Definition 2.7 .

A function 𝒜 : ω ^ ω 𝒬 : 𝒜 superscript ^ 𝜔 𝜔 𝒬 \mathcal{A}\colon\hat{\omega}^{\omega}\to\mathcal{Q} caligraphic_A : ^ start_ARG italic_ω end_ARG start_POSTSUPERSCRIPT italic_ω end_POSTSUPERSCRIPT → caligraphic_Q is conciliatory if

( X , Y ω ^ ω ) [ X = 𝗉 Y 𝗉 𝒜 ( X ) = 𝒜 ( Y ) ] . fragments fragments ( for-all X , Y superscript ^ 𝜔 𝜔 ) fragments [ X superscript 𝗉 Y superscript 𝗉 A fragments ( X ) A fragments ( Y ) ] . (\forall X,Y\in{\hat{\omega}}^{\omega})\;[X{}^{{\sf p}}=Y{}^{{\sf p}}\;% \Longrightarrow\;\mathcal{A}(X)=\mathcal{A}(Y)]. ( ∀ italic_X , italic_Y ∈ ^ start_ARG italic_ω end_ARG start_POSTSUPERSCRIPT italic_ω end_POSTSUPERSCRIPT ) [ italic_X start_FLOATSUPERSCRIPT sansserif_p end_FLOATSUPERSCRIPT = italic_Y start_FLOATSUPERSCRIPT sansserif_p end_FLOATSUPERSCRIPT ⟹ caligraphic_A ( italic_X ) = caligraphic_A ( italic_Y ) ] .

A function Ψ : ω ^ ω ω ^ ω : Ψ superscript ^ 𝜔 𝜔 superscript ^ 𝜔 𝜔 \Psi\colon\hat{\omega}^{\omega}\to\hat{\omega}^{\omega} roman_Ψ : ^ start_ARG italic_ω end_ARG start_POSTSUPERSCRIPT italic_ω end_POSTSUPERSCRIPT → ^ start_ARG italic_ω end_ARG start_POSTSUPERSCRIPT italic_ω end_POSTSUPERSCRIPT is conciliatory if

( X , Y ω ^ ω ) [ X = 𝗉 Y 𝗉 Ψ ( X ) = 𝗉 Ψ ( Y ) ] 𝗉 . fragments fragments ( for-all X , Y superscript ^ 𝜔 𝜔 ) fragments [ X superscript 𝗉 Y superscript 𝗉 Ψ fragments ( X ) superscript 𝗉 Ψ fragments ( Y ) superscript ] 𝗉 . (\forall X,Y\in{\hat{\omega}}^{\omega})\;[X{}^{{\sf p}}=Y{}^{{\sf p}}\;% \Longrightarrow\;\Psi(X){}^{{\sf p}}=\Psi(Y){}^{{\sf p}}]. ( ∀ italic_X , italic_Y ∈ ^ start_ARG italic_ω end_ARG start_POSTSUPERSCRIPT italic_ω end_POSTSUPERSCRIPT ) [ italic_X start_FLOATSUPERSCRIPT sansserif_p end_FLOATSUPERSCRIPT = italic_Y start_FLOATSUPERSCRIPT sansserif_p end_FLOATSUPERSCRIPT ⟹ roman_Ψ ( italic_X ) start_FLOATSUPERSCRIPT sansserif_p end_FLOATSUPERSCRIPT = roman_Ψ ( italic_Y ) start_FLOATSUPERSCRIPT sansserif_p end_FLOATSUPERSCRIPT ] .

