic_Ξ΅ ) is a Lie color algebra ( L , [ - , - ] , Ξ΅ ) 𝐿 πœ€ (L,[-,-],\varepsilon) ( italic_L , [ - , - ] , italic_Ξ΅ ) together with an even bilinear map β‹… : L βŠ— L β†’ L fragments β‹… : L tensor-product L β†’ L \cdot:L\otimes L\rightarrow L β‹… : italic_L βŠ— italic_L β†’ italic_L such that

z β‹… [ x , y ] - [ z β‹… x , y ] - Ξ΅ ⁒ ( z , x ) ⁒ [ x , z β‹… y ] = 0 , β‹… 𝑧 π‘₯ 𝑦 β‹… 𝑧 π‘₯ 𝑦 πœ€ 𝑧 π‘₯ π‘₯ β‹… 𝑧 𝑦 0 \displaystyle z\cdot[x,y]-[z\cdot x,y]-\varepsilon(z,x)[x,z\cdot y]=0, italic_z β‹… [ italic_x , italic_y ] - [ italic_z β‹… italic_x , italic_y ] - italic_Ξ΅ ( italic_z , italic_x ) [ italic_x , italic_z β‹… italic_y ] = 0 , (2.9)
z β‹… ( y β‹… x ) - Ξ΅ ⁒ ( z , y ) ⁒ y β‹… ( z β‹… x ) + Ξ΅ ⁒ ( z , y ) ⁒ ( y β‹… z ) β‹… x - ( z β‹… y ) β‹… x + Ξ΅ ⁒ ( z , y ) ⁒ [ y , z ] β‹… x = 0 , β‹… 𝑧 β‹… 𝑦 π‘₯ β‹… πœ€ 𝑧 𝑦 𝑦 β‹… 𝑧 π‘₯ β‹… πœ€ 𝑧 𝑦 β‹… 𝑦 𝑧 π‘₯ β‹… β‹… 𝑧 𝑦 π‘₯ β‹… πœ€ 𝑧 𝑦 𝑦 𝑧 π‘₯ 0 \displaystyle z\cdot(y\cdot x)-\varepsilon(z,y)y\cdot(z\cdot x)+\varepsilon(z,% y)(y\cdot z)\cdot x-(z\cdot y)\cdot x+\varepsilon(z,y)[y,z]\cdot x=0, italic_z β‹… ( italic_y β‹… italic_x ) - italic_Ξ΅ ( italic_z , italic_y ) italic_y β‹… ( italic_z β‹… italic_x ) + italic_Ξ΅ ( italic_z , italic_y ) ( italic_y β‹… italic_z ) β‹… italic_x - ( italic_z β‹… italic_y ) β‹… italic_x + italic_Ξ΅ ( italic_z , italic_y ) [ italic_y , italic_z ] β‹… italic_x = 0 , (2.10)

for any x , y , z ∈ β„‹ ⁒ ( L ) π‘₯ 𝑦 𝑧 β„‹ 𝐿 x,y,z\in\mathcal{H}(L) italic_x , italic_y , italic_z ∈ caligraphic_H ( italic_L ) .

Definition 3.1 .

A ternary Leibniz color algebra is a G 𝐺 G italic_G -graded vector space A 𝐴 A italic_A over a field 𝕂 𝕂 \mathbb{K} blackboard_K equipped with a bicharacter Ξ΅ : G βŠ— G β†’ 𝕂 * : πœ€ β†’ tensor-product 𝐺 𝐺 superscript 𝕂 \varepsilon:G\otimes G\rightarrow\mathbb{K}^{*} italic_Ξ΅ : italic_G βŠ— italic_G β†’ blackboard_K start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT and an even trilinear operation [ - , - , - ] : A βŠ— A βŠ— A β†’ A : β†’ tensor-product 𝐴 𝐴 𝐴 𝐴 [-,-,-]:A\otimes A\otimes A\rightarrow A [ - , - , - ] : italic_A βŠ— italic_A βŠ— italic_A β†’ italic_A (i.e. [ x , y , z ] βŠ† A x + y + z π‘₯ 𝑦 𝑧 subscript 𝐴 π‘₯ 𝑦 𝑧 [x,y,z]\subseteq A_{x+y+z} [ italic_x , italic_y , italic_z ] βŠ† italic_A start_POSTSUBSCRIPT italic_x + italic_y + italic_z end_POSTSUBSCRIPT whenever x , y , z ∈ β„‹ ⁒ ( A ) π‘₯ 𝑦 𝑧 β„‹ 𝐴 x,y,z\in\mathcal{H}(A) italic_x , italic_y , italic_z ∈ caligraphic_H ( italic_A ) ) satisfying the following ternary Ξ΅ πœ€ \varepsilon italic_Ξ΅ -Nambu identity :

[ [ x , y , z ] , t , u ] = [ x , y , [ z , t , u ] ] + Ξ΅ ⁒ ( z , t + u ) ⁒ [ x , [ y , t , u ] , z ] + Ξ΅ ⁒ ( y + z , t + u ) ⁒ [ [ x , t , u ] , y , z ] π‘₯ 𝑦 𝑧 𝑑 𝑒 π‘₯ 𝑦 𝑧 𝑑 𝑒 πœ€ 𝑧 𝑑 𝑒 π‘₯ 𝑦 𝑑 𝑒 𝑧 πœ€ 𝑦 𝑧 𝑑 𝑒 π‘₯ 𝑑 𝑒 𝑦 𝑧 \displaystyle[[x,y,z],t,u]=[x,y,[z,t,u]]+\varepsilon(z,t+u)[x,[y,t,u],z]+% \varepsilon(y+z,t+u)[[x,t,u],y,z] [ [ italic_x , italic_y , italic_z ] , italic_t , italic_u ] = [ italic_x , italic_y , [ italic_z , italic_t , italic_u ] ] + italic_Ξ΅ ( italic_z , italic_t + italic_u ) [ italic_x , [ italic_y , italic_t , italic_u ] , italic_z ] + italic_Ξ΅ ( italic_y + italic_z , italic_t + italic_u ) [ [ italic_x , italic_t , italic_u ] , italic_y , italic_z ] (3.1)

for any x , y , z , t , u ∈ β„‹ ⁒ ( A ) π‘₯ 𝑦 𝑧 𝑑 𝑒 β„‹ 𝐴 x,y,z,t,u\in\mathcal{H}(A) italic_x , italic_y , italic_z , italic_t , italic_u ∈ caligraphic_H ( italic_A ) .
If the trilinear map [ - , - , - ] [-,-,-] [ - , - , - ] is Ξ΅ πœ€ \varepsilon italic_Ξ΅ -skew-symmetric for any pair of variables, then ( A , [ - , - , - ] , Ξ΅ ) 𝐴 πœ€ (A,[-,-,-],\varepsilon) ( italic_A , [ - , - , - ] , italic_Ξ΅ ) is said to be a ternary Lie color algebra [ 18 ] .

