Definition 2.13 .

(see [ 5 , DefinitionΒ 15] ) A crossed module of Lie algebras consists of a Lie algebra homomorphism ΞΌ : π”ͺ β†’ 𝔫 : πœ‡ β†’ π”ͺ 𝔫 \mu:\mathfrak{m}\to\mathfrak{n} italic_ΞΌ : fraktur_m β†’ fraktur_n together with an action of 𝔫 𝔫 \mathfrak{n} fraktur_n on π”ͺ π”ͺ \mathfrak{m} fraktur_m by derivations, that is a Lie algebra homomorphism

Ξ½ : 𝔫 β†’ 𝖣𝖾𝗋 ⁒ ( π”ͺ ) : 𝜈 β†’ 𝔫 𝖣𝖾𝗋 π”ͺ \nu:\mathfrak{n}\to\mathsf{Der}(\mathfrak{m}) italic_Ξ½ : fraktur_n β†’ sansserif_Der ( fraktur_m )

from 𝔫 𝔫 \mathfrak{n} fraktur_n to the Lie algebra 𝖣𝖾𝗋 ⁒ ( π”ͺ ) 𝖣𝖾𝗋 π”ͺ \mathsf{Der}(\mathfrak{m}) sansserif_Der ( fraktur_m ) of derivations of π”ͺ π”ͺ \mathfrak{m} fraktur_m so that for all m , m β€² ∈ π”ͺ π‘š superscript π‘š β€² π”ͺ m,m^{\prime}\in\mathfrak{m} italic_m , italic_m start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ∈ fraktur_m , n ∈ 𝔫 𝑛 𝔫 n\in\mathfrak{n} italic_n ∈ fraktur_n


Definition 2.4 .

Given the RQS ( 𝒒 , ΞΌ ) 𝒒 πœ‡ (\mathcal{G},\mu) ( caligraphic_G , italic_ΞΌ ) on 𝒳 𝒳 \mathcal{X} caligraphic_X , we define β„± = β„± ⁒ ( 𝒒 , ΞΌ ) β„± β„± 𝒒 πœ‡ \mathcal{F}=\mathcal{F}(\mathcal{G},\mu) caligraphic_F = caligraphic_F ( caligraphic_G , italic_ΞΌ ) as the set of functions f : 𝒳 ↦ [ 0 , ∞ ) normal-: 𝑓 maps-to 𝒳 0 f:\mathcal{X}\mapsto[0,\infty) italic_f : caligraphic_X ↦ [ 0 , ∞ ) such that ΞΌ ⁒ [ f ] = 1 πœ‡ delimited-[] 𝑓 1 \mu[f]=1 italic_ΞΌ [ italic_f ] = 1 , and

ΞΌ ⁒ [ f ⁒ log ⁑ ( ρ / ΞΌ ) ] = ΞΌ ⁒ [ log ⁑ ( ρ / ΞΌ ) ] , πœ‡ delimited-[] 𝑓 𝜌 πœ‡ πœ‡ delimited-[] 𝜌 πœ‡ \displaystyle\mu[f\log(\rho/\mu)]=\mu[\log(\rho/\mu)], italic_ΞΌ [ italic_f roman_log ( italic_ρ / italic_ΞΌ ) ] = italic_ΞΌ [ roman_log ( italic_ρ / italic_ΞΌ ) ] , (2.14)

for all stationary ρ ∈ 𝒫 + ⁒ ( 𝒳 ) 𝜌 subscript 𝒫 𝒳 \rho\in\mathcal{P}_{+}(\mathcal{X}) italic_ρ ∈ caligraphic_P start_POSTSUBSCRIPT + end_POSTSUBSCRIPT ( caligraphic_X ) . Moreover, we say that the RQS satisfies the entropy production estimate with constant Ξ΄ > 0 𝛿 0 \delta>0 italic_Ξ΄ > 0 if for all f ∈ β„± 𝑓 β„± f\in\mathcal{F} italic_f ∈ caligraphic_F one has