Definition 1

We call the vertex operator 𝒱 g = 𝒪 g subscript 𝒱 𝑔 subscript 𝒪 𝑔 \mathcal{V}_{g}=\mathcal{O}_{g} caligraphic_V start_POSTSUBSCRIPT italic_g end_POSTSUBSCRIPT = caligraphic_O start_POSTSUBSCRIPT italic_g end_POSTSUBSCRIPT a twist field when g 𝑔 g italic_g lies in the normalizer of Cartan 𝔥 𝔤 𝔥 𝔤 \mathfrak{h}\subset\mathfrak{g} fraktur_h ⊂ fraktur_g , i.e. g N G ( 𝔥 ) 𝑔 subscript normal-N 𝐺 𝔥 g\in\mathrm{N}_{G}(\mathfrak{h}) italic_g ∈ roman_N start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT ( fraktur_h ) iff

g 𝔥 g - 1 = 𝔥 𝑔 𝔥 superscript 𝑔 1 𝔥 \begin{gathered}\displaystyle g\mathfrak{h}g^{-1}=\mathfrak{h}\end{gathered} start_ROW start_CELL italic_g fraktur_h italic_g start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT = fraktur_h end_CELL end_ROW (3.12)

Definition 1 .

We say that a triple ( ; α , β ) × 2 normal-ℓ 𝛼 𝛽 superscript 2 (\ell;\alpha,\beta)\in{\mathbb{N}}\times{\mathbb{R}}^{2} ( roman_ℓ ; italic_α , italic_β ) ∈ blackboard_N × blackboard_R start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT is admissible, if for any fixed ε > 0 𝜀 0 \varepsilon>0 italic_ε > 0 and

x = m α + ε 𝑎𝑛𝑑 y = m β + ε formulae-sequence 𝑥 superscript 𝑚 𝛼 𝜀 𝑎𝑛𝑑 𝑦 superscript 𝑚 𝛽 𝜀 x=m^{\alpha+\varepsilon}\qquad\mbox{and}\qquad y=m^{\beta+\varepsilon} italic_x = italic_m start_POSTSUPERSCRIPT italic_α + italic_ε end_POSTSUPERSCRIPT and italic_y = italic_m start_POSTSUPERSCRIPT italic_β + italic_ε end_POSTSUPERSCRIPT

the congruence ( 1.3 ) has a solution for any reduced residue class a 𝑎 a italic_a modulo m 𝑚 m italic_m , provided that m 𝑚 m italic_m is large enough, and we denote by 𝔄 3 subscript 𝔄 3 {\mathfrak{A}}_{3} fraktur_A start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT the set of admissible triples.

Definition 2 .

We say that a pair ( k ; α ) × 𝑘 𝛼 (k;\alpha)\in{\mathbb{N}}\times{\mathbb{R}} ( italic_k ; italic_α ) ∈ blackboard_N × blackboard_R is admissible, if for any fixed ε > 0 𝜀 0 \varepsilon>0 italic_ε > 0 and

x = m α + ε 𝑥 superscript 𝑚 𝛼 𝜀 x=m^{\alpha+\varepsilon} italic_x = italic_m start_POSTSUPERSCRIPT italic_α + italic_ε end_POSTSUPERSCRIPT

the congruence ( 1.5 ) has a solution for any reduced residue class a 𝑎 a italic_a modulo m 𝑚 m italic_m , provided that m 𝑚 m italic_m is large enough, and we denote by 𝔄 2 subscript 𝔄 2 {\mathfrak{A}}_{2} fraktur_A start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT the set of admissible pairs.

Definition 3 .

We say that a pair ( k ; α ) × 𝑘 𝛼 (k;\alpha)\in{\mathbb{N}}\times{\mathbb{R}} ( italic_k ; italic_α ) ∈ blackboard_N × blackboard_R is admissible for primes, if for any fixed ε > 0 𝜀 0 \varepsilon>0 italic_ε > 0 and

x = m α + ε 𝑥 superscript 𝑚 𝛼 𝜀 x=m^{\alpha+\varepsilon} italic_x = italic_m start_POSTSUPERSCRIPT italic_α + italic_ε end_POSTSUPERSCRIPT

the congruence ( 1.5 ) has a solution for any reduced residue class a 𝑎 a italic_a modulo m 𝑚 m italic_m , provided that m 𝑚 m italic_m is prime and large enough, and we denote by 𝔄 2 superscript subscript 𝔄 2 normal-♯ {\mathfrak{A}}_{2}^{\sharp} fraktur_A start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ♯ end_POSTSUPERSCRIPT the set of admissible for primes pairs.

Definition 4 .