Definition 3.32 .

A color Lie triple system is a G 𝐺 G italic_G -graded vector space A 𝐴 A italic_A over a field 𝕂 𝕂 \mathbb{K} blackboard_K equipped with a bicharacter Ξ΅ : G Γ— G β†’ 𝕂 * : πœ€ β†’ 𝐺 𝐺 superscript 𝕂 \varepsilon:G\times G\rightarrow\mathbb{K}^{*} italic_Ξ΅ : italic_G Γ— italic_G β†’ blackboard_K start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT and an even trilinear bracket which satisfies the identity ( 3.1 ), instead of skew-symmetry, satisfies the conditions

[ x , y , z ] = - Ξ΅ ⁒ ( y , z ) ⁒ [ x , z , y ] , ( π‘Ÿπ‘–π‘”β„Žπ‘‘ ⁒ Ξ΅ ⁒ -skew-symmetry ) formulae-sequence π‘₯ 𝑦 𝑧 πœ€ 𝑦 𝑧 π‘₯ 𝑧 𝑦 π‘Ÿπ‘–π‘”β„Žπ‘‘ πœ€ -skew-symmetry \displaystyle\qquad\qquad\qquad[x,y,z]=-\varepsilon(y,z)[x,z,y],\quad(\mbox{% \it right}\;\varepsilon\mbox{\it-skew-symmetry}) [ italic_x , italic_y , italic_z ] = - italic_Ξ΅ ( italic_y , italic_z ) [ italic_x , italic_z , italic_y ] , ( right italic_Ξ΅ -skew-symmetry ) (3.16)
Ξ΅ ⁒ ( z , x ) ⁒ [ x , y , z ] + Ξ΅ ⁒ ( x , y ) ⁒ [ y , z , x ] + Ξ΅ ⁒ ( y , z ) ⁒ [ z , x , y ] = 0 , ( π‘‘π‘’π‘Ÿπ‘›π‘Žπ‘Ÿπ‘¦ ⁒ Ξ΅ ⁒ -Jacobi identity ) πœ€ 𝑧 π‘₯ π‘₯ 𝑦 𝑧 πœ€ π‘₯ 𝑦 𝑦 𝑧 π‘₯ πœ€ 𝑦 𝑧 𝑧 π‘₯ 𝑦 0 π‘‘π‘’π‘Ÿπ‘›π‘Žπ‘Ÿπ‘¦ πœ€ -Jacobi identity \displaystyle\varepsilon(z,x)[x,y,z]+\varepsilon(x,y)[y,z,x]+\varepsilon(y,z)[% z,x,y]=0,\;\;(\mbox{\it ternary}\;\;\varepsilon\mbox{\it-Jacobi identity}) italic_Ξ΅ ( italic_z , italic_x ) [ italic_x , italic_y , italic_z ] + italic_Ξ΅ ( italic_x , italic_y ) [ italic_y , italic_z , italic_x ] + italic_Ξ΅ ( italic_y , italic_z ) [ italic_z , italic_x , italic_y ] = 0 , ( ternary italic_Ξ΅ -Jacobi identity ) (3.17)

for each x , y , z ∈ β„‹ ⁒ ( A ) π‘₯ 𝑦 𝑧 β„‹ 𝐴 x,y,z\in\mathcal{H}(A) italic_x , italic_y , italic_z ∈ caligraphic_H ( italic_A ) .

Definition 4.15 .

Let ( L , β‹… , [ - , - , - ] , Ξ΅ ) 𝐿 β‹… πœ€ (L,\cdot,[-,-,-],\varepsilon) ( italic_L , β‹… , [ - , - , - ] , italic_Ξ΅ ) and ( L β€² , β‹… β€² , [ - , - , - ] β€² , Ξ΅ ) superscript 𝐿 β€² superscript β‹… β€² superscript β€² πœ€ (L^{\prime},\cdot^{\prime},[-,-,-]^{\prime},\varepsilon) ( italic_L start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT , β‹… start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT , [ - , - , - ] start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT , italic_Ξ΅ ) be two non-commutative ternary Leibniz-Nambu-Poisson color algebras. Let Ξ± : L β†’ L β€² : 𝛼 β†’ 𝐿 superscript 𝐿 β€² \alpha:L\rightarrow L^{\prime} italic_Ξ± : italic_L β†’ italic_L start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT be an even linear mapping such that, for any x , y , z ∈ β„‹ ⁒ ( L ) π‘₯ 𝑦 𝑧 β„‹ 𝐿 x,y,z\in\mathcal{H}(L) italic_x , italic_y , italic_z ∈ caligraphic_H ( italic_L ) ,

Ξ± ⁒ ( x β‹… y ) = Ξ± ⁒ ( x ) β‹… Ξ± ⁒ ( y ) and Ξ± ⁒ ( [ x , y , z ] ) = [ Ξ± ⁒ ( x ) , Ξ± ⁒ ( y ) , Ξ± ⁒ ( z ) ] β€² . formulae-sequence 𝛼 β‹… π‘₯ 𝑦 β‹… 𝛼 π‘₯ 𝛼 𝑦 and 𝛼 π‘₯ 𝑦 𝑧 superscript 𝛼 π‘₯ 𝛼 𝑦 𝛼 𝑧 β€² \alpha(x\cdot y)=\alpha(x)\cdot\alpha(y)\quad\mbox{and}\quad\alpha([x,y,z])=[% \alpha(x),\alpha(y),\alpha(z)]^{\prime}. italic_Ξ± ( italic_x β‹… italic_y ) = italic_Ξ± ( italic_x ) β‹… italic_Ξ± ( italic_y ) and italic_Ξ± ( [ italic_x , italic_y , italic_z ] ) = [ italic_Ξ± ( italic_x ) , italic_Ξ± ( italic_y ) , italic_Ξ± ( italic_z ) ] start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT .

Then Ξ± 𝛼 \alpha italic_Ξ± is called a morphism of non-commutative ternary Leibniz-Nambu-Poisson color algebras.


Definition 2.1 .

An associate of F add ⁒ ( x , y ) subscript 𝐹 add π‘₯ 𝑦 F_{{\rm add}}(x,y) italic_F start_POSTSUBSCRIPT roman_add end_POSTSUBSCRIPT ( italic_x , italic_y ) is a formal series Ο• ⁒ ( x , z ) ∈ β„‚ ⁒ ( ( x ) ) ⁒ [ [ z ] ] italic-Ο• π‘₯ 𝑧 β„‚ π‘₯ delimited-[] delimited-[] 𝑧 \phi(x,z)\in\mathbb{C}((x))[[z]] italic_Ο• ( italic_x , italic_z ) ∈ blackboard_C ( ( italic_x ) ) [ [ italic_z ] ] satisfying the conditions

(2.1) Ο• ⁒ ( x , 0 ) = x , Ο• ⁒ ( Ο• ⁒ ( x , y ) , z ) = Ο• ⁒ ( x , y + z ) . formulae-sequence italic-Ο• π‘₯ 0 π‘₯ italic-Ο• italic-Ο• π‘₯ 𝑦 𝑧 italic-Ο• π‘₯ 𝑦 𝑧 \displaystyle\phi(x,0)=x,\ \ \ \ \phi(\phi(x,y),z)=\phi(x,y+z). italic_Ο• ( italic_x , 0 ) = italic_x , italic_Ο• ( italic_Ο• ( italic_x , italic_y ) , italic_z ) = italic_Ο• ( italic_x , italic_y + italic_z ) .

