Definition 3.8 .

Let ฮท : ๐”ช โ†’ ๐”ค : ๐œ‚ โ†’ ๐”ช ๐”ค \eta\colon\mathfrak{m}\to\mathfrak{g} italic_ฮท : fraktur_m โ†’ fraktur_g and ฮผ : ๐”ซ โ†’ ๐”ค : ๐œ‡ โ†’ ๐”ซ ๐”ค \mu\colon\mathfrak{n}\to\mathfrak{g} italic_ฮผ : fraktur_n โ†’ fraktur_g be two Leibniz crossed modules in the previous setting. We define the non-abelian exterior product ๐”ช โ‹ ๐”ซ ๐”ช ๐”ซ \mathfrak{m}\curlywedge\mathfrak{n} fraktur_m โ‹ fraktur_n of ๐”ช ๐”ช \mathfrak{m} fraktur_m and ๐”ซ ๐”ซ \mathfrak{n} fraktur_n by

๐”ช โ‹ ๐”ซ = ๐”ช โ‹† ๐”ซ ๐”ช โข โ–ก โข ๐”ซ . ๐”ช ๐”ซ โ‹† ๐”ช ๐”ซ ๐”ช โ–ก ๐”ซ \mathfrak{m}\curlywedge\mathfrak{n}=\dfrac{\mathfrak{m}\star\mathfrak{n}}{% \mathfrak{m}\square\mathfrak{n}}. fraktur_m โ‹ fraktur_n = divide start_ARG fraktur_m โ‹† fraktur_n end_ARG start_ARG fraktur_m โ–ก fraktur_n end_ARG .

The cosets of m * n ๐‘š ๐‘› m*n italic_m * italic_n and n * m ๐‘› ๐‘š n*m italic_n * italic_m will be denoted by m โ‹ n ๐‘š ๐‘› m\curlywedge n italic_m โ‹ italic_n and n โ‹ m ๐‘› ๐‘š n\curlywedge m italic_n โ‹ italic_m , respectively.


Definition 2.49 .

Let ๐”พ ๐”พ \mathbb{G} blackboard_G be a groupoid. The Inertia groupoid I โข ( ๐”พ ) ๐ผ ๐”พ I(\mathbb{G}) italic_I ( blackboard_G ) of ๐”พ ๐”พ \mathbb{G} blackboard_G is defined as follows.

An object a ๐‘Ž a italic_a is an arrow in ๐”พ ๐”พ \mathbb{G} blackboard_G such that its source and target are equal. A morphism v ๐‘ฃ v italic_v joining two objects a ๐‘Ž a italic_a and b ๐‘ b italic_b is an arrow v ๐‘ฃ v italic_v in ๐”พ ๐”พ \mathbb{G} blackboard_G such that

v โˆ˜ a = b โˆ˜ v . ๐‘ฃ ๐‘Ž ๐‘ ๐‘ฃ v\circ a=b\circ v. italic_v โˆ˜ italic_a = italic_b โˆ˜ italic_v .

In other words, b ๐‘ b italic_b is the conjugate of a ๐‘Ž a italic_a by v ๐‘ฃ v italic_v , b = v โˆ˜ a โˆ˜ v - 1 ๐‘ ๐‘ฃ ๐‘Ž superscript ๐‘ฃ 1 b=v\circ a\circ v^{-1} italic_b = italic_v โˆ˜ italic_a โˆ˜ italic_v start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT .


The torsion Inertia groupoid I t โข o โข r โข s โข ( ๐”พ ) superscript ๐ผ ๐‘ก ๐‘œ ๐‘Ÿ ๐‘  ๐”พ I^{tors}(\mathbb{G}) italic_I start_POSTSUPERSCRIPT italic_t italic_o italic_r italic_s end_POSTSUPERSCRIPT ( blackboard_G ) of ๐”พ ๐”พ \mathbb{G} blackboard_G is a full subgroupoid of of I โข ( ๐”พ ) ๐ผ ๐”พ I(\mathbb{G}) italic_I ( blackboard_G ) with only objects of finite order.


Definition 4.1 .

An n ๐‘› n italic_n -dimensional standard static spacetime is a Lorentzian manifold ( X โˆ˜ , g ~ ) superscript ๐‘‹ ~ ๐‘” (X^{\circ},\tilde{g}) ( italic_X start_POSTSUPERSCRIPT โˆ˜ end_POSTSUPERSCRIPT , ~ start_ARG italic_g end_ARG ) of the form X โˆ˜ = โ„ ร— ฮฃ โˆ˜ superscript ๐‘‹ โ„ superscript ฮฃ X^{\circ}={\mathbb{R}}\times\Sigma^{\circ} italic_X start_POSTSUPERSCRIPT โˆ˜ end_POSTSUPERSCRIPT = blackboard_R ร— roman_ฮฃ start_POSTSUPERSCRIPT โˆ˜ end_POSTSUPERSCRIPT , with ฮฃ โˆ˜ superscript ฮฃ \Sigma^{\circ} roman_ฮฃ start_POSTSUPERSCRIPT โˆ˜ end_POSTSUPERSCRIPT a manifold of dimension n - 1 ๐‘› 1 n-1 italic_n - 1 , and such that the metric g ~ ~ ๐‘” \tilde{g} ~ start_ARG italic_g end_ARG is of the form

g ~ = ฮฒ โข d โข t 2 - ฯ€ * โข h ~ , ~ ๐‘” ๐›ฝ ๐‘‘ superscript ๐‘ก 2 superscript ๐œ‹ ~ โ„Ž \tilde{g}=\beta dt^{2}-\pi^{*}\tilde{h}, ~ start_ARG italic_g end_ARG = italic_ฮฒ italic_d italic_t start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - italic_ฯ€ start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT ~ start_ARG italic_h end_ARG ,

where the static time coordinate t : X โˆ˜ โ†’ โ„ : ๐‘ก โ†’ superscript ๐‘‹ โ„ t:X^{\circ}\to{\mathbb{R}} italic_t : italic_X start_POSTSUPERSCRIPT โˆ˜ end_POSTSUPERSCRIPT โ†’ blackboard_R is the canonical projection onto the first factor, ฯ€ : X โˆ˜ โ†’ ฮฃ โˆ˜ : ๐œ‹ โ†’ superscript ๐‘‹ superscript ฮฃ \pi:X^{\circ}\to\Sigma^{\circ} italic_ฯ€ : italic_X start_POSTSUPERSCRIPT โˆ˜ end_POSTSUPERSCRIPT โ†’ roman_ฮฃ start_POSTSUPERSCRIPT โˆ˜ end_POSTSUPERSCRIPT is the canonical projection onto the second factor, h ~ ~ โ„Ž \tilde{h} ~ start_ARG italic_h end_ARG is a Riemmanian metric on ฮฃ โˆ˜ superscript ฮฃ \Sigma^{\circ} roman_ฮฃ start_POSTSUPERSCRIPT โˆ˜ end_POSTSUPERSCRIPT , and ฮฒ โˆˆ C โˆž โข ( ฮฃ โˆ˜ ) ๐›ฝ superscript C superscript ฮฃ \beta\in\pazocal{C}^{\infty}(\Sigma^{\circ}) italic_ฮฒ โˆˆ roman_C start_POSTSUPERSCRIPT โˆž end_POSTSUPERSCRIPT ( roman_ฮฃ start_POSTSUPERSCRIPT โˆ˜ end_POSTSUPERSCRIPT ) satisfies ฮฒ > 0 ๐›ฝ 0 \beta>0 italic_ฮฒ > 0 .


Definition 3.21 .