We say that a quadruple ( k , ; α , β ) 2 × 2 𝑘 normal-ℓ 𝛼 𝛽 superscript 2 superscript 2 (k,\ell;\alpha,\beta)\in{\mathbb{N}}^{2}\times{\mathbb{R}}^{2} ( italic_k , roman_ℓ ; italic_α , italic_β ) ∈ blackboard_N start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT × blackboard_R start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT is admissible, if for any fixed ε > 0 𝜀 0 \varepsilon>0 italic_ε > 0 and

x = m α + ε 𝑎𝑛𝑑 y = m β + ε formulae-sequence 𝑥 superscript 𝑚 𝛼 𝜀 𝑎𝑛𝑑 𝑦 superscript 𝑚 𝛽 𝜀 x=m^{\alpha+\varepsilon}\qquad\mbox{and}\qquad y=m^{\beta+\varepsilon} italic_x = italic_m start_POSTSUPERSCRIPT italic_α + italic_ε end_POSTSUPERSCRIPT and italic_y = italic_m start_POSTSUPERSCRIPT italic_β + italic_ε end_POSTSUPERSCRIPT

the congruence ( 1.3 ) has a solution for any reduced residue class a 𝑎 a italic_a modulo m 𝑚 m italic_m , provided that m 𝑚 m italic_m is large enough, and we denote by 𝔄 4 subscript 𝔄 4 {\mathfrak{A}}_{4} fraktur_A start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT the set of admissible quadruples.


Definition 2.9 .

Let A 𝐴 A italic_A be a 3 3 3 3 -Lie algebra and r A A 𝑟 tensor-product 𝐴 𝐴 r\in A\otimes A italic_r ∈ italic_A ⊗ italic_A . The equation

[ [ r , r , r ] ] = 0 delimited-[] 𝑟 𝑟 𝑟 0 [[r,r,r]]=0 [ [ italic_r , italic_r , italic_r ] ] = 0

is called the 3 3 3 3 -Lie classical Yang-Baxter equation (3-Lie CYBE) .


Definition 3.4 – Parallel section of a vector bundle over a groupoid.

Let ϱ italic-ϱ \varrho italic_ϱ be a K 𝐾 K italic_K -vector bundle over a groupoid Γ Γ \Gammait roman_Γ . A parallel section of ϱ italic-ϱ \varrho italic_ϱ is a function s 𝑠 s italic_s on Γ Γ \Gammait roman_Γ with s ( x ) ϱ ( x ) 𝑠 𝑥 italic-ϱ 𝑥 s(x)\in\varrho(x) italic_s ( italic_x ) ∈ italic_ϱ ( italic_x ) for x Γ 𝑥 Γ x\in\Gammait italic_x ∈ roman_Γ such that for any morphism g : x y : 𝑔 𝑥 𝑦 g:x\longrightarrow y italic_g : italic_x ⟶ italic_y the equation

s ( y ) = ϱ ( g ) s ( x ) 𝑠 𝑦 italic-ϱ 𝑔 𝑠 𝑥 \displaystyle s(y)=\varrho(g)s(x) italic_s ( italic_y ) = italic_ϱ ( italic_g ) italic_s ( italic_x )

holds. By

Par ϱ : = { s : Γ K | s parallel section } fragments Par ϱ : fragments { s : Γ K | s parallel section } \displaystyle\operatorname{Par}\varrho\mathrel{\mathop{:}}=\{s:\Gammait% \longrightarrow K\ |\ s\ \text{parallel section}\} roman_Par italic_ϱ : = { italic_s : roman_Γ ⟶ italic_K | italic_s parallel section }

we denote the vector space of parallel sections of ϱ italic-ϱ \varrho italic_ϱ .


Definition 1 (bi-Kleene algebras and bw-rational algebras)

A monoid, as usual, is an algebra with an associative binary operation \cdot and identity 1 1 1 1 . A bimonoid is an algebra with operations , , 1 fragments , parallel-to , 1 \cdot,\parallel,1 ⋅ , ∥ , 1 that is a monoid with respect to , 1 1 \cdot,1 ⋅ , 1 and a commutative monoid with respect to , 1 fragments parallel-to , 1 \parallel,1 ∥ , 1 .