Definition 14

A Schur-concave function f 𝑓 f italic_f is called reducible if for every reducible vector 𝐱 ~ ∈ ℝ n normal-~ 𝐱 superscript ℝ 𝑛 \widetilde{\bf x}\in\mathbb{R}^{n} ~ start_ARG bold_x end_ARG ∈ blackboard_R start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT one has

f ⁒ ( 𝐱 ~ ) = f ⁒ ( 𝐱 ) , 𝑓 ~ 𝐱 𝑓 𝐱 f\left(\widetilde{\bf x}\right)=f\left(\bf x\right), italic_f ( ~ start_ARG bold_x end_ARG ) = italic_f ( bold_x ) ,

where 𝐱 𝐱 \bf x bold_x is the reduced vector extracted from 𝐱 ~ normal-~ 𝐱 \widetilde{\bf x} ~ start_ARG bold_x end_ARG .


Definition 1.1

A Hom-associative algebra is a triple ( A , ΞΌ , Ξ± ) 𝐴 πœ‡ 𝛼 (A,\mu,\alpha) ( italic_A , italic_ΞΌ , italic_Ξ± ) consisting of a π•œ normal-π•œ \Bbbk roman_π•œ -vector space A 𝐴 A italic_A , a linear map ΞΌ : A βŠ— A β†’ A normal-: πœ‡ normal-β†’ tensor-product 𝐴 𝐴 𝐴 \mu:A\otimes A\rightarrow A italic_ΞΌ : italic_A βŠ— italic_A β†’ italic_A (multiplication) and a homomorphism Ξ± : A β†’ A normal-: 𝛼 normal-β†’ 𝐴 𝐴 \alpha:A\rightarrow A italic_Ξ± : italic_A β†’ italic_A satisfying the Hom-associativity condition

ΞΌ ∘ ( Ξ± βŠ— ΞΌ ) = ΞΌ ∘ ( ΞΌ βŠ— Ξ± ) . πœ‡ tensor-product 𝛼 πœ‡ πœ‡ tensor-product πœ‡ 𝛼 \mu\circ\left(\alpha\otimes\mu\right)=\mu\circ\left(\mu\otimes\alpha\right). italic_ΞΌ ∘ ( italic_Ξ± βŠ— italic_ΞΌ ) = italic_ΞΌ ∘ ( italic_ΞΌ βŠ— italic_Ξ± ) . (1)

We assume moreover in this paper that Ξ± ∘ ΞΌ = ΞΌ ∘ Ξ± βŠ— 2 𝛼 πœ‡ πœ‡ superscript 𝛼 tensor-product absent 2 \alpha\circ\mu=\mu\circ\alpha^{\otimes 2} italic_Ξ± ∘ italic_ΞΌ = italic_ΞΌ ∘ italic_Ξ± start_POSTSUPERSCRIPT βŠ— 2 end_POSTSUPERSCRIPT .

A Hom-associative algebra A 𝐴 A italic_A is called unital if there exists a linear map Ξ· : π•œ β†’ A normal-: πœ‚ normal-β†’ normal-π•œ 𝐴 \eta:\Bbbk\rightarrow A italic_Ξ· : roman_π•œ β†’ italic_A absent \ such that Ξ± ∘ Ξ· = Ξ· 𝛼 πœ‚ πœ‚ \alpha\circ\eta=\eta italic_Ξ± ∘ italic_Ξ· = italic_Ξ· and

ΞΌ ∘ ( Ξ· βŠ— i ⁒ d A ) = ΞΌ ∘ ( i ⁒ d A βŠ— Ξ· ) = Ξ± . πœ‡ tensor-product πœ‚ 𝑖 subscript 𝑑 𝐴 πœ‡ tensor-product 𝑖 subscript 𝑑 𝐴 πœ‚ 𝛼 \mathit{\ }\mu\circ\left(\eta\otimes id_{A}\right)=\mu\circ\left(id_{A}\otimes% \eta\right)=\alpha. italic_ΞΌ ∘ ( italic_Ξ· βŠ— italic_i italic_d start_POSTSUBSCRIPT italic_A end_POSTSUBSCRIPT ) = italic_ΞΌ ∘ ( italic_i italic_d start_POSTSUBSCRIPT italic_A end_POSTSUBSCRIPT βŠ— italic_Ξ· ) = italic_Ξ± . (2)

Definition 9 .

Let ΞΌ πœ‡ \mu italic_ΞΌ be some fixed Borel probability measure on sample space Ξ© Ξ© \Omega roman_Ξ© , then by coin-toss we will refer to the measurement given as

m ⁒ ( y ) = ΞΌ π‘š 𝑦 πœ‡ m(y)=\mu italic_m ( italic_y ) = italic_ΞΌ

for every y ∈ K 𝑦 𝐾 y\in K italic_y ∈ italic_K .


Definition (Formal Weyl algebra)

The algebra 𝒲 βŠ— Ξ› βˆ™ = ( ∏ k = 0 ∞ S k ⁒ 𝔀 * βŠ— Ξ› βˆ™ ⁒ 𝔀 * ) ⁒ [ [ t ] ] tensor-product 𝒲 superscript normal-Ξ› normal-βˆ™ superscript subscript product π‘˜ 0 tensor-product superscript normal-S π‘˜ superscript 𝔀 superscript normal-Ξ› normal-βˆ™ superscript 𝔀 delimited-[] delimited-[] 𝑑 \mathcal{W}\mathbin{\otimes}\Lambda^{\bullet}=\mathopen{}\mathclose{{}\left(% \prod_{k=0}^{\infty}\mathrm{S}^{k}\mathfrak{g}^{*}\mathbin{\otimes}\Lambda^{% \bullet}\mathfrak{g}^{*}}\right)[[t]] caligraphic_W βŠ— roman_Ξ› start_POSTSUPERSCRIPT βˆ™ end_POSTSUPERSCRIPT = ( ∏ start_POSTSUBSCRIPT italic_k = 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT roman_S start_POSTSUPERSCRIPT italic_k end_POSTSUPERSCRIPT fraktur_g start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT βŠ— roman_Ξ› start_POSTSUPERSCRIPT βˆ™ end_POSTSUPERSCRIPT fraktur_g start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT ) [ [ italic_t ] ] is called the formal Weyl algebra where the product ΞΌ πœ‡ \mu italic_ΞΌ is defined by