For ฮณ โˆˆ C ยฏ โข ( ฮผ ) โข ( c 1 , c 2 ) ๐›พ ยฏ ๐ถ ๐œ‡ subscript ๐‘ 1 subscript ๐‘ 2 \gamma\in\overline{C}(\mu)(c_{1},c_{2}) italic_ฮณ โˆˆ ยฏ start_ARG italic_C end_ARG ( italic_ฮผ ) ( italic_c start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_c start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) and ฮด โˆˆ C ยฏ โข ( ฮผ ) โข ( c 2 , c 3 ) ๐›ฟ ยฏ ๐ถ ๐œ‡ subscript ๐‘ 2 subscript ๐‘ 3 \delta\in\overline{C}(\mu)(c_{2},c_{3}) italic_ฮด โˆˆ ยฏ start_ARG italic_C end_ARG ( italic_ฮผ ) ( italic_c start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , italic_c start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT ) , define ฮด โˆ˜ ฮณ โˆˆ C ยฏ โข ( ฮผ ) โข ( c 1 , c 3 ) ๐›ฟ ๐›พ ยฏ ๐ถ ๐œ‡ subscript ๐‘ 1 subscript ๐‘ 3 \delta\circ\gamma\in\overline{C}(\mu)(c_{1},c_{3}) italic_ฮด โˆ˜ italic_ฮณ โˆˆ ยฏ start_ARG italic_C end_ARG ( italic_ฮผ ) ( italic_c start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_c start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT ) by

ฮด โˆ˜ ฮณ = r โข ( ฮณ * ฮด ) . ๐›ฟ ๐›พ ๐‘Ÿ ๐›พ ๐›ฟ \delta\circ\gamma=r(\gamma*\delta). italic_ฮด โˆ˜ italic_ฮณ = italic_r ( italic_ฮณ * italic_ฮด ) .

Definition 2.9 .

A commutative automorphic Lie triple system ( T , [ a , b , c ] ) ๐‘‡ ๐‘Ž ๐‘ ๐‘ (T,[a,b,c]) ( italic_T , [ italic_a , italic_b , italic_c ] ) is a Lie triple system ( T , [ a , b , c ] ) ๐‘‡ ๐‘Ž ๐‘ ๐‘ (T,[a,b,c]) ( italic_T , [ italic_a , italic_b , italic_c ] ) that satisfies

[ [ a , b , c ] , a โ€ฒ , b โ€ฒ ] = [ [ a , a โ€ฒ , b โ€ฒ ] , b , c ] + [ a , [ b , a โ€ฒ , b โ€ฒ ] , c ] + [ a , b , [ c , a โ€ฒ , b โ€ฒ ] ] ๐‘Ž ๐‘ ๐‘ superscript ๐‘Ž โ€ฒ superscript ๐‘ โ€ฒ ๐‘Ž superscript ๐‘Ž โ€ฒ superscript ๐‘ โ€ฒ ๐‘ ๐‘ ๐‘Ž ๐‘ superscript ๐‘Ž โ€ฒ superscript ๐‘ โ€ฒ ๐‘ ๐‘Ž ๐‘ ๐‘ superscript ๐‘Ž โ€ฒ superscript ๐‘ โ€ฒ [[a,b,c],a^{\prime},b^{\prime}]=[[a,a^{\prime},b^{\prime}],b,c]+[a,[b,a^{% \prime},b^{\prime}],c]+[a,b,[c,a^{\prime},b^{\prime}]] [ [ italic_a , italic_b , italic_c ] , italic_a start_POSTSUPERSCRIPT โ€ฒ end_POSTSUPERSCRIPT , italic_b start_POSTSUPERSCRIPT โ€ฒ end_POSTSUPERSCRIPT ] = [ [ italic_a , italic_a start_POSTSUPERSCRIPT โ€ฒ end_POSTSUPERSCRIPT , italic_b start_POSTSUPERSCRIPT โ€ฒ end_POSTSUPERSCRIPT ] , italic_b , italic_c ] + [ italic_a , [ italic_b , italic_a start_POSTSUPERSCRIPT โ€ฒ end_POSTSUPERSCRIPT , italic_b start_POSTSUPERSCRIPT โ€ฒ end_POSTSUPERSCRIPT ] , italic_c ] + [ italic_a , italic_b , [ italic_c , italic_a start_POSTSUPERSCRIPT โ€ฒ end_POSTSUPERSCRIPT , italic_b start_POSTSUPERSCRIPT โ€ฒ end_POSTSUPERSCRIPT ] ]

for any a , b , c , a โ€ฒ , b โ€ฒ โˆˆ T ๐‘Ž ๐‘ ๐‘ superscript ๐‘Ž โ€ฒ superscript ๐‘ โ€ฒ ๐‘‡ a,b,c,a^{\prime},b^{\prime}\in T italic_a , italic_b , italic_c , italic_a start_POSTSUPERSCRIPT โ€ฒ end_POSTSUPERSCRIPT , italic_b start_POSTSUPERSCRIPT โ€ฒ end_POSTSUPERSCRIPT โˆˆ italic_T .


Definition 5.10 .

A Manin triple ( ๐”ก , ๐”ค , ๐”ฅ ) ๐”ก ๐”ค ๐”ฅ (\mathfrak{d},\mathfrak{g},\mathfrak{h}) ( fraktur_d , fraktur_g , fraktur_h ) is a metrized Lie algebra ๐”ก ๐”ก \mathfrak{d} fraktur_d , together with two Lagrangian Lie subalgebra ๐”ค , ๐”ฅ ๐”ค ๐”ฅ \mathfrak{g},\ \mathfrak{h} fraktur_g , fraktur_h of ๐”ก ๐”ก \mathfrak{d} fraktur_d such that

๐”ก = ๐”ค โŠ• ๐”ฅ ๐”ก direct-sum ๐”ค ๐”ฅ \mathfrak{d}=\mathfrak{g}\oplus\mathfrak{h} fraktur_d = fraktur_g โŠ• fraktur_h

as a vector space. Let G ๐บ G italic_G be a Lie group integrating ๐”ค ๐”ค \mathfrak{g} fraktur_g . Given an extension of the adjoint action g โ†ฆ Ad g maps-to ๐‘” subscript Ad ๐‘” g\mapsto\operatorname{Ad}_{g} italic_g โ†ฆ roman_Ad start_POSTSUBSCRIPT italic_g end_POSTSUBSCRIPT of G ๐บ G italic_G on ๐”ค ๐”ค \mathfrak{g} fraktur_g to an action by Lie algebra automorphisms of ๐”ก ๐”ก \mathfrak{d} fraktur_d preserving the metric, with infinitesimal action the given adjoint action ad ad \operatorname{ad} roman_ad of ๐”ค โŠ† ๐”ก ๐”ค ๐”ก \mathfrak{g}\subseteq\mathfrak{d} fraktur_g โŠ† fraktur_d , then ( ๐”ก , ๐”ค , ๐”ฅ ) ๐”ก ๐”ค ๐”ฅ (\mathfrak{d},\mathfrak{g},\mathfrak{h}) ( fraktur_d , fraktur_g , fraktur_h ) is called a G ๐บ G italic_G -equivariant Manin triple .


Definition 1 .

[ 17 ] Let L = ๐”ฝ q ๐ฟ subscript ๐”ฝ ๐‘ž L=\mathbb{F}_{q} italic_L = blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT , with q = p n ๐‘ž superscript ๐‘ ๐‘› q=p^{n} italic_q = italic_p start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT for positive integer n ๐‘› n italic_n . A function
f : L โ†’ L : ๐‘“ โ†’ ๐ฟ ๐ฟ f:L\rightarrow L italic_f : italic_L โ†’ italic_L is said to be almost perfect nonlinear (APN) on L ๐ฟ L italic_L if for all a , b โˆˆ L ๐‘Ž ๐‘ ๐ฟ a,b\in L italic_a , italic_b โˆˆ italic_L , a โ‰  0 ๐‘Ž 0 a\neq 0 italic_a โ‰  0 , the following equation

f โข ( x + a ) - f โข ( x ) = b ๐‘“ ๐‘ฅ ๐‘Ž ๐‘“ ๐‘ฅ ๐‘ f(x+a)-f(x)=b italic_f ( italic_x + italic_a ) - italic_f ( italic_x ) = italic_b (1)

has at most 2 solutions.