A Kleene algebra is an algebra K 𝐾 K italic_K with constants 0 , 1 0 1 0,1 0 , 1 , a binary addition operation + + + , a multiplication operation \cdot (usually omitted) and a unary iteration operation * {}^{*} start_FLOATSUPERSCRIPT * end_FLOATSUPERSCRIPT , such that the following hold; ( K , 1 , ) 𝐾 1 (K,1,\cdot) ( italic_K , 1 , ⋅ ) is a monoid, ( K , 0 , + ) 𝐾 0 (K,0,+) ( italic_K , 0 , + ) is a commutative monoid and also, for all x , y , z K 𝑥 𝑦 𝑧 𝐾 x,y,z\in K italic_x , italic_y , italic_z ∈ italic_K ,

x + x = x , x ( y + z ) = x y + x z , ( y + z ) x = y x + y z , formulae-sequence 𝑥 𝑥 𝑥 formulae-sequence 𝑥 𝑦 𝑧 𝑥 𝑦 𝑥 𝑧 𝑦 𝑧 𝑥 𝑦 𝑥 𝑦 𝑧 \displaystyle x+x=x,\qquad x(y+z)=xy+xz,\qquad(y+z)x=yx+yz, italic_x + italic_x = italic_x , italic_x ( italic_y + italic_z ) = italic_x italic_y + italic_x italic_z , ( italic_y + italic_z ) italic_x = italic_y italic_x + italic_y italic_z , (3)
1 + x x * = 1 + x * x = x * , 1 𝑥 superscript 𝑥 1 superscript 𝑥 𝑥 superscript 𝑥 \displaystyle 1+xx^{*}=1+x^{*}x=x^{*}, 1 + italic_x italic_x start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT = 1 + italic_x start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT italic_x = italic_x start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT , (4)
x y y x * y y , y x y y x * y , formulae-sequence 𝑥 𝑦 𝑦 superscript 𝑥 𝑦 𝑦 𝑦 𝑥 𝑦 𝑦 superscript 𝑥 𝑦 \displaystyle xy\leq y\Rightarrow x^{*}y\leq y,\qquad yx\leq y\Rightarrow yx^{% *}\leq y, italic_x italic_y ≤ italic_y ⇒ italic_x start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT italic_y ≤ italic_y , italic_y italic_x ≤ italic_y ⇒ italic_y italic_x start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT ≤ italic_y , (5)

where ( 2 ) is assumed. The identities ( 5 ) are normally called the induction axioms. The identities in ( 3 ) together with the preceding conditions amount to stating that K 𝐾 K italic_K is an idempotent semiring, or dioid. We say that K 𝐾 K italic_K is a commutative Kleene algebra if \cdot is commutative.

A bi-Kleene algebra is an algebra with operations 0 , 1 , + , , * , , ( * ) fragments 0 , 1 , , superscript , , parallel-to superscript , 0,1,+,\cdot,^{*},\parallel,^{(*)} 0 , 1 , + , ⋅ , start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT , ∥ , start_POSTSUPERSCRIPT ( * ) end_POSTSUPERSCRIPT that is a Kleene algebra with respect to 0 , 1 , + , , * fragments 0 , 1 , , superscript , 0,1,+,\cdot,^{*} 0 , 1 , + , ⋅ , start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT and a commutative Kleene algebra with respect to 0 , 1 , + , , ( * ) fragments 0 , 1 , , parallel-to superscript , 0,1,+,\parallel,^{(*)} 0 , 1 , + , ∥ , start_POSTSUPERSCRIPT ( * ) end_POSTSUPERSCRIPT , with parallel-to \parallel and ( * ) {}^{(*)} start_FLOATSUPERSCRIPT ( * ) end_FLOATSUPERSCRIPT playing the role of \cdot and * {}^{*} start_FLOATSUPERSCRIPT * end_FLOATSUPERSCRIPT respectively in the Kleene axioms given above. For the purposes of this paper, we need to define bw-rational algebras, which have operations 0 , 1 , + , , * , , fragments 0 , 1 , , superscript , , parallel-to , 0,1,+,\cdot,^{*},\parallel, 0 , 1 , + , ⋅ , start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT , ∥ , and satisfy only the conditions on the definition of a bi-Kleene algebra given above that do not mention ( * ) {}^{(*)} start_FLOATSUPERSCRIPT ( * ) end_FLOATSUPERSCRIPT ; thus, a bw-rational algebra is a Kleene algebra with respect to 0 , 1 , + , , * fragments 0 , 1 , , superscript , 0,1,+,\cdot,^{*} 0 , 1 , + , ⋅ , start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT and is a commutative idempotent semiring with respect to the operations 0 , 1 , + , fragments 0 , 1 , , parallel-to 0,1,+,\parallel 0 , 1 , + , ∥ ; that is, it satisfies ( 3 ) with \cdot replaced by parallel-to \parallel and is a commutative monoid with respect to 1 , fragments 1 , parallel-to 1,\parallel 1 , ∥ .