( f βŠ— Ξ± ) β‹… ( g βŠ— Ξ² ) = ΞΌ ⁒ ( f βŠ— Ξ± , g βŠ— Ξ² ) = f ∨ g βŠ— Ξ± ∧ Ξ² . β‹… tensor-product 𝑓 𝛼 tensor-product 𝑔 𝛽 πœ‡ tensor-product 𝑓 𝛼 tensor-product 𝑔 𝛽 𝑓 tensor-product 𝑔 𝛼 𝛽 (f\mathbin{\otimes}\alpha)\cdot(g\mathbin{\otimes}\beta)=\mu(f\mathbin{\otimes% }\alpha,g\mathbin{\otimes}\beta)=f\vee g\mathbin{\otimes}\alpha\wedge\beta. ( italic_f βŠ— italic_Ξ± ) β‹… ( italic_g βŠ— italic_Ξ² ) = italic_ΞΌ ( italic_f βŠ— italic_Ξ± , italic_g βŠ— italic_Ξ² ) = italic_f ∨ italic_g βŠ— italic_Ξ± ∧ italic_Ξ² . (2.2)

for any factorizing tensors f βŠ— Ξ± , g βŠ— Ξ² ∈ 𝒲 βŠ— Ξ› βˆ™ tensor-product 𝑓 𝛼 tensor-product 𝑔 𝛽 tensor-product 𝒲 superscript normal-Ξ› normal-βˆ™ f\mathbin{\otimes}\alpha,g\mathbin{\otimes}\beta\in\mathcal{W}\mathbin{\otimes% }\Lambda^{\bullet} italic_f βŠ— italic_Ξ± , italic_g βŠ— italic_Ξ² ∈ caligraphic_W βŠ— roman_Ξ› start_POSTSUPERSCRIPT βˆ™ end_POSTSUPERSCRIPT and extended 𝖱 ⁒ [ [ t ] ] 𝖱 delimited-[] delimited-[] 𝑑 \mathsf{R}[[t]] sansserif_R [ [ italic_t ] ] -bilinearly. β–  normal-β–  {}_{\blacksquare} start_FLOATSUBSCRIPT β–  end_FLOATSUBSCRIPT


Definition 6.3 .

Given a noncommutaive probability space ( β„± , Ο• ) , β„± italic-Ο• (\mathcal{F},\phi), ( caligraphic_F , italic_Ο• ) , we say two sub-algebras β„± 1 , β„± 2 βŠ‚ β„± subscript β„± 1 subscript β„± 2 β„± \mathcal{F}_{1},\mathcal{F}_{2}\subset\mathcal{F} caligraphic_F start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , caligraphic_F start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT βŠ‚ caligraphic_F are asymptotically free if the following holds: for any polynomial of the form z = a 1 ⁒ b 1 ⁒ a 2 ⁒ b 2 ⁒ … 𝑧 subscript π‘Ž 1 subscript 𝑏 1 subscript π‘Ž 2 subscript 𝑏 2 … z=a_{1}b_{1}a_{2}b_{2}\ldots italic_z = italic_a start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_b start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_a start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT italic_b start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT … where a i ∈ β„± 1 subscript π‘Ž 𝑖 subscript β„± 1 a_{i}\in\mathcal{F}_{1} italic_a start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ∈ caligraphic_F start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT and b i ∈ β„± 2 subscript 𝑏 𝑖 subscript β„± 2 b_{i}\in\mathcal{F}_{2} italic_b start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ∈ caligraphic_F start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT and Ο• ⁒ ( a i ) = Ο• ⁒ ( b i ) = 0 italic-Ο• subscript π‘Ž 𝑖 italic-Ο• subscript 𝑏 𝑖 0 \phi(a_{i})=\phi(b_{i})=0 italic_Ο• ( italic_a start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) = italic_Ο• ( italic_b start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) = 0 for all i , 𝑖 i, italic_i , we have

Ο• ⁒ ( z ) = 0 . italic-Ο• 𝑧 0 \phi(z)=0. italic_Ο• ( italic_z ) = 0 .

Often we say a collection of elements in the ambient algebra are free if the algebras generated by each of the letters are jointly free.


Definition 0.1 .

A Poisson algebra is a commutative algebra A 𝐴 A italic_A over a base field k π‘˜ k italic_k , which is equipped with a bilinear map { - , - } : A βŠ— k A β†’ A : β†’ subscript tensor-product π‘˜ 𝐴 𝐴 𝐴 \{-,-\}:A\otimes_{k}A\to A { - , - } : italic_A βŠ— start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT italic_A β†’ italic_A satisfying

  1. (a)

    skew symmetry: { a , b } = - { b , a } π‘Ž 𝑏 𝑏 π‘Ž \{a,b\}=-\{b,a\} { italic_a , italic_b } = - { italic_b , italic_a } ,

  2. (b)

    Jacobi identity: { a , { b , c } } + { b , { c , a } } + { c , { a , b } } = 0 π‘Ž 𝑏 𝑐 𝑏 𝑐 π‘Ž 𝑐 π‘Ž 𝑏 0 \{a,\{b,c\}\}+\{b,\{c,a\}\}+\{c,\{a,b\}\}=0 { italic_a , { italic_b , italic_c } } + { italic_b , { italic_c , italic_a } } + { italic_c , { italic_a , italic_b } } = 0 ,

  3. (c)

    Leibniz rule: { a ⁒ b , c } = a ⁒ { b , c } + { a , c } ⁒ b π‘Ž 𝑏 𝑐 π‘Ž 𝑏 𝑐 π‘Ž 𝑐 𝑏 \{ab,c\}=a\{b,c\}+\{a,c\}b { italic_a italic_b , italic_c } = italic_a { italic_b , italic_c } + { italic_a , italic_c } italic_b ,

for all a , b , c ∈ A π‘Ž 𝑏 𝑐 𝐴 a,b,c\in A italic_a , italic_b , italic_c ∈ italic_A .

Definition 2.1 .