D ⁒ ( f , f ) ⁒ β©Ύ ⁒ Ξ΄ ⁒ Ent ⁒ ( f ) , 𝐷 𝑓 𝑓 β©Ύ 𝛿 Ent 𝑓 \displaystyle D(f,f)\;\geqslant\;\delta\,{\rm Ent}(f), italic_D ( italic_f , italic_f ) β©Ύ italic_Ξ΄ roman_Ent ( italic_f ) , (2.15)

where Ent ⁒ ( f ) = ΞΌ ⁒ [ f ⁒ log ⁑ f ] - ΞΌ ⁒ [ f ] ⁒ log ⁑ ΞΌ ⁒ [ f ] normal-Ent 𝑓 πœ‡ delimited-[] 𝑓 𝑓 πœ‡ delimited-[] 𝑓 πœ‡ delimited-[] 𝑓 {\rm Ent}(f)=\mu[f\log f]-\mu[f]\log\mu[f] roman_Ent ( italic_f ) = italic_ΞΌ [ italic_f roman_log italic_f ] - italic_ΞΌ [ italic_f ] roman_log italic_ΞΌ [ italic_f ] .


Definition 1.4.1 .

A metric d 𝑑 d italic_d defined on a vector space E 𝐸 E italic_E is invariant if

d ⁒ ( x + z , y + z ) = d ⁒ ( x , y ) 𝑑 π‘₯ 𝑧 𝑦 𝑧 𝑑 π‘₯ 𝑦 d(x+z,y+z)=d(x,y) italic_d ( italic_x + italic_z , italic_y + italic_z ) = italic_d ( italic_x , italic_y )

for all elements x ⁒ , ⁒ y ⁒ , ⁒ z π‘₯ , 𝑦 , 𝑧 x\mbox{, }y\mbox{, }z italic_x , italic_y , italic_z in E 𝐸 E italic_E .


Definition III.11

(PavičiΔ‡ and Megill, PavičiΔ‡Β andΒ Megill ( 1999 , 2008 ) .) A weakly distributive ortholattice (WDL) is an OL in which condition ( 36 ) (called commensurability ) holds

( a ∩ b ) βˆͺ ( a ∩ b β€² ) βˆͺ ( a β€² ∩ b ) βˆͺ ( a β€² ∩ b β€² ) = 1 . π‘Ž 𝑏 π‘Ž superscript 𝑏 β€² superscript π‘Ž β€² 𝑏 superscript π‘Ž β€² superscript 𝑏 β€² 1 \displaystyle(a\cap b)\cup(a\cap b^{\prime})\cup(a^{\prime}\cap b)\cup(a^{% \prime}\cap b^{\prime})=1. ( italic_a ∩ italic_b ) βˆͺ ( italic_a ∩ italic_b start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ) βˆͺ ( italic_a start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ∩ italic_b ) βˆͺ ( italic_a start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ∩ italic_b start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ) = 1 . (36)

Definition 6.5 .

Let g 𝑔 g italic_g be a function. We define:


Definition 5.5 .

Let c c ⁒ ( G ) subscript 𝑐 𝑐 𝐺 c_{c}(G) italic_c start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT ( italic_G ) denote the linear space consisting of functions G β†’ β„‚ β†’ 𝐺 β„‚ G\rightarrow{\mathbb{C}} italic_G β†’ blackboard_C with finite support. We turn c c ⁒ ( G ) subscript 𝑐 𝑐 𝐺 c_{c}(G) italic_c start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT ( italic_G ) to a right Ξ΅ ⁒ ( E ) πœ€ 𝐸 \varepsilon(E) italic_Ξ΅ ( italic_E ) -module by setting