Given a set Σ Σ \Sigma roman_Σ , we use T R e g ( Σ ) subscript 𝑇 𝑅 𝑒 𝑔 Σ T_{Reg}(\Sigma) italic_T start_POSTSUBSCRIPT italic_R italic_e italic_g end_POSTSUBSCRIPT ( roman_Σ ) , T C o m R e g ( Σ ) subscript 𝑇 𝐶 𝑜 𝑚 𝑅 𝑒 𝑔 Σ T_{ComReg}(\Sigma) italic_T start_POSTSUBSCRIPT italic_C italic_o italic_m italic_R italic_e italic_g end_POSTSUBSCRIPT ( roman_Σ ) , T b i m o n o i d ( Σ ) subscript 𝑇 𝑏 𝑖 𝑚 𝑜 𝑛 𝑜 𝑖 𝑑 Σ T_{bimonoid}(\Sigma) italic_T start_POSTSUBSCRIPT italic_b italic_i italic_m italic_o italic_n italic_o italic_i italic_d end_POSTSUBSCRIPT ( roman_Σ ) , T b i - K A ( Σ ) subscript 𝑇 𝑏 𝑖 𝐾 𝐴 Σ T_{bi-KA}(\Sigma) italic_T start_POSTSUBSCRIPT italic_b italic_i - italic_K italic_A end_POSTSUBSCRIPT ( roman_Σ ) , and T b w - R a t ( Σ ) subscript 𝑇 𝑏 𝑤 𝑅 𝑎 𝑡 Σ T_{bw-Rat}(\Sigma) italic_T start_POSTSUBSCRIPT italic_b italic_w - italic_R italic_a italic_t end_POSTSUBSCRIPT ( roman_Σ ) to denote the sets of terms generated from Σ Σ \Sigma roman_Σ using, respectively, the regular operations 0 , 1 , + , , * fragments 0 , 1 , , superscript , 0,1,+,\cdot,^{*} 0 , 1 , + , ⋅ , start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT , the commutative-regular operations 0 , 1 , + , , ( * ) fragments 0 , 1 , , parallel-to superscript , 0,1,+,\parallel,^{(*)} 0 , 1 , + , ∥ , start_POSTSUPERSCRIPT ( * ) end_POSTSUPERSCRIPT , the bimonoid operations 1 , , fragments 1 , , parallel-to 1,\cdot,\parallel 1 , ⋅ , ∥ , the bi-Kleene operations 0 , 1 , + , , * , , ( * ) fragments 0 , 1 , , superscript , , parallel-to superscript , 0,1,+,\cdot,^{*},\parallel,^{(*)} 0 , 1 , + , ⋅ , start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT , ∥ , start_POSTSUPERSCRIPT ( * ) end_POSTSUPERSCRIPT and the bw-rational operations 0 , 1 , + , , * , fragments 0 , 1 , , superscript , , parallel-to 0,1,+,\cdot,^{*},\parallel 0 , 1 , + , ⋅ , start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT , ∥ .


Definition 5.6 .