Definition 3 .
{ [ n k ] = [ n - 1 k ] + ( n k ) โข [ n - 1 k - 1 ] [ n 0 ] = 1 , [ n n ] = 1 cases absent FRACOP ๐‘› ๐‘˜ FRACOP ๐‘› 1 ๐‘˜ binomial ๐‘› ๐‘˜ FRACOP ๐‘› 1 ๐‘˜ 1 absent ๐‘œ๐‘กโ„Ž๐‘’๐‘Ÿ๐‘ค๐‘–๐‘ ๐‘’ absent formulae-sequence FRACOP ๐‘› 0 1 FRACOP ๐‘› ๐‘› 1 \begin{cases}&\displaystyle{n\brack k}=\displaystyle{n-1\brack k}+{n\choose k}% {n-1\brack k-1}\\ \\ &\displaystyle{n\brack 0}=1,\ {n\brack n}=1\end{cases} { start_ROW start_CELL end_CELL start_CELL [ FRACOP start_ARG italic_n end_ARG start_ARG italic_k end_ARG ] = [ FRACOP start_ARG italic_n - 1 end_ARG start_ARG italic_k end_ARG ] + ( binomial start_ARG italic_n end_ARG start_ARG italic_k end_ARG ) [ FRACOP start_ARG italic_n - 1 end_ARG start_ARG italic_k - 1 end_ARG ] end_CELL end_ROW start_ROW start_CELL end_CELL start_CELL end_CELL end_ROW start_ROW start_CELL end_CELL start_CELL [ FRACOP start_ARG italic_n end_ARG start_ARG 0 end_ARG ] = 1 , [ FRACOP start_ARG italic_n end_ARG start_ARG italic_n end_ARG ] = 1 end_CELL end_ROW

Definition 7.5 .

We define an action of K F / E subscript ๐พ ๐น ๐ธ K_{F/E} italic_K start_POSTSUBSCRIPT italic_F / italic_E end_POSTSUBSCRIPT on H * โข ( E ) \ H * โข ( ๐€ E , f ) / U * normal-\ superscript ๐ป ๐ธ superscript ๐ป subscript ๐€ ๐ธ normal-f superscript ๐‘ˆ H^{*}(E)\backslash H^{*}(\mathbf{A}_{E,\mathrm{f}})/U^{*} italic_H start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT ( italic_E ) \ italic_H start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT ( bold_A start_POSTSUBSCRIPT italic_E , roman_f end_POSTSUBSCRIPT ) / italic_U start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT as follows. Given a โˆˆ F ร— + ๐‘Ž superscript ๐น absent a\in F^{\times+} italic_a โˆˆ italic_F start_POSTSUPERSCRIPT ร— + end_POSTSUPERSCRIPT representing a class in K F / E subscript ๐พ ๐น ๐ธ K_{F/E} italic_K start_POSTSUBSCRIPT italic_F / italic_E end_POSTSUBSCRIPT , there exists ฮณ โˆˆ H โข ( E ) ๐›พ ๐ป ๐ธ \gamma\in H(E) italic_ฮณ โˆˆ italic_H ( italic_E ) such that nrd โก ( ฮณ ) = a normal-nrd ๐›พ ๐‘Ž \operatorname{nrd}(\gamma)=a roman_nrd ( italic_ฮณ ) = italic_a , and u โˆˆ U ๐‘ข ๐‘ˆ u\in U italic_u โˆˆ italic_U such that a โข nrd โก ( u ) โˆˆ ๐€ E , f ร— โŠ‚ ๐€ F , f ร— ๐‘Ž normal-nrd ๐‘ข superscript subscript ๐€ ๐ธ normal-f superscript subscript ๐€ ๐น normal-f a\operatorname{nrd}(u)\in\mathbf{A}_{E,\mathrm{f}}^{\times}\subset\mathbf{A}_{% F,\mathrm{f}}^{\times} italic_a roman_nrd ( italic_u ) โˆˆ bold_A start_POSTSUBSCRIPT italic_E , roman_f end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ร— end_POSTSUPERSCRIPT โŠ‚ bold_A start_POSTSUBSCRIPT italic_F , roman_f end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ร— end_POSTSUPERSCRIPT . Then we define the action by

a โ‹… [ x ] = [ ฮณ โข x โข u ] , โ‹… ๐‘Ž delimited-[] ๐‘ฅ delimited-[] ๐›พ ๐‘ฅ ๐‘ข a\cdot[x]=[\gamma xu], italic_a โ‹… [ italic_x ] = [ italic_ฮณ italic_x italic_u ] ,

which clearly is independent of the choice of ฮณ ๐›พ \gamma italic_ฮณ and u ๐‘ข u italic_u , and preserves the fibres of ฯˆ ๐œ“ \psi italic_ฯˆ .


Definition 1

A control system ฮฃ = ( X , U , W , ๐’ฐ , ๐’ฒ , f ) normal-ฮฃ ๐‘‹ ๐‘ˆ ๐‘Š ๐’ฐ ๐’ฒ ๐‘“ \Sigma=(X,U,W,\mathcal{U},\mathcal{W},f) roman_ฮฃ = ( italic_X , italic_U , italic_W , caligraphic_U , caligraphic_W , italic_f ) consists of a state space X ๐‘‹ X italic_X , an input space U ๐‘ˆ U italic_U and a disturbance space W ๐‘Š W italic_W where X โŠ† n ๐‘‹ ๐‘› X\subseteq\real{n} italic_X โŠ† italic_n , U โŠ† m ๐‘ˆ ๐‘š U\subseteq\real{m} italic_U โŠ† italic_m and W โŠ† p ๐‘Š ๐‘ W\subseteq\real{p} italic_W โŠ† italic_p are compact subsets of normed vector spaces (of appropriate dimensions) containing the origins, sets ๐’ฐ ๐’ฐ \mathcal{U} caligraphic_U and ๐’ฒ ๐’ฒ \mathcal{W} caligraphic_W , of input and disturbance signals consisting of measurable essentially bounded functions ฮผ : โ†’ โ‰ฅ 0 U fragments ฮผ normal-: subscript normal-โ†’ absent 0 U {\mu}:{{\real{}_{\geq 0}}}\rightarrow{U} italic_ฮผ : start_FLOATSUBSCRIPT โ‰ฅ 0 end_FLOATSUBSCRIPT โ†’ italic_U and ฮฝ : โ†’ โ‰ฅ 0 W fragments ฮฝ normal-: subscript normal-โ†’ absent 0 W {\nu}:{{\real{}_{\geq 0}}}\rightarrow{W} italic_ฮฝ : start_FLOATSUBSCRIPT โ‰ฅ 0 end_FLOATSUBSCRIPT โ†’ italic_W , respectively, and a continuous state transition function f : X ร— U ร— W โ†’ X normal-: ๐‘“ normal-โ†’ ๐‘‹ ๐‘ˆ ๐‘Š ๐‘‹ {f}:{X\times U\times W}\rightarrow{X} italic_f : italic_X ร— italic_U ร— italic_W โ†’ italic_X satisfying the following Lipschitz assumption: there exists a constant L > 0 ๐ฟ 0 L>0 italic_L > 0 such that โˆฅ f โข ( x , u , w ) - f โข ( y , u , w ) โˆฅ โ‰ค L โข โˆฅ x - y โˆฅ norm ๐‘“ ๐‘ฅ ๐‘ข ๐‘ค ๐‘“ ๐‘ฆ ๐‘ข ๐‘ค ๐ฟ norm ๐‘ฅ ๐‘ฆ \|\!~{}f(x,u,w)-f(y,u,w)~{}\!\|\leq L\|\!~{}x-y~{}\!\| โˆฅ italic_f ( italic_x , italic_u , italic_w ) - italic_f ( italic_y , italic_u , italic_w ) โˆฅ โ‰ค italic_L โˆฅ italic_x - italic_y โˆฅ for all x , y โˆˆ X ๐‘ฅ ๐‘ฆ ๐‘‹ x,y\in X italic_x , italic_y โˆˆ italic_X , u โˆˆ U ๐‘ข ๐‘ˆ u\in U italic_u โˆˆ italic_U , and w โˆˆ W ๐‘ค ๐‘Š w\in W italic_w โˆˆ italic_W , where โˆฅ โ‹… โˆฅ fragments parallel-to normal-โ‹… parallel-to \|\!~{}\cdot~{}\!\| โˆฅ โ‹… โˆฅ represents a norm.