( ΞΎ ⁒ f ) ⁒ ( g ) = ΞΎ ⁒ ( g ) ⁒ f ⁒ ( g ⁒ g * ) πœ‰ 𝑓 𝑔 πœ‰ 𝑔 𝑓 𝑔 superscript 𝑔 (\xi f)(g)=\xi(g)f(gg^{*}) ( italic_ΞΎ italic_f ) ( italic_g ) = italic_ΞΎ ( italic_g ) italic_f ( italic_g italic_g start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT )

for all ΞΎ ∈ c c ⁒ ( G ) , f ∈ c 0 ⁒ ( E ) formulae-sequence πœ‰ subscript 𝑐 𝑐 𝐺 𝑓 subscript 𝑐 0 𝐸 \xi\in c_{c}(G),f\in c_{0}(E) italic_ΞΎ ∈ italic_c start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT ( italic_G ) , italic_f ∈ italic_c start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_E ) and g ∈ G 𝑔 𝐺 g\in G italic_g ∈ italic_G . This module is endowed with an Ξ΅ ⁒ ( E ) πœ€ 𝐸 \varepsilon(E) italic_Ξ΅ ( italic_E ) -valued inner product given by

⟨ ΞΎ , Ξ· ⟩ ⁒ ( e ) = βˆ‘ g ∈ G , g ⁒ g * = e ΞΎ ⁒ ( g ) Β― ⁒ Ξ· ⁒ ( g ) . πœ‰ πœ‚ 𝑒 subscript formulae-sequence 𝑔 𝐺 𝑔 superscript 𝑔 𝑒 Β― πœ‰ 𝑔 πœ‚ 𝑔 \langle\xi,\eta\rangle(e)=\sum_{g\in G,gg^{*}=e}\overline{\xi(g)}\eta(g). ⟨ italic_ΞΎ , italic_Ξ· ⟩ ( italic_e ) = βˆ‘ start_POSTSUBSCRIPT italic_g ∈ italic_G , italic_g italic_g start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT = italic_e end_POSTSUBSCRIPT Β― start_ARG italic_ΞΎ ( italic_g ) end_ARG italic_Ξ· ( italic_g ) .

The space c c ⁒ ( G ) subscript 𝑐 𝑐 𝐺 c_{c}(G) italic_c start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT ( italic_G ) will be equipped with the G 𝐺 G italic_G -action

( h ΞΎ ) ( g ) = ΞΎ ( h * g ) [ h h * β‰₯ g g * ] fragments fragments ( h ΞΎ ) fragments ( g ) ΞΎ fragments ( superscript β„Ž g ) fragments [ h superscript β„Ž g superscript 𝑔 ] (h\xi)(g)=\xi(h^{*}g)\,[hh^{*}\geq gg^{*}] ( italic_h italic_ΞΎ ) ( italic_g ) = italic_ΞΎ ( italic_h start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT italic_g ) [ italic_h italic_h start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT β‰₯ italic_g italic_g start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT ]

for all ΞΎ ∈ c c ⁒ ( G ) πœ‰ subscript 𝑐 𝑐 𝐺 \xi\in c_{c}(G) italic_ΞΎ ∈ italic_c start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT ( italic_G ) and h , g ∈ G β„Ž 𝑔 𝐺 h,g\in G italic_h , italic_g ∈ italic_G .

The closure of c c ⁒ ( G ) subscript 𝑐 𝑐 𝐺 c_{c}(G) italic_c start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT ( italic_G ) under the norm induced by the inner product is a G 𝐺 G italic_G -Hilbert Ξ΅ ⁒ ( E ) πœ€ 𝐸 \varepsilon(E) italic_Ξ΅ ( italic_E ) -module denoted by β„“ 2 ⁒ ( G ) superscript β„“ 2 𝐺 \ell^{2}(G) roman_β„“ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_G ) .


Definition 2.3 .

Let G 𝐺 G italic_G be an abelian group. A map Ξ΅ : G Γ— G β†’ 𝕂 * : πœ€ β†’ 𝐺 𝐺 superscript 𝕂 \varepsilon:G\times G\rightarrow{\bf\mathbb{K}^{*}} italic_Ξ΅ : italic_G Γ— italic_G β†’ blackboard_K start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT is called a skew-symmetric bicharacter on G 𝐺 G italic_G if the following identities hold,

  1. (i)

    Ξ΅ ⁒ ( a , b ) ⁒ Ξ΅ ⁒ ( b , a ) = 1 πœ€ π‘Ž 𝑏 πœ€ 𝑏 π‘Ž 1 \varepsilon(a,b)\varepsilon(b,a)=1 italic_Ξ΅ ( italic_a , italic_b ) italic_Ξ΅ ( italic_b , italic_a ) = 1 ,