Let λ 𝒮 𝒫 ( n ) 𝜆 𝒮 𝒫 𝑛 \lambda\in\mathcal{SP}(n) italic_λ ∈ caligraphic_S caligraphic_P ( italic_n ) be a shifted partition.The content of a box ( i , j ) 𝑖 𝑗 (i,j) ( italic_i , italic_j ) contained in a shifted Young diagram λ 𝜆 \lambda italic_λ is its distance from the main diagonal.

cont ( i , j ) = j - i cont 𝑖 𝑗 𝑗 𝑖 \operatorname{cont}(i,j)=j-i roman_cont ( italic_i , italic_j ) = italic_j - italic_i

Definition 2.2 .

Let X Spec 𝔬 𝔭 𝑋 Spec subscript 𝔬 𝔭 X\to\operatorname{Spec}\mathfrak{o}_{\mathfrak{p}} italic_X → roman_Spec fraktur_o start_POSTSUBSCRIPT fraktur_p end_POSTSUBSCRIPT be a smooth finite type morphism of relative dimension n 𝑛 n italic_n and let D X 𝐷 𝑋 D\subset X italic_D ⊂ italic_X be an irreducible divisor which is flat over 𝔬 𝔭 subscript 𝔬 𝔭 \mathfrak{o}_{\mathfrak{p}} fraktur_o start_POSTSUBSCRIPT fraktur_p end_POSTSUBSCRIPT . Let x X ( 𝔬 𝔭 ) 𝑥 𝑋 subscript 𝔬 𝔭 x\in X(\mathfrak{o}_{\mathfrak{p}}) italic_x ∈ italic_X ( fraktur_o start_POSTSUBSCRIPT fraktur_p end_POSTSUBSCRIPT ) be such that x D 𝑥 𝐷 x\notin D italic_x ∉ italic_D and let t = 0 𝑡 0 t=0 italic_t = 0 be a local equation for D X 𝐷 𝑋 D\subset X italic_D ⊂ italic_X on some affine patch U X 𝑈 𝑋 U\subset X italic_U ⊂ italic_X containing x 𝑥 x italic_x . We define the intersection multiplicity of x 𝑥 x italic_x and D 𝐷 D italic_D above 𝔭 𝔭 \mathfrak{p} fraktur_p to be the integer ι 𝜄 \iota italic_ι which satisfies

x * t = ϖ ι , superscript 𝑥 𝑡 superscript italic-ϖ 𝜄 x^{*}t=\varpi^{\iota}, italic_x start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT italic_t = italic_ϖ start_POSTSUPERSCRIPT italic_ι end_POSTSUPERSCRIPT ,

where ϖ italic-ϖ \varpi italic_ϖ denotes a uniformising parameter of 𝔬 𝔭 subscript 𝔬 𝔭 \mathfrak{o}_{\mathfrak{p}} fraktur_o start_POSTSUBSCRIPT fraktur_p end_POSTSUBSCRIPT and x * t superscript 𝑥 𝑡 x^{*}t italic_x start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT italic_t is the pull-back of t 𝑡 t italic_t via x : Spec 𝔬 𝔭 U : 𝑥 Spec subscript 𝔬 𝔭 𝑈 x:\operatorname{Spec}\mathfrak{o}_{\mathfrak{p}}\to U italic_x : roman_Spec fraktur_o start_POSTSUBSCRIPT fraktur_p end_POSTSUBSCRIPT → italic_U . We say that x 𝑥 x italic_x and D 𝐷 D italic_D meet transversely above 𝔭 𝔭 \mathfrak{p} fraktur_p if ι = 1 𝜄 1 \iota=1 italic_ι = 1 .


Definition 5.7 .

Given positive integers g , r , d 𝑔 𝑟 𝑑 g,r,d italic_g , italic_r , italic_d , the Brill-Noether number , is

ρ ( g , r , d ) = g - ( r + 1 ) ( g - d + r ) . 𝜌 𝑔 𝑟 𝑑 𝑔 𝑟 1 𝑔 𝑑 𝑟 \rho(g,r,d)=g-(r+1)(g-d+r). italic_ρ ( italic_g , italic_r , italic_d ) = italic_g - ( italic_r + 1 ) ( italic_g - italic_d + italic_r ) .