A Poisson derivation of A 𝐴 A italic_A is a derivation Ξ΄ ∈ Der k ⁒ ( A ) 𝛿 subscript Der π‘˜ 𝐴 \delta\in\text{Der}_{k}(A) italic_Ξ΄ ∈ Der start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ( italic_A ) satisfying

Ξ΄ ⁒ { a , b } = { Ξ΄ ⁒ ( a ) , b } + { a , Ξ΄ ⁒ ( b ) } 𝛿 π‘Ž 𝑏 𝛿 π‘Ž 𝑏 π‘Ž 𝛿 𝑏 \delta\{a,b\}=\{\delta(a),b\}+\{a,\delta(b)\} italic_Ξ΄ { italic_a , italic_b } = { italic_Ξ΄ ( italic_a ) , italic_b } + { italic_a , italic_Ξ΄ ( italic_b ) }

for any a , b ∈ A π‘Ž 𝑏 𝐴 a,b\in A italic_a , italic_b ∈ italic_A . In particular, a Poisson derivation given by u - 1 ⁒ { u , - } superscript 𝑒 1 𝑒 u^{-1}\{u,-\} italic_u start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT { italic_u , - } for some u ∈ A Γ— 𝑒 superscript 𝐴 u\in A^{\times} italic_u ∈ italic_A start_POSTSUPERSCRIPT Γ— end_POSTSUPERSCRIPT is called a log-Hamiltonian derivation .


Definition .

An arithmetic function (a function defined on the set of nonnegative integers) is called q π‘ž q italic_q - quasiadditive if there exists some nonnegative integer r π‘Ÿ r italic_r such that

(1) f ⁒ ( q k + r ⁒ a + b ) = f ⁒ ( a ) + f ⁒ ( b ) 𝑓 superscript π‘ž π‘˜ π‘Ÿ π‘Ž 𝑏 𝑓 π‘Ž 𝑓 𝑏 f(q^{k+r}a+b)=f(a)+f(b) italic_f ( italic_q start_POSTSUPERSCRIPT italic_k + italic_r end_POSTSUPERSCRIPT italic_a + italic_b ) = italic_f ( italic_a ) + italic_f ( italic_b )

whenever 0 ≀ b < q k 0 𝑏 superscript π‘ž π‘˜ 0\leq b<q^{k} 0 ≀ italic_b < italic_q start_POSTSUPERSCRIPT italic_k end_POSTSUPERSCRIPT . Likewise, f 𝑓 f italic_f is said to be q π‘ž q italic_q - quasimultiplicative if it satisfies the identity

(2) f ⁒ ( q k + r ⁒ a + b ) = f ⁒ ( a ) ⁒ f ⁒ ( b ) 𝑓 superscript π‘ž π‘˜ π‘Ÿ π‘Ž 𝑏 𝑓 π‘Ž 𝑓 𝑏 f(q^{k+r}a+b)=f(a)f(b) italic_f ( italic_q start_POSTSUPERSCRIPT italic_k + italic_r end_POSTSUPERSCRIPT italic_a + italic_b ) = italic_f ( italic_a ) italic_f ( italic_b )

for some fixed nonnegative integer r π‘Ÿ r italic_r whenever 0 ≀ b < q k 0 𝑏 superscript π‘ž π‘˜ 0\leq b<q^{k} 0 ≀ italic_b < italic_q start_POSTSUPERSCRIPT italic_k end_POSTSUPERSCRIPT .


Definition 2.6 .

We say that a linear map ΞΊ : V ∧ V β†’ H : πœ… β†’ 𝑉 𝑉 𝐻 \kappa:V\wedge V\to H italic_ΞΊ : italic_V ∧ italic_V β†’ italic_H has the Jacobi property if the following Jacobi identity holds in A ΞΊ subscript 𝐴 πœ… A_{\kappa} italic_A start_POSTSUBSCRIPT italic_ΞΊ end_POSTSUBSCRIPT for all x , y , z ∈ V π‘₯ 𝑦 𝑧 𝑉 x,y,z\in V italic_x , italic_y , italic_z ∈ italic_V :

[ ΞΊ ⁒ ( x , y ) , z ] + [ ΞΊ ⁒ ( y , z ) , x ] + [ ΞΊ ⁒ ( z , x ) , y ] = 0 . πœ… π‘₯ 𝑦 𝑧 πœ… 𝑦 𝑧 π‘₯ πœ… 𝑧 π‘₯ 𝑦 0 [\kappa(x,y),z]+[\kappa(y,z),x]+[\kappa(z,x),y]=0\ . [ italic_ΞΊ ( italic_x , italic_y ) , italic_z ] + [ italic_ΞΊ ( italic_y , italic_z ) , italic_x ] + [ italic_ΞΊ ( italic_z , italic_x ) , italic_y ] = 0 .

Definition 6.2

A Kan complex K β‹… subscript 𝐾 normal-β‹… K_{\cdot} italic_K start_POSTSUBSCRIPT β‹… end_POSTSUBSCRIPT is called minimal, if for any x , y ∈ K n π‘₯ 𝑦 subscript 𝐾 𝑛 x,y\in K_{n} italic_x , italic_y ∈ italic_K start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT with βˆ‚ ⁑ x = βˆ‚ ⁑ y π‘₯ 𝑦 \partial x=\partial y βˆ‚ italic_x = βˆ‚ italic_y homotopy implies equality:

x ∼ y β‡’ x = y . similar-to π‘₯ 𝑦 β‡’ π‘₯ 𝑦 x\sim y\Rightarrow x=y. italic_x ∼ italic_y β‡’ italic_x = italic_y .

A Kan complex ( K β‹… , ⋆ ) subscript 𝐾 normal-β‹… normal-⋆ (K_{\cdot},\star) ( italic_K start_POSTSUBSCRIPT β‹… end_POSTSUBSCRIPT , ⋆ ) is called n 𝑛 n italic_n -connected, if we have Ο€ k ⁒ ( K β‹… , ⋆ ) = 0 subscript πœ‹ π‘˜ subscript 𝐾 normal-β‹… normal-⋆ 0 \pi_{k}(K_{\cdot},\star)=0 italic_Ο€ start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ( italic_K start_POSTSUBSCRIPT β‹… end_POSTSUBSCRIPT , ⋆ ) = 0 for all 0 ≀ k ≀ n 0 π‘˜ 𝑛 0\leq k\leq n 0 ≀ italic_k ≀ italic_n .


Definition 2.1 (Locally conformal symplectic structure) .

Let M 𝑀 M italic_M be a smooth manifold of dimension n β‰₯ 4 𝑛 4 n\geq 4 italic_n β‰₯ 4 . We say that a non-degenerate 2 2 2 2 -form Ο‰ πœ” \omega italic_Ο‰ is a locally conformally symplectic structure (for short LCS structure ) if, there exists a closed 1 1 1 1 -form ΞΈ πœƒ \theta italic_ΞΈ such that

d ⁒ Ο‰ = ΞΈ ∧ Ο‰ . 𝑑 πœ” πœƒ πœ” d\omega=\theta\wedge\omega. italic_d italic_Ο‰ = italic_ΞΈ ∧ italic_Ο‰ . (2.5)

The triple ( M , Ο‰ , ΞΈ ) 𝑀 πœ” πœƒ (M,\omega,\theta) ( italic_M , italic_Ο‰ , italic_ΞΈ ) is called a locally conformally symplectic manifold.


Definition 1.1 .