A trajectory ฮพ : ( a , b ) โ†’ โ„ n normal-: ๐œ‰ normal-โ†’ ๐‘Ž ๐‘ superscript โ„ ๐‘› {\xi}:{(a,b)}\rightarrow{\mathbb{R}^{n}} italic_ฮพ : ( italic_a , italic_b ) โ†’ blackboard_R start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT associated with the control system ฮฃ normal-ฮฃ \Sigma{} roman_ฮฃ and signals ฮผ โˆˆ ๐’ฐ ๐œ‡ ๐’ฐ \mu\in\mathcal{U} italic_ฮผ โˆˆ caligraphic_U and ฮฝ โˆˆ ๐’ฒ ๐œˆ ๐’ฒ \nu\in\mathcal{W} italic_ฮฝ โˆˆ caligraphic_W is an absolutely continuous curve satisfying:

ฮพ ห™ โข ( t ) = f โข ( ฮพ โข ( t ) , ฮผ โข ( t ) , ฮฝ โข ( t ) ) ห™ ๐œ‰ ๐‘ก ๐‘“ ๐œ‰ ๐‘ก ๐œ‡ ๐‘ก ๐œˆ ๐‘ก \dot{\xi}(t)=f(\xi(t),\mu(t),\nu(t)) ห™ start_ARG italic_ฮพ end_ARG ( italic_t ) = italic_f ( italic_ฮพ ( italic_t ) , italic_ฮผ ( italic_t ) , italic_ฮฝ ( italic_t ) ) (1)

for almost all t โˆˆ ( a , b ) ๐‘ก ๐‘Ž ๐‘ t\in(a,b) italic_t โˆˆ ( italic_a , italic_b ) . Although we define trajectories over open intervals, we talk about trajectories ฮพ : [ 0 , ฯ„ ] โ†’ X normal-: ๐œ‰ normal-โ†’ 0 ๐œ ๐‘‹ \xi:[0,\tau]\rightarrow X italic_ฮพ : [ 0 , italic_ฯ„ ] โ†’ italic_X for ฯ„ โˆˆ > 0 fragments ฯ„ absent 0 \tau\in\real{}_{>0} italic_ฯ„ โˆˆ start_FLOATSUBSCRIPT > 0 end_FLOATSUBSCRIPT , with the understanding that ฮพ ๐œ‰ \xi italic_ฮพ is the restriction to [ 0 , ฯ„ ] 0 ๐œ [0,\tau] [ 0 , italic_ฯ„ ] of some trajectory defined on an open interval containing [ 0 , ฯ„ ] 0 ๐œ [0,\tau] [ 0 , italic_ฯ„ ] . We write ฮพ x โข ฮผ โข ฮฝ โข ( t ) subscript ๐œ‰ ๐‘ฅ ๐œ‡ ๐œˆ ๐‘ก \xi_{x\mu\nu}(t) italic_ฮพ start_POSTSUBSCRIPT italic_x italic_ฮผ italic_ฮฝ end_POSTSUBSCRIPT ( italic_t ) for the state reached by the trajectory ฮพ ๐œ‰ \xi italic_ฮพ starting from the initial condition x ๐‘ฅ x italic_x and with input and disturbance signals ฮผ ๐œ‡ \mu italic_ฮผ and ฮฝ ๐œˆ \nu italic_ฮฝ , respectively.


Definition 1

A Smale space ( X , ฯ† ) ๐‘‹ ๐œ‘ (X,\varphi) ( italic_X , italic_ฯ† ) consists of a compact metric space ( X , d ) ๐‘‹ ๐‘‘ (X,d) ( italic_X , italic_d ) and a homeomorphism ฯ† : X โ†’ X : ๐œ‘ โ†’ ๐‘‹ ๐‘‹ \varphi:X\to X italic_ฯ† : italic_X โ†’ italic_X such that there exist constants ฯต X > 0 , 0 < ฮป < 1 formulae-sequence subscript italic-ฯต ๐‘‹ 0 0 ๐œ† 1 \epsilon_{X}>0,0<\lambda<1 italic_ฯต start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT > 0 , 0 < italic_ฮป < 1 and a continuous partially defined map:

{ ( x , y ) โˆˆ X ร— X โˆฃ d โข ( x , y ) โ‰ค ฯต X } โ†ฆ [ x , y ] โˆˆ X maps-to conditional-set ๐‘ฅ ๐‘ฆ ๐‘‹ ๐‘‹ ๐‘‘ ๐‘ฅ ๐‘ฆ subscript italic-ฯต ๐‘‹ ๐‘ฅ ๐‘ฆ ๐‘‹ \{(x,y)\in X\times X\mid d(x,y)\leq\epsilon_{X}\}\mapsto[x,y]\in X { ( italic_x , italic_y ) โˆˆ italic_X ร— italic_X โˆฃ italic_d ( italic_x , italic_y ) โ‰ค italic_ฯต start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT } โ†ฆ [ italic_x , italic_y ] โˆˆ italic_X

satisfying the following axioms:

where in these axioms, x ๐‘ฅ x italic_x , y ๐‘ฆ y italic_y , and z ๐‘ง z italic_z are in X ๐‘‹ X italic_X and in each axiom both sides are assumed to be well-defined. In addition, ( X , ฯ† ) ๐‘‹ ๐œ‘ (X,\varphi) ( italic_X , italic_ฯ† ) is required to satisfy


Definition 3.1 .

Let G ๐บ G italic_G be a countable group and X ๐‘‹ X italic_X a Polish metric space. Say that two homomorphisms f , g : G โ†’ Iso โข ( X ) : ๐‘“ ๐‘” โ†’ ๐บ Iso ๐‘‹ f,g:G\rightarrow\mathrm{Iso}(X) italic_f , italic_g : italic_G โ†’ roman_Iso ( italic_X ) are weakly equivalent if there exist an autoisometry ฯ• : X โ†’ X : italic-ฯ• โ†’ ๐‘‹ ๐‘‹ \phi:X\rightarrow X italic_ฯ• : italic_X โ†’ italic_X and an automorphism ฯˆ : G โ†’ G : ๐œ“ โ†’ ๐บ ๐บ \psi:G\rightarrow G italic_ฯˆ : italic_G โ†’ italic_G such that for all x โˆˆ X ๐‘ฅ ๐‘‹ x\in X italic_x โˆˆ italic_X and v โˆˆ G ๐‘ฃ ๐บ v\in G italic_v โˆˆ italic_G we have

f โข ( v ) โข x = ฯ• - 1 โข g โข ( ฯˆ โข ( v ) ) โข ฯ• โข x . ๐‘“ ๐‘ฃ ๐‘ฅ superscript italic-ฯ• 1 ๐‘” ๐œ“ ๐‘ฃ italic-ฯ• ๐‘ฅ f(v)x=\phi^{-1}g(\psi(v))\phi x. italic_f ( italic_v ) italic_x = italic_ฯ• start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT italic_g ( italic_ฯˆ ( italic_v ) ) italic_ฯ• italic_x .