  2. (ii)

    Ξ΅ ⁒ ( a , b + c ) = Ξ΅ ⁒ ( a , b ) ⁒ Ξ΅ ⁒ ( a , c ) πœ€ π‘Ž 𝑏 𝑐 πœ€ π‘Ž 𝑏 πœ€ π‘Ž 𝑐 \varepsilon(a,b+c)=\varepsilon(a,b)\varepsilon(a,c) italic_Ξ΅ ( italic_a , italic_b + italic_c ) = italic_Ξ΅ ( italic_a , italic_b ) italic_Ξ΅ ( italic_a , italic_c ) ,

  3. (iii)

    Ξ΅ ⁒ ( a + b , c ) = Ξ΅ ⁒ ( a , c ) ⁒ Ξ΅ ⁒ ( b , c ) πœ€ π‘Ž 𝑏 𝑐 πœ€ π‘Ž 𝑐 πœ€ 𝑏 𝑐 \varepsilon(a+b,c)=\varepsilon(a,c)\varepsilon(b,c) italic_Ξ΅ ( italic_a + italic_b , italic_c ) = italic_Ξ΅ ( italic_a , italic_c ) italic_Ξ΅ ( italic_b , italic_c ) ,

a , b , c ∈ G π‘Ž 𝑏 𝑐 𝐺 a,b,c\in G italic_a , italic_b , italic_c ∈ italic_G ,

Definition 2.7 .

Let ( A , β‹… , Ξ΅ , Ξ± ) 𝐴 β‹… πœ€ 𝛼 (A,\cdot,\varepsilon,\alpha) ( italic_A , β‹… , italic_Ξ΅ , italic_Ξ± ) and ( A β€² , β‹… β€² , Ξ΅ , Ξ± β€² ) superscript 𝐴 β€² superscript β‹… β€² πœ€ superscript 𝛼 β€² (A^{\prime},\cdot^{\prime},\varepsilon,\alpha^{\prime}) ( italic_A start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT , β‹… start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT , italic_Ξ΅ , italic_Ξ± start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ) be two color Hom-algebras. An even linear map f : ( A , β‹… , Ξ΅ , Ξ± ) β†’ ( A β€² , β‹… β€² , Ξ΅ , Ξ± β€² ) : 𝑓 β†’ 𝐴 β‹… πœ€ 𝛼 superscript 𝐴 β€² superscript β‹… β€² πœ€ superscript 𝛼 β€² f:(A,\cdot,\varepsilon,\alpha)\rightarrow(A^{\prime},\cdot^{\prime},% \varepsilon,\alpha^{\prime}) italic_f : ( italic_A , β‹… , italic_Ξ΅ , italic_Ξ± ) β†’ ( italic_A start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT , β‹… start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT , italic_Ξ΅ , italic_Ξ± start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ) is called a weak morphism if, for any x , y ∈ A π‘₯ 𝑦 𝐴 x,y\in A italic_x , italic_y ∈ italic_A ,

f ⁒ ( x β‹… y ) = f ⁒ ( x ) β‹… β€² f ⁒ ( y ) . 𝑓 β‹… π‘₯ 𝑦 superscript β‹… β€² 𝑓 π‘₯ 𝑓 𝑦 f(x\cdot y)=f(x)\cdot^{\prime}f(y). italic_f ( italic_x β‹… italic_y ) = italic_f ( italic_x ) β‹… start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT italic_f ( italic_y ) .

If in addition f ∘ Ξ± = Ξ± β€² ∘ f 𝑓 𝛼 superscript 𝛼 β€² 𝑓 f\circ\alpha=\alpha^{\prime}\circ f italic_f ∘ italic_Ξ± = italic_Ξ± start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ∘ italic_f , f 𝑓 f italic_f is said to be a morphism of color Hom-algebras.

Definition 2.12 .