Given a curve C g 𝐶 subscript 𝑔 C\in\mathcal{M}_{g} italic_C ∈ caligraphic_M start_POSTSUBSCRIPT italic_g end_POSTSUBSCRIPT , denote by W d r ( C ) g subscript superscript 𝑊 𝑟 𝑑 𝐶 subscript 𝑔 W^{r}_{d}(C)\subset\mathcal{M}_{g} italic_W start_POSTSUPERSCRIPT italic_r end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_d end_POSTSUBSCRIPT ( italic_C ) ⊂ caligraphic_M start_POSTSUBSCRIPT italic_g end_POSTSUBSCRIPT the space of all degree d 𝑑 d italic_d invertible sheaves \mathcal{L} caligraphic_L satisfying h 0 ( ) r + 1 superscript 0 𝑟 1 h^{0}(\mathcal{L})\geq r+1 italic_h start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT ( caligraphic_L ) ≥ italic_r + 1 .


Definition 3.2 .

[ 15 ] Let A ^ = lim A n ^ 𝐴 injective-limit subscript 𝐴 𝑛 \widehat{A}=\varinjlim A_{n} ^ start_ARG italic_A end_ARG = start_LIMITOP → start_ARG roman_lim end_ARG end_LIMITOP italic_A start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT be the C * superscript 𝐶 C^{*} italic_C start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT -inductive limit, and let G ^ = lim G ( A n | A ) ^ 𝐺 projective-limit 𝐺 conditional subscript 𝐴 𝑛 𝐴 \widehat{G}=\varprojlim G\left(A_{n}~{}|~{}A\right) ^ start_ARG italic_G end_ARG = start_LIMITOP ← start_ARG roman_lim end_ARG end_LIMITOP italic_G ( italic_A start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT | italic_A ) be the projective limit of groups. There is the natural action of G ^ ^ 𝐺 \widehat{G} ^ start_ARG italic_G end_ARG on A ^ ^ 𝐴 \widehat{A} ^ start_ARG italic_A end_ARG . A non-degenerate faithful representation A ^ B ( ) ^ 𝐴 𝐵 \widehat{A}\to B\left(\mathcal{H}\right) ^ start_ARG italic_A end_ARG → italic_B ( caligraphic_H ) is said to be equivariant if there is an action of G ^ ^ 𝐺 \widehat{G} ^ start_ARG italic_G end_ARG on \mathcal{H} caligraphic_H such that for any ξ 𝜉 \xi\in\mathcal{H} italic_ξ ∈ caligraphic_H and g G ^ 𝑔 ^ 𝐺 g\in\widehat{G} italic_g ∈ ^ start_ARG italic_G end_ARG following condition holds

( g a ) ξ = g ( a ( g - 1 ξ ) ) . 𝑔 𝑎 𝜉 𝑔 𝑎 superscript 𝑔 1 𝜉 \left(ga\right)\xi=g\left(a\left(g^{-1}\xi\right)\right). ( italic_g italic_a ) italic_ξ = italic_g ( italic_a ( italic_g start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT italic_ξ ) ) . (11)

Definition 2.8 .