Moreover, we say that an element f โˆˆ Act G โข ( X ) ๐‘“ subscript Act ๐บ ๐‘‹ f\in\mathrm{Act}_{G}(X) italic_f โˆˆ roman_Act start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT ( italic_X ) is weakly generic if it has a comeager equivalence class in the weak equivalence.


Definition 4.9 .

Let ๐’ž ๐’ž \mathcal{C} caligraphic_C be a cooperad and ๐’ซ ๐’ซ \mathcal{P} caligraphic_P be an operad, then we define a operad structure on the space of linear maps H โข o โข m โข ( ๐’ž , ๐’ซ ) ๐ป ๐‘œ ๐‘š ๐’ž ๐’ซ Hom(\mathcal{C},\mathcal{P}) italic_H italic_o italic_m ( caligraphic_C , caligraphic_P ) as follows.

The arity n ๐‘› n italic_n part of the convolution operad is defined as the space H โข o โข m ๐•‚ โข ( ๐’ž โข ( n ) , ๐’ซ โข ( n ) ) ๐ป ๐‘œ subscript ๐‘š ๐•‚ ๐’ž ๐‘› ๐’ซ ๐‘› Hom_{\mathbb{K}}(\mathcal{C}(n),\mathcal{P}(n)) italic_H italic_o italic_m start_POSTSUBSCRIPT blackboard_K end_POSTSUBSCRIPT ( caligraphic_C ( italic_n ) , caligraphic_P ( italic_n ) ) . The symmetric group action on
H โข o โข m ๐•‚ โข ( ๐’ž โข ( n ) , ๐’ซ โข ( n ) ) ๐ป ๐‘œ subscript ๐‘š ๐•‚ ๐’ž ๐‘› ๐’ซ ๐‘› Hom_{\mathbb{K}}(\mathcal{C}(n),\mathcal{P}(n)) italic_H italic_o italic_m start_POSTSUBSCRIPT blackboard_K end_POSTSUBSCRIPT ( caligraphic_C ( italic_n ) , caligraphic_P ( italic_n ) ) is defined by

f ฯƒ โข ( x ) = ฯƒ โข ( f โข ( x ฯƒ - 1 ) ) . superscript ๐‘“ ๐œŽ ๐‘ฅ ๐œŽ ๐‘“ superscript ๐‘ฅ superscript ๐œŽ 1 f^{\sigma}(x)=\sigma(f(x^{\sigma^{-1}})). italic_f start_POSTSUPERSCRIPT italic_ฯƒ end_POSTSUPERSCRIPT ( italic_x ) = italic_ฯƒ ( italic_f ( italic_x start_POSTSUPERSCRIPT italic_ฯƒ start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT end_POSTSUPERSCRIPT ) ) .

Definition 2.1 .

( [ 7 , Definition 2.1] ) An f ๐‘“ f italic_f -quandle is a set X ๐‘‹ X italic_X equipped with a binary operation * : X ร— X โ†’ X fragments : X X โ†’ X *:X\times X\to X * : italic_X ร— italic_X โ†’ italic_X and a map f : X โ†’ X : ๐‘“ โ†’ ๐‘‹ ๐‘‹ f:X\to X italic_f : italic_X โ†’ italic_X satisfying the following conditions:

For each x โˆˆ X ๐‘ฅ ๐‘‹ x\in X italic_x โˆˆ italic_X , the identity

(2.1) x * x = f โข ( x ) ๐‘ฅ ๐‘ฅ ๐‘“ ๐‘ฅ x*x=f(x) italic_x * italic_x = italic_f ( italic_x )

holds. For any x , y โˆˆ X ๐‘ฅ ๐‘ฆ ๐‘‹ x,y\in X italic_x , italic_y โˆˆ italic_X , there exists a unique z โˆˆ X ๐‘ง ๐‘‹ z\in X italic_z โˆˆ italic_X such that

(2.2) z * y = f โข ( x ) . ๐‘ง ๐‘ฆ ๐‘“ ๐‘ฅ z*y=f(x). italic_z * italic_y = italic_f ( italic_x ) .
(2.3) ( x * y ) * f โข ( z ) = ( x * z ) * ( y * z ) ๐‘ฅ ๐‘ฆ ๐‘“ ๐‘ง ๐‘ฅ ๐‘ง ๐‘ฆ ๐‘ง (x*y)*f(z)=(x*z)*(y*z) ( italic_x * italic_y ) * italic_f ( italic_z ) = ( italic_x * italic_z ) * ( italic_y * italic_z )

Definition 2

(DC functions [21]) Let ๐’ž ๐’ž \mathcal{C} caligraphic_C be a convex subset of โ„› l superscript โ„› ๐‘™ \mathcal{R}^{l} caligraphic_R start_POSTSUPERSCRIPT italic_l end_POSTSUPERSCRIPT . A real-valued function f : ๐’ž โ†ฆ โ„› : ๐‘“ maps-to ๐’ž โ„› f:\mathcal{C}\mapsto\mathcal{R} italic_f : caligraphic_C โ†ฆ caligraphic_R is called DC on ๐’ž ๐’ž \mathcal{C} caligraphic_C , if there exist two convex functions g , h : ๐’ž โ†ฆ โ„› : ๐‘” โ„Ž maps-to ๐’ž โ„› g,h:\mathcal{C}\mapsto\mathcal{R} italic_g , italic_h : caligraphic_C โ†ฆ caligraphic_R such that f ๐‘“ f italic_f can be expressed in the form

f โข ( x ) = g โข ( x ) - h โข ( x ) . ๐‘“ ๐‘ฅ ๐‘” ๐‘ฅ โ„Ž ๐‘ฅ f(x)=g(x)-h(x). italic_f ( italic_x ) = italic_g ( italic_x ) - italic_h ( italic_x ) . (44)

If ๐’ž = โ„› l ๐’ž superscript โ„› ๐‘™ \mathcal{C}=\mathcal{R}^{l} caligraphic_C = caligraphic_R start_POSTSUPERSCRIPT italic_l end_POSTSUPERSCRIPT , then f ๐‘“ f italic_f is simply called a DC function. Each representation of the form (44) is said to be a DC decomposition of f ๐‘“ f italic_f .


Definition 3.1 .

The product of elements ( w , p , a ) , ( v , q , b ) โˆˆ ๐‚ ๐‘ค ๐‘ ๐‘Ž ๐‘ฃ ๐‘ž ๐‘ ๐‚ (w,p,a),(v,q,b)\in\mathbf{C} ( italic_w , italic_p , italic_a ) , ( italic_v , italic_q , italic_b ) โˆˆ bold_C is