[ 34 ] A Hom-associative color algebra is a color Hom-algebra ( A , β‹… , Ξ΅ , Ξ± ) 𝐴 β‹… πœ€ 𝛼 (A,\cdot,\varepsilon,\alpha) ( italic_A , β‹… , italic_Ξ΅ , italic_Ξ± ) such that

Ξ± ⁒ ( x ) β‹… ( y β‹… z ) = ( x β‹… y ) β‹… Ξ± ⁒ ( z ) , β‹… 𝛼 π‘₯ β‹… 𝑦 𝑧 β‹… β‹… π‘₯ 𝑦 𝛼 𝑧 \displaystyle\alpha(x)\cdot(y\cdot z)=(x\cdot y)\cdot\alpha(z), italic_Ξ± ( italic_x ) β‹… ( italic_y β‹… italic_z ) = ( italic_x β‹… italic_y ) β‹… italic_Ξ± ( italic_z ) , (2.1)

for any x , y , z ∈ β„‹ ⁒ ( A ) π‘₯ 𝑦 𝑧 β„‹ 𝐴 x,y,z\in\mathcal{H}(A) italic_x , italic_y , italic_z ∈ caligraphic_H ( italic_A ) .

Definition 2.17 .

[ 9 ] A color Hom-algebra ( A , ΞΌ , Ξ΅ , Ξ± ) 𝐴 πœ‡ πœ€ 𝛼 (A,\mu,\varepsilon,\alpha) ( italic_A , italic_ΞΌ , italic_Ξ΅ , italic_Ξ± ) is said to be a Hom-Lie admissible color algebra if, for any hogeneous elements x , y ∈ A π‘₯ 𝑦 𝐴 x,y\in A italic_x , italic_y ∈ italic_A , the bracket [ β‹… , β‹… ] : A Γ— A β†’ A : β‹… β‹… β†’ 𝐴 𝐴 𝐴 [\cdot,\cdot]:A\times A\rightarrow A [ β‹… , β‹… ] : italic_A Γ— italic_A β†’ italic_A defined by

[ x , y ] = ΞΌ ⁒ ( x , y ) - Ξ΅ ⁒ ( x , y ) ⁒ ΞΌ ⁒ ( y , x ) π‘₯ 𝑦 πœ‡ π‘₯ 𝑦 πœ€ π‘₯ 𝑦 πœ‡ 𝑦 π‘₯ [x,y]=\mu(x,y)-\varepsilon(x,y)\mu(y,x) [ italic_x , italic_y ] = italic_ΞΌ ( italic_x , italic_y ) - italic_Ξ΅ ( italic_x , italic_y ) italic_ΞΌ ( italic_y , italic_x )

satisfies the Ξ΅ πœ€ \varepsilon italic_Ξ΅ -Hom-Jacobi identity.


Definition 4.1 .

Given a reflection group G 𝐺 G italic_G acting on β„‚ p superscript β„‚ 𝑝 \mathbb{C}^{p} blackboard_C start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT , a G 𝐺 G italic_G -reflection map f : X β†’ β„‚ p : 𝑓 β†’ 𝑋 superscript β„‚ 𝑝 f\colon X\to\mathbb{C}^{p} italic_f : italic_X β†’ blackboard_C start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT is a map of the form

f = Ο‰ ∘ h , 𝑓 πœ” β„Ž f=\omega\circ h, italic_f = italic_Ο‰ ∘ italic_h ,

where h : X β†ͺ β„‚ p : β„Ž β†ͺ 𝑋 superscript β„‚ 𝑝 h\colon X\hookrightarrow\mathbb{C}^{p} italic_h : italic_X β†ͺ blackboard_C start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT is an embedding and Ο‰ : β„‚ p β†’ β„‚ p : πœ” β†’ superscript β„‚ 𝑝 superscript β„‚ 𝑝 \omega\colon\mathbb{C}^{p}\to\mathbb{C}^{p} italic_Ο‰ : blackboard_C start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT β†’ blackboard_C start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT is the orbit map of G 𝐺 G italic_G .