Let A 𝐴 A italic_A be a nonempty set. A majority operation on A 𝐴 A italic_A is a ternary operation m : A 3 β†’ A normal-: π‘š normal-β†’ superscript 𝐴 3 𝐴 m:A^{3}\to A italic_m : italic_A start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT β†’ italic_A such that m ⁒ ( b , a , a ) = m ⁒ ( a , b , a ) = m ⁒ ( a , a , b ) = a π‘š 𝑏 π‘Ž π‘Ž π‘š π‘Ž 𝑏 π‘Ž π‘š π‘Ž π‘Ž 𝑏 π‘Ž m(b,a,a)=m(a,b,a)=m(a,a,b)=a italic_m ( italic_b , italic_a , italic_a ) = italic_m ( italic_a , italic_b , italic_a ) = italic_m ( italic_a , italic_a , italic_b ) = italic_a for all a π‘Ž a italic_a , b ∈ A 𝑏 𝐴 b\in A italic_b ∈ italic_A . A Maltsev operation on A 𝐴 A italic_A is a ternary operation p : A 3 β†’ A normal-: 𝑝 normal-β†’ superscript 𝐴 3 𝐴 p:A^{3}\to A italic_p : italic_A start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT β†’ italic_A such that p ⁒ ( b , a , a ) = p ⁒ ( a , a , b ) = b 𝑝 𝑏 π‘Ž π‘Ž 𝑝 π‘Ž π‘Ž 𝑏 𝑏 p(b,a,a)=p(a,a,b)=b italic_p ( italic_b , italic_a , italic_a ) = italic_p ( italic_a , italic_a , italic_b ) = italic_b for all a π‘Ž a italic_a , b ∈ A 𝑏 𝐴 b\in A italic_b ∈ italic_A . For k β‰₯ 2 π‘˜ 2 k\geq 2 italic_k β‰₯ 2 , an operation n : A ( k + 1 ) β†’ A normal-: 𝑛 normal-β†’ superscript 𝐴 π‘˜ 1 𝐴 n:A^{(k+1)}\to A italic_n : italic_A start_POSTSUPERSCRIPT ( italic_k + 1 ) end_POSTSUPERSCRIPT β†’ italic_A is a ( k + 1 ) π‘˜ 1 (k+1) ( italic_k + 1 ) -ary near unanimity operation on A 𝐴 A italic_A if for all a π‘Ž a italic_a , b ∈ A 𝑏 𝐴 b\in A italic_b ∈ italic_A ,

n ⁒ ( b , a , a , … , a ) = n ⁒ ( a , b , a , … , a ) = β‹― = n ⁒ ( a , a , … , a , b ) = a . 𝑛 𝑏 π‘Ž π‘Ž … π‘Ž 𝑛 π‘Ž 𝑏 π‘Ž … π‘Ž β‹― 𝑛 π‘Ž π‘Ž … π‘Ž 𝑏 π‘Ž n(b,a,a,\ldots,a)=n(a,b,a,\ldots,a)=\cdots=n(a,a,\ldots,a,b)=a. italic_n ( italic_b , italic_a , italic_a , … , italic_a ) = italic_n ( italic_a , italic_b , italic_a , … , italic_a ) = β‹― = italic_n ( italic_a , italic_a , … , italic_a , italic_b ) = italic_a .

(Note that a majority operation is a 3 3 3 3 -ary near-unanimity operation.)


Definition 7.1 .

Define the map ψ : β„› K , A β†’ β„› K , A : πœ“ β†’ subscript β„› 𝐾 𝐴 subscript β„› 𝐾 𝐴 \psi:\mathcal{R}_{K,A}\to\mathcal{R}_{K,A} italic_ψ : caligraphic_R start_POSTSUBSCRIPT italic_K , italic_A end_POSTSUBSCRIPT β†’ caligraphic_R start_POSTSUBSCRIPT italic_K , italic_A end_POSTSUBSCRIPT as the reduced trace of Ο† πœ‘ \varphi italic_Ο† ; by definition, it is a left inverse of Ο† πœ‘ \varphi italic_Ο† . For any M ∈ 𝚽 ⁒ πšͺ K , A 𝑀 subscript 𝚽 πšͺ 𝐾 𝐴 M\in\operatorname{\mathbf{\Phi\Gamma}}_{K,A} italic_M ∈ start_OPFUNCTION bold_Ξ¦ bold_Ξ“ end_OPFUNCTION start_POSTSUBSCRIPT italic_K , italic_A end_POSTSUBSCRIPT , we may likewise take the reduced trace of the action of Ο† πœ‘ \varphi italic_Ο† on M 𝑀 M italic_M to obtain an action of ψ πœ“ \psi italic_ψ on M 𝑀 M italic_M , which is again a left inverse of Ο† πœ‘ \varphi italic_Ο† ; concretely, the action of ψ πœ“ \psi italic_ψ on M 𝑀 M italic_M is characterized by additivity and the identity

ψ ⁒ ( r ⁒ Ο† ⁒ ( 𝐯 ) ) = ψ ⁒ ( r ) ⁒ 𝐯 . πœ“ π‘Ÿ πœ‘ 𝐯 πœ“ π‘Ÿ 𝐯 \psi(r\varphi(\mathbf{v}))=\psi(r)\mathbf{v}. italic_ψ ( italic_r italic_Ο† ( bold_v ) ) = italic_ψ ( italic_r ) bold_v .

We have an exact sequence

(7.1.1) 0 β†’ M Ο† = 1 β†’ M ψ = 1 ⟢ Ο† - 1 M ψ = 0 . β†’ 0 superscript 𝑀 πœ‘ 1 β†’ superscript 𝑀 πœ“ 1 superscript ⟢ πœ‘ 1 superscript 𝑀 πœ“ 0 0\to M^{\varphi=1}\to M^{\psi=1}\stackrel{{\scriptstyle\varphi-1}}{{% \longrightarrow}}M^{\psi=0}. 0 β†’ italic_M start_POSTSUPERSCRIPT italic_Ο† = 1 end_POSTSUPERSCRIPT β†’ italic_M start_POSTSUPERSCRIPT italic_ψ = 1 end_POSTSUPERSCRIPT start_RELOP SUPERSCRIPTOP start_ARG ⟢ end_ARG start_ARG italic_Ο† - 1 end_ARG end_RELOP italic_M start_POSTSUPERSCRIPT italic_ψ = 0 end_POSTSUPERSCRIPT .

Definition 4.1.2 .
Area of geometric right triangle = ln ⁑ ( base βŠ™ altitude ) absent base βŠ™ altitude \displaystyle=\ln\left(\sqrt{\text{base $\odot$ altitude}}\right) = roman_ln ( square-root start_ARG base βŠ™ altitude end_ARG )
= ln ⁑ ( base ) . ln ⁑ ( altitude ) 2 . absent formulae-sequence base altitude 2 \displaystyle={\frac{\ln(\text{base}).\ln(\text{altitude})}{2}}. = divide start_ARG roman_ln ( base ) . roman_ln ( altitude ) end_ARG start_ARG 2 end_ARG .