( w , p , a ) โˆ™ ( v , q , b ) = ( u , p + q + a โข b , a + b ) w โข h โข e โข r โข e โˆ™ ๐‘ค ๐‘ ๐‘Ž ๐‘ฃ ๐‘ž ๐‘ ๐‘ข ๐‘ ๐‘ž ๐‘Ž ๐‘ ๐‘Ž ๐‘ ๐‘ค โ„Ž ๐‘’ ๐‘Ÿ ๐‘’ (w,p,a)\centerdot(v,q,b)=(u,p+q+ab,a+b)\ \ \ where ( italic_w , italic_p , italic_a ) โˆ™ ( italic_v , italic_q , italic_b ) = ( italic_u , italic_p + italic_q + italic_a italic_b , italic_a + italic_b ) italic_w italic_h italic_e italic_r italic_e
u = w + v + 1 2 โข [ p โˆช 1 q + ( p + q ) โˆช 1 ( a โข b ) + a โข ( a โˆช 1 b ) โข b ] + 1 4 โข A โข B 2 ๐‘ข ๐‘ค ๐‘ฃ 1 2 delimited-[] subscript 1 subscript 1 ๐‘ ๐‘ž ๐‘ ๐‘ž ๐‘Ž ๐‘ ๐‘Ž subscript 1 ๐‘Ž ๐‘ ๐‘ 1 4 ๐ด superscript ๐ต 2 u=w+v+\frac{1}{2}\Big{[}p\cup_{1}q+(p+q)\cup_{1}(ab)+a(a\cup_{1}b)b\Big{]}+% \frac{1}{4}AB^{2} italic_u = italic_w + italic_v + divide start_ARG 1 end_ARG start_ARG 2 end_ARG [ italic_p โˆช start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_q + ( italic_p + italic_q ) โˆช start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_a italic_b ) + italic_a ( italic_a โˆช start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_b ) italic_b ] + divide start_ARG 1 end_ARG start_ARG 4 end_ARG italic_A italic_B start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT

Here, ( 1 / 4 ) 1 4 (1/4) ( 1 / 4 ) means the coefficient map C * โข ( โ„ค ) โ†’ C * โข ( โ„ / โ„ค ) โ†’ superscript ๐ถ โ„ค superscript ๐ถ โ„ โ„ค C^{*}({\mathbb{Z}})\to C^{*}({\mathbb{R}}/{\mathbb{Z}}) italic_C start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT ( blackboard_Z ) โ†’ italic_C start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT ( blackboard_R / blackboard_Z ) defined by
1 โ†ฆ 1 / 4 โˆˆ โ„ / โ„ค maps-to 1 1 4 โ„ โ„ค 1\mapsto 1/4\in{\mathbb{R}}/{\mathbb{Z}} 1 โ†ฆ 1 / 4 โˆˆ blackboard_R / blackboard_Z .

Definition 3.9 .

The product of elements ( t , x ) , ( s , y ) โˆˆ ๐‚ โ€ฒ ๐‘ก ๐‘ฅ ๐‘  ๐‘ฆ superscript ๐‚ โ€ฒ (t,x),(s,y)\in\mathbf{C}^{\prime} ( italic_t , italic_x ) , ( italic_s , italic_y ) โˆˆ bold_C start_POSTSUPERSCRIPT โ€ฒ end_POSTSUPERSCRIPT is defined by

( t , x ) โˆ™ ( s , y ) = ( t + s + x โข d โข y , x + y ) โˆ™ ๐‘ก ๐‘ฅ ๐‘  ๐‘ฆ ๐‘ก ๐‘  ๐‘ฅ ๐‘‘ ๐‘ฆ ๐‘ฅ ๐‘ฆ (t,x)\centerdot(s,y)=(t+s+xdy,\ x+y) ( italic_t , italic_x ) โˆ™ ( italic_s , italic_y ) = ( italic_t + italic_s + italic_x italic_d italic_y , italic_x + italic_y )

Definition 2.4 .

An involution on a (complex) algebra ๐’œ ๐’œ \mathcal{A} caligraphic_A is a map * : ๐’œ โ†’ ๐’œ fragments : A โ†’ A *:\mathcal{A}\rightarrow\mathcal{A} * : caligraphic_A โ†’ caligraphic_A such that, for any a , b โˆˆ ๐’œ ๐‘Ž ๐‘ ๐’œ a,b\in\mathcal{A} italic_a , italic_b โˆˆ caligraphic_A and ฮผ , ฮฝ โˆˆ โ„‚ ๐œ‡ ๐œˆ โ„‚ \mu,\nu\in\mathds{C} italic_ฮผ , italic_ฮฝ โˆˆ blackboard_C :

Notice that this is, basically, an abstraction of the adjoint operation on โ„ฌ โข ( โ„‹ ) โ„ฌ โ„‹ \mathcal{B}(\mathcal{H}) caligraphic_B ( caligraphic_H ) .


Definition 4.2 .

(Mesh Layers in v ๐‘ฃ v italic_v - and v e subscript ๐‘ฃ ๐‘’ v_{e} italic_v start_POSTSUBSCRIPT italic_e end_POSTSUBSCRIPT -tetrahedra) Let T ( 0 ) = โ–ณ 4 โข x 0 โข x 1 โข x 2 โข x 3 โˆˆ ๐’ฏ 0 subscript ๐‘‡ 0 superscript โ–ณ 4 subscript ๐‘ฅ 0 subscript ๐‘ฅ 1 subscript ๐‘ฅ 2 subscript ๐‘ฅ 3 subscript ๐’ฏ 0 T_{(0)}=\triangle^{4}x_{0}x_{1}x_{2}x_{3}\in\mathcal{T}_{0} italic_T start_POSTSUBSCRIPT ( 0 ) end_POSTSUBSCRIPT = โ–ณ start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT italic_x start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT italic_x start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_x start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT italic_x start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT โˆˆ caligraphic_T start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT be either a v ๐‘ฃ v italic_v - or a v e subscript ๐‘ฃ ๐‘’ v_{e} italic_v start_POSTSUBSCRIPT italic_e end_POSTSUBSCRIPT -tetrahedron with x 0 โˆˆ ๐’ฑ subscript ๐‘ฅ 0 ๐’ฑ x_{0}\in\mathcal{V} italic_x start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT โˆˆ caligraphic_V or x 0 โˆˆ e โˆˆ โ„ฐ subscript ๐‘ฅ 0 ๐‘’ โ„ฐ x_{0}\in e\in\mathcal{E} italic_x start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT โˆˆ italic_e โˆˆ caligraphic_E . We use a local Cartesian coordinate system, such that x 0 subscript ๐‘ฅ 0 x_{0} italic_x start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT is the origin. For 1 โ‰ค i โ‰ค n 1 ๐‘– ๐‘› 1\leq i\leq n 1 โ‰ค italic_i โ‰ค italic_n , the i ๐‘– i italic_i th refinement on T ( 0 ) subscript ๐‘‡ 0 T_{(0)} italic_T start_POSTSUBSCRIPT ( 0 ) end_POSTSUBSCRIPT produces a small tetrahedron with x 0 subscript ๐‘ฅ 0 x_{0} italic_x start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT as a vertex and with one face, denoted by P v , i subscript ๐‘ƒ ๐‘ฃ ๐‘– P_{v,i} italic_P start_POSTSUBSCRIPT italic_v , italic_i end_POSTSUBSCRIPT , parallel to the face โ–ณ 3 โข x 1 โข x 2 โข x 3 superscript โ–ณ 3 subscript ๐‘ฅ 1 subscript ๐‘ฅ 2 subscript ๐‘ฅ 3 \triangle^{3}x_{1}x_{2}x_{3} โ–ณ start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT italic_x start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_x start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT italic_x start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT of T ( 0 ) subscript ๐‘‡ 0 T_{(0)} italic_T start_POSTSUBSCRIPT ( 0 ) end_POSTSUBSCRIPT . See Figure 1 for example.