Some results do not require h β„Ž h italic_h to be an embedding. If we only ask h : X β†’ β„‚ p : β„Ž β†’ 𝑋 superscript β„‚ 𝑝 h\colon X\to\mathbb{C}^{p} italic_h : italic_X β†’ blackboard_C start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT to be a finite map, then f = Ο‰ ∘ h 𝑓 πœ” β„Ž f=\omega\circ h italic_f = italic_Ο‰ ∘ italic_h is a generalized reflection map .


Definition 2.3 .

Two projections p , q ∈ ℬ ⁒ ( β„‹ ) 𝑝 π‘ž ℬ β„‹ p{},q{}\in\mathcal{B}(\mathcal{H}) italic_p , italic_q ∈ caligraphic_B ( caligraphic_H ) are said to be in generic position if

p ∧ q = p ∧ q = βŸ‚ p ∧ βŸ‚ q = p ∧ βŸ‚ q = βŸ‚ 0 . fragments p q p q superscript perpendicular-to p superscript perpendicular-to q p superscript perpendicular-to q superscript perpendicular-to 0 . p{}\wedge q{}=p{}\wedge q{}^{\perp}=p{}^{\perp}\wedge q{}=p{}^{\perp}\wedge q{% }^{\perp}=0. italic_p ∧ italic_q = italic_p ∧ italic_q start_FLOATSUPERSCRIPT βŸ‚ end_FLOATSUPERSCRIPT = italic_p start_FLOATSUPERSCRIPT βŸ‚ end_FLOATSUPERSCRIPT ∧ italic_q = italic_p start_FLOATSUPERSCRIPT βŸ‚ end_FLOATSUPERSCRIPT ∧ italic_q start_FLOATSUPERSCRIPT βŸ‚ end_FLOATSUPERSCRIPT = 0 .

Definition 2.16 .

For f ∈ E r 𝑓 subscript 𝐸 π‘Ÿ f\in E_{r} italic_f ∈ italic_E start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT , let 𝒩 βŸ‚ ⁒ ( f ) superscript 𝒩 perpendicular-to 𝑓 \mathcal{N}^{\perp}(f) caligraphic_N start_POSTSUPERSCRIPT βŸ‚ end_POSTSUPERSCRIPT ( italic_f ) be a dynamical system of the type

d ⁒ z d ⁒ t = - i ⁒ f ⁒ ( z ) f β€² ⁒ ( z ) . 𝑑 𝑧 𝑑 𝑑 𝑖 𝑓 𝑧 superscript 𝑓 β€² 𝑧 \dfrac{dz}{dt}=\dfrac{-if(z)}{f^{{}^{\prime}}(z)}. divide start_ARG italic_d italic_z end_ARG start_ARG italic_d italic_t end_ARG = divide start_ARG - italic_i italic_f ( italic_z ) end_ARG start_ARG italic_f start_POSTSUPERSCRIPT start_FLOATSUPERSCRIPT β€² end_FLOATSUPERSCRIPT end_POSTSUPERSCRIPT ( italic_z ) end_ARG .

Definition 2.4 .

For A 𝐴 A italic_A a semisimple algebra, a trace function on A 𝐴 A italic_A is a β„‚ β„‚ \mathbb{C} blackboard_C -linear function Ο„ : A β†’ β„‚ normal-: 𝜏 normal-β†’ 𝐴 β„‚ \tau:A\rightarrow\mathbb{C} italic_Ο„ : italic_A β†’ blackboard_C such that for all a , b ∈ A π‘Ž 𝑏 𝐴 a,b\in A italic_a , italic_b ∈ italic_A ,

Ο„ ⁒ ( a ⁒ b ) = Ο„ ⁒ ( b ⁒ a ) . 𝜏 π‘Ž 𝑏 𝜏 𝑏 π‘Ž \tau(ab)=\tau(ba). italic_Ο„ ( italic_a italic_b ) = italic_Ο„ ( italic_b italic_a ) .

Definition 2.3 .