Definition 5.1 .

Let β„± β„± \mathcal{F} caligraphic_F be an analytic foliation at ( β„‚ 2 , 0 ) superscript β„‚ 2 0 \left(\mathbb{C}^{2},0\right) ( blackboard_C start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT , 0 ) and C 𝐢 C italic_C be the union of some analytic separatrices of β„± β„± \mathcal{F} caligraphic_F . If Ο‰ πœ” \omega italic_Ο‰ is a 1 1 1 1 -form that induces β„± β„± \mathcal{F} caligraphic_F and f = 0 𝑓 0 f=0 italic_f = 0 is a reduced equation for C 𝐢 C italic_C , then it is possible to write a decomposition

g ⁒ Ο‰ = k ⁒ d ⁒ f + f ⁒ Ξ· , 𝑔 πœ” π‘˜ d 𝑓 𝑓 πœ‚ g\omega=k\textup{d}f+f\eta, italic_g italic_Ο‰ = italic_k d italic_f + italic_f italic_Ξ· ,

where Ξ· πœ‚ \eta italic_Ξ· is a 1 1 1 1 -form and g , k ∈ β„‚ ⁒ { x , y } 𝑔 π‘˜ β„‚ π‘₯ 𝑦 g,\leavevmode\nobreak\ k\in\mathbb{C}\left\{x,y\right\} italic_g , italic_k ∈ blackboard_C { italic_x , italic_y } with g 𝑔 g italic_g and f 𝑓 f italic_f relatively prime. The G ⁒ S ⁒ V 𝐺 𝑆 𝑉 GSV italic_G italic_S italic_V -index of β„± β„± \mathcal{F} caligraphic_F with respect to C 𝐢 C italic_C at ( β„‚ 2 , 0 ) superscript β„‚ 2 0 \left(\mathbb{C}^{2},0\right) ( blackboard_C start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT , 0 ) is defined by

G ⁒ S ⁒ V 0 c ⁒ ( β„± , C ) = 1 2 ⁒ Ο€ ⁒ i ⁒ ∫ βˆ‚ ⁑ C g k ⁒ d ⁒ ( k g ) . 𝐺 𝑆 superscript subscript 𝑉 0 c β„± 𝐢 1 2 πœ‹ 𝑖 subscript 𝐢 𝑔 π‘˜ d π‘˜ 𝑔 GSV_{0}^{\textup{c}}\left(\mathcal{F},C\right)=\frac{1}{2\pi i}\int_{\partial C% }\frac{g}{k}\textup{d}\left(\frac{k}{g}\right). italic_G italic_S italic_V start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT c end_POSTSUPERSCRIPT ( caligraphic_F , italic_C ) = divide start_ARG 1 end_ARG start_ARG 2 italic_Ο€ italic_i end_ARG ∫ start_POSTSUBSCRIPT βˆ‚ italic_C end_POSTSUBSCRIPT divide start_ARG italic_g end_ARG start_ARG italic_k end_ARG d ( divide start_ARG italic_k end_ARG start_ARG italic_g end_ARG ) .

Here βˆ‚ ⁑ C 𝐢 \partial C βˆ‚ italic_C is the intersection C ∩ S Ο΅ 3 𝐢 superscript subscript 𝑆 italic-Ο΅ 3 C\cap S_{\epsilon}^{3} italic_C ∩ italic_S start_POSTSUBSCRIPT italic_Ο΅ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT , where S Ο΅ 3 superscript subscript 𝑆 italic-Ο΅ 3 S_{\epsilon}^{3} italic_S start_POSTSUBSCRIPT italic_Ο΅ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT is a small sphere centered at 0 ∈ β„‚ 2 0 superscript β„‚ 2 0\in\mathbb{C}^{2} 0 ∈ blackboard_C start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT , oriented as the boundary of C ∩ B Ο΅ 4 𝐢 superscript subscript 𝐡 italic-Ο΅ 4 C\cap B_{\epsilon}^{4} italic_C ∩ italic_B start_POSTSUBSCRIPT italic_Ο΅ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT , for a ball B Ο΅ 4 superscript subscript 𝐡 italic-Ο΅ 4 B_{\epsilon}^{4} italic_B start_POSTSUBSCRIPT italic_Ο΅ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT such that S Ο΅ 3 = βˆ‚ ⁑ B Ο΅ 4 superscript subscript 𝑆 italic-Ο΅ 3 superscript subscript 𝐡 italic-Ο΅ 4 S_{\epsilon}^{3}=\partial B_{\epsilon}^{4} italic_S start_POSTSUBSCRIPT italic_Ο΅ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT = βˆ‚ italic_B start_POSTSUBSCRIPT italic_Ο΅ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT .

Definition 5.2 .

Let β„± ^ ^ β„± \widehat{\mathcal{F}} ^ start_ARG caligraphic_F end_ARG be a formal foliation at ( β„‚ 2 , 0 ) superscript β„‚ 2 0 (\mathbb{C}^{2},0) ( blackboard_C start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT , 0 ) and C ^ ^ 𝐢 \hat{C} ^ start_ARG italic_C end_ARG be an irreducible separatrix of β„± β„± \mathcal{F} caligraphic_F . If Ο‰ ^ ^ πœ” \hat{\omega} ^ start_ARG italic_Ο‰ end_ARG is a 1 1 1 1 -form inducing β„± ^ ^ β„± \widehat{\mathcal{F}} ^ start_ARG caligraphic_F end_ARG and f = 0 𝑓 0 f=0 italic_f = 0 is a reduced equation for C ^ ^ 𝐢 \hat{C} ^ start_ARG italic_C end_ARG , then, as in the convergent case, it is possible to write a decomposition

g ⁒ Ο‰ ^ = k ⁒ d ⁒ f + f ⁒ Ξ· ^ 𝑔 ^ πœ” π‘˜ d 𝑓 𝑓 ^ πœ‚ g\hat{\omega}=k\textup{d}f+f\hat{\eta} italic_g ^ start_ARG italic_Ο‰ end_ARG = italic_k d italic_f + italic_f ^ start_ARG italic_Ξ· end_ARG

where Ξ· ^ ^ πœ‚ \hat{\eta} ^ start_ARG italic_Ξ· end_ARG is a formal 1 1 1 1 -form and g , k ∈ β„‚ ⁒ [ [ x , y ] ] 𝑔 π‘˜ β„‚ delimited-[] π‘₯ 𝑦 g,\leavevmode\nobreak\ k\in\mathbb{C}\left[\left[x,y\right]\right] italic_g , italic_k ∈ blackboard_C [ [ italic_x , italic_y ] ] with g 𝑔 g italic_g and f 𝑓 f italic_f relatively prime. Now, if Ξ³ 𝛾 \gamma italic_Ξ³ is a Puiseux parametrization of C ^ , ^ 𝐢 \hat{C}, ^ start_ARG italic_C end_ARG , we define

G ⁒ S ⁒ V 0 ⁒ ( β„± ^ , C ^ ) = ord t = 0 ⁒ k g ∘ Ξ³ . 𝐺 𝑆 subscript 𝑉 0 ^ β„± ^ 𝐢 subscript ord 𝑑 0 π‘˜ 𝑔 𝛾 GSV_{0}(\widehat{\mathcal{F}},\hat{C})=\textup{ord}_{t=0}\frac{k}{g}\circ\gamma. italic_G italic_S italic_V start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( ^ start_ARG caligraphic_F end_ARG , ^ start_ARG italic_C end_ARG ) = ord start_POSTSUBSCRIPT italic_t = 0 end_POSTSUBSCRIPT divide start_ARG italic_k end_ARG start_ARG italic_g end_ARG ∘ italic_Ξ³ .