Then, after n ๐‘› n italic_n refinements, we define the i ๐‘– i italic_i th mesh layer L v , i subscript ๐ฟ ๐‘ฃ ๐‘– L_{v,i} italic_L start_POSTSUBSCRIPT italic_v , italic_i end_POSTSUBSCRIPT of T ( 0 ) subscript ๐‘‡ 0 T_{(0)} italic_T start_POSTSUBSCRIPT ( 0 ) end_POSTSUBSCRIPT , 1 โ‰ค i < n 1 ๐‘– ๐‘› 1\leq i<n 1 โ‰ค italic_i < italic_n , as the region in T ( 0 ) subscript ๐‘‡ 0 T_{(0)} italic_T start_POSTSUBSCRIPT ( 0 ) end_POSTSUBSCRIPT between P v , i subscript ๐‘ƒ ๐‘ฃ ๐‘– P_{v,i} italic_P start_POSTSUBSCRIPT italic_v , italic_i end_POSTSUBSCRIPT and P v , i + 1 subscript ๐‘ƒ ๐‘ฃ ๐‘– 1 P_{v,i+1} italic_P start_POSTSUBSCRIPT italic_v , italic_i + 1 end_POSTSUBSCRIPT . We denote by L v , 0 subscript ๐ฟ ๐‘ฃ 0 L_{v,0} italic_L start_POSTSUBSCRIPT italic_v , 0 end_POSTSUBSCRIPT the region in T ( 0 ) subscript ๐‘‡ 0 T_{(0)} italic_T start_POSTSUBSCRIPT ( 0 ) end_POSTSUBSCRIPT between โ–ณ 3 โข x 1 โข x 2 โข x 3 superscript โ–ณ 3 subscript ๐‘ฅ 1 subscript ๐‘ฅ 2 subscript ๐‘ฅ 3 \triangle^{3}x_{1}x_{2}x_{3} โ–ณ start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT italic_x start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_x start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT italic_x start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT and P v , 1 subscript ๐‘ƒ ๐‘ฃ 1 P_{v,1} italic_P start_POSTSUBSCRIPT italic_v , 1 end_POSTSUBSCRIPT ; and let L v , n subscript ๐ฟ ๐‘ฃ ๐‘› L_{v,n} italic_L start_POSTSUBSCRIPT italic_v , italic_n end_POSTSUBSCRIPT be the small tetrahedron with x 0 subscript ๐‘ฅ 0 x_{0} italic_x start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT as a vertex that is bounded by P v , n subscript ๐‘ƒ ๐‘ฃ ๐‘› P_{v,n} italic_P start_POSTSUBSCRIPT italic_v , italic_n end_POSTSUBSCRIPT and three faces of T ( 0 ) subscript ๐‘‡ 0 T_{(0)} italic_T start_POSTSUBSCRIPT ( 0 ) end_POSTSUBSCRIPT . Since it is clear that x 0 subscript ๐‘ฅ 0 x_{0} italic_x start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT is the only point for the special refinement, we drop the sub-index โ„“ โ„“ \ell roman_โ„“ in the grading parameter ( 14 ). Namely, for such T ( 0 ) subscript ๐‘‡ 0 T_{(0)} italic_T start_POSTSUBSCRIPT ( 0 ) end_POSTSUBSCRIPT , we use

ฮบ = 2 - m / a ๐œ… superscript 2 ๐‘š ๐‘Ž \kappa=2^{-m/a} italic_ฮบ = 2 start_POSTSUPERSCRIPT - italic_m / italic_a end_POSTSUPERSCRIPT

to denote the grading parameter near x 0 subscript ๐‘ฅ 0 x_{0} italic_x start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( ฮบ = ฮบ e โข v ๐œ… subscript ๐œ… ๐‘’ ๐‘ฃ \kappa=\kappa_{ev} italic_ฮบ = italic_ฮบ start_POSTSUBSCRIPT italic_e italic_v end_POSTSUBSCRIPT if x 0 โˆˆ ๐’ฑ subscript ๐‘ฅ 0 ๐’ฑ x_{0}\in\mathcal{V} italic_x start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT โˆˆ caligraphic_V and ฮบ = ฮบ e ๐œ… subscript ๐œ… ๐‘’ \kappa=\kappa_{e} italic_ฮบ = italic_ฮบ start_POSTSUBSCRIPT italic_e end_POSTSUBSCRIPT if x 0 โˆˆ e โˆˆ โ„ฐ subscript ๐‘ฅ 0 ๐‘’ โ„ฐ x_{0}\in e\in\mathcal{E} italic_x start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT โˆˆ italic_e โˆˆ caligraphic_E ). Define the dilation matrix

(16) ๐ v , i := ( ฮบ - i 0 0 0 ฮบ - i 0 0 0 ฮบ - i ) . assign subscript ๐ ๐‘ฃ ๐‘– matrix superscript ๐œ… ๐‘– 0 0 0 superscript ๐œ… ๐‘– 0 0 0 superscript ๐œ… ๐‘– \displaystyle\mathbf{B}_{v,i}:=\begin{pmatrix}\kappa^{-i}&0&0\\ 0&\kappa^{-i}&0\\ 0&0&\kappa^{-i}\end{pmatrix}. bold_B start_POSTSUBSCRIPT italic_v , italic_i end_POSTSUBSCRIPT := ( start_ARG start_ROW start_CELL italic_ฮบ start_POSTSUPERSCRIPT - italic_i end_POSTSUPERSCRIPT end_CELL start_CELL 0 end_CELL start_CELL 0 end_CELL end_ROW start_ROW start_CELL 0 end_CELL start_CELL italic_ฮบ start_POSTSUPERSCRIPT - italic_i end_POSTSUPERSCRIPT end_CELL start_CELL 0 end_CELL end_ROW start_ROW start_CELL 0 end_CELL start_CELL 0 end_CELL start_CELL italic_ฮบ start_POSTSUPERSCRIPT - italic_i end_POSTSUPERSCRIPT end_CELL end_ROW end_ARG ) .

Then, by Algorithm 3.2 , ๐ v , i subscript ๐ ๐‘ฃ ๐‘– \mathbf{B}_{v,i} bold_B start_POSTSUBSCRIPT italic_v , italic_i end_POSTSUBSCRIPT maps L v , i subscript ๐ฟ ๐‘ฃ ๐‘– L_{v,i} italic_L start_POSTSUBSCRIPT italic_v , italic_i end_POSTSUBSCRIPT to L v , 0 subscript ๐ฟ ๐‘ฃ 0 L_{v,0} italic_L start_POSTSUBSCRIPT italic_v , 0 end_POSTSUBSCRIPT for 0 โ‰ค i < n 0 ๐‘– ๐‘› 0\leq i<n 0 โ‰ค italic_i < italic_n , and maps L v , n subscript ๐ฟ ๐‘ฃ ๐‘› L_{v,n} italic_L start_POSTSUBSCRIPT italic_v , italic_n end_POSTSUBSCRIPT to T ( 0 ) subscript ๐‘‡ 0 T_{(0)} italic_T start_POSTSUBSCRIPT ( 0 ) end_POSTSUBSCRIPT . We define the initial triangulation of L v , i subscript ๐ฟ ๐‘ฃ ๐‘– L_{v,i} italic_L start_POSTSUBSCRIPT italic_v , italic_i end_POSTSUBSCRIPT , 0 โ‰ค i < n 0 ๐‘– ๐‘› 0\leq i<n 0 โ‰ค italic_i < italic_n , to be the first decomposition of L v , i subscript ๐ฟ ๐‘ฃ ๐‘– L_{v,i} italic_L start_POSTSUBSCRIPT italic_v , italic_i end_POSTSUBSCRIPT into tetrahedra. Thus, the initial triangulation of L v , i subscript ๐ฟ ๐‘ฃ ๐‘– L_{v,i} italic_L start_POSTSUBSCRIPT italic_v , italic_i end_POSTSUBSCRIPT consists of those tetrahedra in ๐’ฏ i + 1 subscript ๐’ฏ ๐‘– 1 \mathcal{T}_{i+1} caligraphic_T start_POSTSUBSCRIPT italic_i + 1 end_POSTSUBSCRIPT that are contained in the layer L v , i subscript ๐ฟ ๐‘ฃ ๐‘– L_{v,i} italic_L start_POSTSUBSCRIPT italic_v , italic_i end_POSTSUBSCRIPT .


Definition 8 (reachable brackets) .