Let f , g ∈ R 𝑓 𝑔 𝑅 f,g\in R italic_f , italic_g ∈ italic_R with class ⁒ ( g ) = x j class 𝑔 subscript π‘₯ 𝑗 \text{class}(g)=x_{j} class ( italic_g ) = italic_x start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT . We first write f , g 𝑓 𝑔 f,g italic_f , italic_g as univariate polynomials in x j subscript π‘₯ 𝑗 x_{j} italic_x start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT . The pseudoremainder of f 𝑓 f italic_f by g 𝑔 g italic_g is the remainder obtained from considering the coefficients of f , g 𝑓 𝑔 f,g italic_f , italic_g as coming from the field k ⁒ ( x 1 , x 2 , … , x j - 1 , x j + 1 , … , x n ) π‘˜ subscript π‘₯ 1 subscript π‘₯ 2 … subscript π‘₯ 𝑗 1 subscript π‘₯ 𝑗 1 … subscript π‘₯ 𝑛 k(x_{1},x_{2},\ldots,x_{j-1},x_{j+1},\ldots,x_{n}) italic_k ( italic_x start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_x start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , … , italic_x start_POSTSUBSCRIPT italic_j - 1 end_POSTSUBSCRIPT , italic_x start_POSTSUBSCRIPT italic_j + 1 end_POSTSUBSCRIPT , … , italic_x start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) , performing univariate polynomial division of f 𝑓 f italic_f by g 𝑔 g italic_g with coefficients in this field, and then clearing denominators to obtain some equation of the form:

lc ( g ) Ξ± f = q g + r fragments lc superscript fragments ( g ) 𝛼 f q g r \displaystyle\operatorname{lc}{(g)}^{\alpha}f=qg+r roman_lc ( italic_g ) start_POSTSUPERSCRIPT italic_Ξ± end_POSTSUPERSCRIPT italic_f = italic_q italic_g + italic_r

with deg x j ⁑ ( r ) < deg x j ⁑ ( g ) , Ξ± ∈ β„• formulae-sequence subscript degree subscript π‘₯ 𝑗 π‘Ÿ subscript degree subscript π‘₯ 𝑗 𝑔 𝛼 β„• \deg_{x_{j}}(r)<\deg_{x_{j}}(g),\alpha\in\mathbb{N} roman_deg start_POSTSUBSCRIPT italic_x start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT end_POSTSUBSCRIPT ( italic_r ) < roman_deg start_POSTSUBSCRIPT italic_x start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT end_POSTSUBSCRIPT ( italic_g ) , italic_Ξ± ∈ blackboard_N . We require that Ξ± ≀ deg x j ⁑ ( f ) - deg x j ⁑ ( g ) + 1 𝛼 subscript degree subscript π‘₯ 𝑗 𝑓 subscript degree subscript π‘₯ 𝑗 𝑔 1 \alpha\leq\deg_{x_{j}}(f)-\deg_{x_{j}}(g)+1 italic_Ξ± ≀ roman_deg start_POSTSUBSCRIPT italic_x start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT end_POSTSUBSCRIPT ( italic_f ) - roman_deg start_POSTSUBSCRIPT italic_x start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT end_POSTSUBSCRIPT ( italic_g ) + 1 . (For uniqueness of q , r π‘ž π‘Ÿ q,r italic_q , italic_r , one takes Ξ± 𝛼 \alpha italic_Ξ± minimal.) We sometimes denote r π‘Ÿ r italic_r by prem ⁒ ( f , g ) prem 𝑓 𝑔 \text{prem}(f,g) prem ( italic_f , italic_g ) .


Definition 1.4.9 .

Let a linear subspace D ⁒ ( q ) βŠ‚ β„‹ 𝐷 π‘ž β„‹ D(q)\subset\mathcal{H} italic_D ( italic_q ) βŠ‚ caligraphic_H be fixed. A mapping q : D ⁒ ( q ) Γ— D ⁒ ( q ) ⟢ β„‚ : π‘ž ⟢ 𝐷 π‘ž 𝐷 π‘ž β„‚ q:D(q)\times D(q)\longrightarrow\mathbb{C} italic_q : italic_D ( italic_q ) Γ— italic_D ( italic_q ) ⟢ blackboard_C which satisfies