If C ^ = C 0 ^ βˆͺ C 1 ^ ^ 𝐢 ^ subscript 𝐢 0 ^ subscript 𝐢 1 \hat{C}=\hat{C_{0}}\cup\hat{C_{1}} ^ start_ARG italic_C end_ARG = ^ start_ARG italic_C start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_ARG βˆͺ ^ start_ARG italic_C start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_ARG is the union of two disjoint sets of separatrices, then we define the G ⁒ S ⁒ V 𝐺 𝑆 𝑉 GSV italic_G italic_S italic_V -index inductively by the formula

(5.1) G ⁒ S ⁒ V 0 ⁒ ( β„± ^ , C ^ ) = G ⁒ S ⁒ V 0 ⁒ ( β„± ^ , C ^ 0 ) + G ⁒ S ⁒ V 0 ⁒ ( β„± ^ , C ^ 1 ) - 2 ⁒ ( C 0 ^ , C 1 ^ ) 0 , 𝐺 𝑆 subscript 𝑉 0 ^ β„± ^ 𝐢 𝐺 𝑆 subscript 𝑉 0 ^ β„± subscript ^ 𝐢 0 𝐺 𝑆 subscript 𝑉 0 ^ β„± subscript ^ 𝐢 1 2 subscript ^ subscript 𝐢 0 ^ subscript 𝐢 1 0 GSV_{0}(\widehat{\mathcal{F}},\hat{C})=GSV_{0}(\widehat{\mathcal{F}},\hat{C}_{% 0})+GSV_{0}(\widehat{\mathcal{F}},\hat{C}_{1})-2(\hat{C_{0}},\hat{C_{1}})_{0}, italic_G italic_S italic_V start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( ^ start_ARG caligraphic_F end_ARG , ^ start_ARG italic_C end_ARG ) = italic_G italic_S italic_V start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( ^ start_ARG caligraphic_F end_ARG , ^ start_ARG italic_C end_ARG start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) + italic_G italic_S italic_V start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( ^ start_ARG caligraphic_F end_ARG , ^ start_ARG italic_C end_ARG start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) - 2 ( ^ start_ARG italic_C start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_ARG , ^ start_ARG italic_C start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_ARG ) start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ,

where ( C 0 ^ , C 1 ^ ) 0 subscript ^ subscript 𝐢 0 ^ subscript 𝐢 1 0 (\hat{C_{0}},\hat{C_{1}})_{0} ( ^ start_ARG italic_C start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_ARG , ^ start_ARG italic_C start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_ARG ) start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT stands for the intersection number at 0 ∈ β„‚ 2 0 superscript β„‚ 2 0\in\mathbb{C}^{2} 0 ∈ blackboard_C start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT .


Definition 2.1 .

For integers r , d π‘Ÿ 𝑑 r,d italic_r , italic_d with r β‰₯ 2 π‘Ÿ 2 r\geq 2 italic_r β‰₯ 2 and d β‰₯ 2 ⁒ r - 1 𝑑 2 π‘Ÿ 1 d\geq 2r-1 italic_d β‰₯ 2 italic_r - 1 , let m = ⌊ d - 1 r - 1 βŒ‹ π‘š 𝑑 1 π‘Ÿ 1 m=\lfloor\frac{d-1}{r-1}\rfloor italic_m = ⌊ divide start_ARG italic_d - 1 end_ARG start_ARG italic_r - 1 end_ARG βŒ‹ and Ξ΅ = ( d - 1 ) - m ⁒ ( r - 1 ) πœ€ 𝑑 1 π‘š π‘Ÿ 1 \varepsilon=(d-1)-m(r-1) italic_Ξ΅ = ( italic_d - 1 ) - italic_m ( italic_r - 1 ) . Define

Ο€ ⁒ ( r , d ) = ( m 2 ) ⁒ ( r - 1 ) + m ⁒ Ξ΅ . πœ‹ π‘Ÿ 𝑑 binomial π‘š 2 π‘Ÿ 1 π‘š πœ€ \pi(r,d)=\binom{m}{2}(r-1)+m\varepsilon. italic_Ο€ ( italic_r , italic_d ) = ( FRACOP start_ARG italic_m end_ARG start_ARG 2 end_ARG ) ( italic_r - 1 ) + italic_m italic_Ξ΅ .

Definition 5.2 .

We consider the direct limit (in the category of filtered algebras):

l ⁒ i ⁒ m β†’ ⁒ 𝜻 ⁒ ( n ) = 𝜻 . β†’ 𝑙 𝑖 π‘š 𝜻 𝑛 𝜻 \underrightarrow{lim}\ \boldsymbol{\zeta}(n)=\boldsymbol{\zeta}. β†’ start_ARG italic_l italic_i italic_m end_ARG bold_italic_ΞΆ ( italic_n ) = bold_italic_ΞΆ . (50)

Definition 18 (Cyclic reordering) .

The scalar part of a product of two multivectors is order invariant. This way,

⟨ A ⁒ B ⟩ = ⟨ B ⁒ A ⟩ β‡’ ⟨ A ⁒ B ⁒ β‹― ⁒ C ⟩ = ⟨ B ⁒ β‹― ⁒ C ⁒ A ⟩ ⁒ . delimited-⟨⟩ 𝐴 𝐡 delimited-⟨⟩ 𝐡 𝐴 β‡’ delimited-⟨⟩ 𝐴 𝐡 β‹― 𝐢 delimited-⟨⟩ 𝐡 β‹― 𝐢 𝐴 . \langle AB\rangle=\langle BA\rangle\Rightarrow\langle AB\cdots C\rangle=% \langle B\cdots CA\rangle\text{.} ⟨ italic_A italic_B ⟩ = ⟨ italic_B italic_A ⟩ β‡’ ⟨ italic_A italic_B β‹― italic_C ⟩ = ⟨ italic_B β‹― italic_C italic_A ⟩ . (28)

∎