For any configuration c = โŸจ z , ฯƒ โˆฃ i โˆฃ j , t โŸฉ ๐‘ quantum-operator-product ๐‘ง ๐œŽ ๐‘– ๐‘— ๐‘ก c=\langle{{z},\;{\sigma\!\mid\!i\!\mid\!j},\;{t}}\rangle italic_c = โŸจ italic_z , italic_ฯƒ โˆฃ italic_i โˆฃ italic_j , italic_t โŸฉ , we define the set of reachable gold brackets (with respect to gold tree t G subscript ๐‘ก G t_{\mathrm{G}} italic_t start_POSTSUBSCRIPT roman_G end_POSTSUBSCRIPT ) as

๐‘Ÿ๐‘’๐‘Ž๐‘โ„Ž โข ( c ) = ๐‘™๐‘’๐‘“๐‘ก โข ( c ) โˆช ๐‘Ÿ๐‘–๐‘”โ„Ž๐‘ก โข ( c ) ๐‘Ÿ๐‘’๐‘Ž๐‘โ„Ž ๐‘ ๐‘™๐‘’๐‘“๐‘ก ๐‘ ๐‘Ÿ๐‘–๐‘”โ„Ž๐‘ก ๐‘ \mathit{reach}(c)=\mathit{left}(c)\cup\mathit{right}(c) italic_reach ( italic_c ) = italic_left ( italic_c ) โˆช italic_right ( italic_c )

where the left- and right-reachable brackets are

๐‘™๐‘’๐‘“๐‘ก โข ( c ) ๐‘™๐‘’๐‘“๐‘ก ๐‘ \displaystyle\mathit{left}(c) italic_left ( italic_c ) = { p X q โˆˆ t G โˆฃ ( i , j ) โ‰บ ( p , q ) , p โˆˆ ฯƒ โˆฃ i } fragments fragments subscript { ๐‘ subscript ๐‘‹ ๐‘ž subscript ๐‘ก G โˆฃ fragments ( i , j ) precedes fragments ( p , q ) , p ฯƒ โˆฃ i } \displaystyle\!=\!\{\!\ _{{p}}{{X}}_{{q}}\in t_{\mathrm{G}}\mid(i,j)\prec(p,q)% ,\,p\in\sigma\!\mid\!i\} = { start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT italic_X start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT โˆˆ italic_t start_POSTSUBSCRIPT roman_G end_POSTSUBSCRIPT โˆฃ ( italic_i , italic_j ) โ‰บ ( italic_p , italic_q ) , italic_p โˆˆ italic_ฯƒ โˆฃ italic_i }
๐‘Ÿ๐‘–๐‘”โ„Ž๐‘ก โข ( c ) ๐‘Ÿ๐‘–๐‘”โ„Ž๐‘ก ๐‘ \displaystyle\mathit{right}(c) italic_right ( italic_c ) = { p X q โˆˆ t G โˆฃ p โ‰ฅ j } fragments fragments subscript { ๐‘ subscript ๐‘‹ ๐‘ž subscript ๐‘ก G โˆฃ p j } \displaystyle\!=\!\{\!\ _{{p}}{{X}}_{{q}}\in t_{\mathrm{G}}\mid p\geq j\} = { start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT italic_X start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT โˆˆ italic_t start_POSTSUBSCRIPT roman_G end_POSTSUBSCRIPT โˆฃ italic_p โ‰ฅ italic_j }

for even z ๐‘ง z italic_z , with the โ‰บ precedes \prec โ‰บ replaced by โชฏ precedes-or-equals \preceq โชฏ for odd z ๐‘ง z italic_z .

Special case (initial): ๐‘Ÿ๐‘’๐‘Ž๐‘โ„Ž โข ( โŸจ 0 , [ 0 ] , โˆ… โŸฉ ) = t G ๐‘Ÿ๐‘’๐‘Ž๐‘โ„Ž 0 delimited-[] 0 subscript ๐‘ก G \mathit{reach}(\langle{{0},\;{[0]},\;{\emptyset}}\rangle)=t_{\mathrm{G}} italic_reach ( โŸจ 0 , [ 0 ] , โˆ… โŸฉ ) = italic_t start_POSTSUBSCRIPT roman_G end_POSTSUBSCRIPT .


Definition 4.1 (modal Heyting algebra, ๐Š๐ฎ๐ณ ๐Š๐ฎ๐ณ \mathbf{Kuz} bold_Kuz -algebra, ๐„ ๐„ \mathbf{E} bold_E -algebra) .

A โ–ก โ–ก \square โ–ก -enhanced Heyting algebra is a modal Heyting algebra if the following identities hold:

( a ) โ–ก โข ๐Ÿ = ๐Ÿ ( b ) โ–ก โข ( x โˆง y ) = โ–ก โข x โˆง โ–ก โข y . a โ–ก 1 1 b โ–ก ๐‘ฅ ๐‘ฆ โ–ก ๐‘ฅ โ–ก ๐‘ฆ \begin{array}[]{cl}(\text{a})&\square\mbox{$\mathbf{1}$}=\mbox{$\mathbf{1}$}\\ (\text{b})&\square(x\wedge y)=\square x\wedge\square y.\end{array} start_ARRAY start_ROW start_CELL ( a ) end_CELL start_CELL โ–ก bold_1 = bold_1 end_CELL end_ROW start_ROW start_CELL ( b ) end_CELL start_CELL โ–ก ( italic_x โˆง italic_y ) = โ–ก italic_x โˆง โ–ก italic_y . end_CELL end_ROW end_ARRAY

The latter algebra is a ๐Š๐ฎ๐ณ ๐Š๐ฎ๐ณ \mathbf{Kuz} bold_Kuz -algebra if in addition the next identity is valid:

( c ) โ–ก x โ‰ค y โˆจ ( y โ†’ x ) . c fragments โ–ก x y fragments ( y โ†’ x ) . \begin{array}[]{cl}\hskip-10.8405pt(\text{c})&\square x\leq y\vee(y\rightarrow x% ).\end{array} start_ARRAY start_ROW start_CELL ( c ) end_CELL start_CELL โ–ก italic_x โ‰ค italic_y โˆจ ( italic_y โ†’ italic_x ) . end_CELL end_ROW end_ARRAY

And the latter in turn is an ๐„ ๐„ \mathbf{E} bold_E -algebra if in addition to ( a ) - ( c ) a c (\text{a})-(\text{c}) ( a ) - ( c ) the following identity is true as well:

( d ) x โ‰ค โ–ก โข x . d ๐‘ฅ โ–ก ๐‘ฅ \begin{array}[]{cl}\hskip-57.816pt(\text{d})&x\leq\square x.\end{array} start_ARRAY start_ROW start_CELL ( d ) end_CELL start_CELL italic_x โ‰ค โ–ก italic_x . end_CELL end_ROW end_ARRAY

Definition 3.1

Let ๐”ฐ โข ๐”ฉ 2 ๐”ฐ subscript ๐”ฉ 2 \mathfrak{sl}_{2} fraktur_s fraktur_l start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT denote the Lie algebra over ๐•‚ ๐•‚ \mathbb{K} blackboard_K that has a basis h , e , f โ„Ž ๐‘’ ๐‘“ h,\,e,\,f italic_h , italic_e , italic_f and Lie bracket

[ h , e ] = 2 โข e , [ h , f ] = - 2 โข f , [ e , f ] = h . formulae-sequence โ„Ž ๐‘’ 2 ๐‘’ formulae-sequence โ„Ž ๐‘“ 2 ๐‘“ ๐‘’ ๐‘“ โ„Ž \displaystyle[h,e]=2e,\qquad[h,f]=-2f,\qquad[e,f]=h. [ italic_h , italic_e ] = 2 italic_e , [ italic_h , italic_f ] = - 2 italic_f , [ italic_e , italic_f ] = italic_h .