q ⁒ [ Ξ± ⁒ u + Ξ² ⁒ v , w ] = Ξ± ⁒ q ⁒ [ u , w ] + Ξ² ⁒ q ⁒ [ v , w ] π‘ž 𝛼 𝑒 𝛽 𝑣 𝑀 𝛼 π‘ž 𝑒 𝑀 𝛽 π‘ž 𝑣 𝑀 q[\alpha u+\beta v,w]=\alpha q[u,w]+\beta q[v,w] italic_q [ italic_Ξ± italic_u + italic_Ξ² italic_v , italic_w ] = italic_Ξ± italic_q [ italic_u , italic_w ] + italic_Ξ² italic_q [ italic_v , italic_w ]

and

q ⁒ [ u , Ξ± ⁒ v + Ξ² ⁒ w ] = Ξ± Β― ⁒ q ⁒ [ u , v ] + Ξ² Β― ⁒ q ⁒ [ u , w ] π‘ž 𝑒 𝛼 𝑣 𝛽 𝑀 Β― 𝛼 π‘ž 𝑒 𝑣 Β― 𝛽 π‘ž 𝑒 𝑀 q[u,\alpha v+\beta w]=\overline{\alpha}q[u,v]+\overline{\beta}q[u,w] italic_q [ italic_u , italic_Ξ± italic_v + italic_Ξ² italic_w ] = Β― start_ARG italic_Ξ± end_ARG italic_q [ italic_u , italic_v ] + Β― start_ARG italic_Ξ² end_ARG italic_q [ italic_u , italic_w ]

for all u , v , w ∈ D ⁒ ( q ) 𝑒 𝑣 𝑀 𝐷 π‘ž u,v,w\in D(q) italic_u , italic_v , italic_w ∈ italic_D ( italic_q ) is called a sesquilinear form. If D ⁒ ( q ) 𝐷 π‘ž D(q) italic_D ( italic_q ) is dense in β„‹ β„‹ \mathcal{H} caligraphic_H , then q π‘ž q italic_q is densely defined.


Definition 8 (Translation invariance)

A quasifree state Ο‰ s ∈ E 𝔄 subscript πœ” 𝑠 subscript 𝐸 𝔄 \omega_{s}\in E_{\mathfrak{A}} italic_Ο‰ start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT ∈ italic_E start_POSTSUBSCRIPT fraktur_A end_POSTSUBSCRIPT induced by the two-point operator s ∈ β„’ ⁒ ( π”₯ ) 𝑠 β„’ π”₯ s\in{\mathcal{L}}({{\mathfrak{h}}}) italic_s ∈ caligraphic_L ( fraktur_h ) is called translation invariant if

[ s , u ] = 0 , 𝑠 𝑒 0 \displaystyle[s,u]=0, [ italic_s , italic_u ] = 0 , (33)

where u ∈ β„’ ⁒ ( π”₯ ) 𝑒 β„’ π”₯ u\in{\mathcal{L}}({{\mathfrak{h}}}) italic_u ∈ caligraphic_L ( fraktur_h ) is the right translation from ( 11 ).


Definition 6 .

For any coprime pair ( m , n ) π‘š 𝑛 (m,n) ( italic_m , italic_n ) with m > n π‘š 𝑛 m>n italic_m > italic_n , let:


Definition 2.2 .

We say that ΞΆ = ( Ξ· , ΞΎ ) ∈ π’ž ⁒ ( Z , W ) 𝜁 πœ‚ πœ‰ π’ž 𝑍 π‘Š \zeta=(\eta,\xi)\in\mathcal{C}(Z,W) italic_ΞΆ = ( italic_Ξ· , italic_ΞΎ ) ∈ caligraphic_C ( italic_Z , italic_W ) is a commuting pair if

Ξ· ∘ ΞΎ = ΞΎ ∘ Ξ· . πœ‚ πœ‰ πœ‰ πœ‚ \eta\circ\xi=\xi\circ\eta. italic_Ξ· ∘ italic_ΞΎ = italic_ΞΎ ∘ italic_Ξ· .