Let = N 𝐑 / M absent subscript 𝑁 𝐑 superscript 𝑀 \Sigma=N_{\mathbf{R}}/M^{\prime} = italic_N start_POSTSUBSCRIPT bold_R end_POSTSUBSCRIPT / italic_M start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT be a tropical abelian variety, as in Definition 2.6 , and let : M M : absent superscript 𝑀 𝑀 \lambda\colon M^{\prime}\to M : italic_M start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT → italic_M be a homomorphism definining a polarization. Let c : M 𝐑 : 𝑐 superscript 𝑀 𝐑 c\colon M^{\prime}\to{\mathbf{R}} italic_c : italic_M start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT → bold_R be a function satisfying c ( u 1 + u 2 ) - c ( u 1 ) - c ( u 2 ) = [ u 1 , ( u 2 ) ] 𝑐 superscript subscript 𝑢 1 superscript subscript 𝑢 2 𝑐 superscript subscript 𝑢 1 𝑐 superscript subscript 𝑢 2 superscript subscript 𝑢 1 superscript subscript 𝑢 2 c(u_{1}^{\prime}+u_{2}^{\prime})-c(u_{1}^{\prime})-c(u_{2}^{\prime})=[u_{1}^{% \prime},\lambda(u_{2}^{\prime})] italic_c ( italic_u start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT + italic_u start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) - italic_c ( italic_u start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) - italic_c ( italic_u start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) = [ italic_u start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT , ( italic_u start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) ] for all u 1 , u 2 M superscript subscript 𝑢 1 superscript subscript 𝑢 2 superscript 𝑀 u_{1}^{\prime},u_{2}^{\prime}\in M^{\prime} italic_u start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT , italic_u start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ∈ italic_M start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT . A tropical theta function with respect to ( , c ) fragments ( , c ) (\lambda,c) ( , italic_c ) is a piecewise integral affine function : N 𝐑 𝐑 : absent subscript 𝑁 𝐑 𝐑 \varphi\colon N_{\mathbf{R}}\to{\mathbf{R}} : italic_N start_POSTSUBSCRIPT bold_R end_POSTSUBSCRIPT → bold_R satisfying the transformation law

( v ) = ( v + u ) + c ( u ) + ( u ) , v 𝑣 𝑣 superscript 𝑢 𝑐 superscript 𝑢 superscript 𝑢 𝑣 \varphi(v)=\varphi(v+u^{\prime})+c(u^{\prime})+\langle\lambda(u^{\prime}),v\rangle ( italic_v ) = ( italic_v + italic_u start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) + italic_c ( italic_u start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) + ⟨ ( italic_u start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) , italic_v ⟩

for all u M superscript 𝑢 superscript 𝑀 u^{\prime}\in M^{\prime} italic_u start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ∈ italic_M start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT and v N 𝐑 𝑣 subscript 𝑁 𝐑 v\in N_{\mathbf{R}} italic_v ∈ italic_N start_POSTSUBSCRIPT bold_R end_POSTSUBSCRIPT .


Definition 5 .

Let μ 𝜇 \mu italic_μ be a reconciliation map from ( T ; t , σ ) 𝑇 𝑡 𝜎 (T;t,\sigma) ( italic_T ; italic_t , italic_σ ) to S 𝑆 S italic_S . The auxiliary graph A 𝐴 A italic_A is defined as a directed graph with a vertex set V ( A ) = V ( S ) V ( T ) 𝑉 𝐴 𝑉 𝑆 𝑉 𝑇 V(A)=V(S)\cup V(T) italic_V ( italic_A ) = italic_V ( italic_S ) ∪ italic_V ( italic_T ) and an edge-set E ( A ) 𝐸 𝐴 E(A) italic_E ( italic_A ) that is constructed as follows

(A1)

For each ( u , v ) E ( T ) 𝑢 𝑣 𝐸 𝑇 (u,v)\in E(T) ( italic_u , italic_v ) ∈ italic_E ( italic_T ) we have ( u , v ) E ( A ) superscript 𝑢 superscript 𝑣 𝐸 𝐴 (u^{\prime},v^{\prime})\in E(A) ( italic_u start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT , italic_v start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) ∈ italic_E ( italic_A ) , where

u = { μ ( u ) if t ( u ) { , } u 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 , v = { μ ( v ) if t ( v ) { , } v 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 , formulae-sequence superscript 𝑢 cases 𝜇 𝑢 if 𝑡 𝑢 direct-product 𝑢 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 superscript 𝑣 cases 𝜇 𝑣 if 𝑡 𝑣 direct-product 𝑣 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 u^{\prime}=\begin{cases}\mu(u)&\text{if }t(u)\in\{\odot,\bullet\}\\ u&\text{otherwise}\end{cases},\ v^{\prime}=\begin{cases}\mu(v)&\text{if }t(v)% \in\{\odot,\bullet\}\\ v&\text{otherwise}\end{cases}, italic_u start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT = { start_ROW start_CELL italic_μ ( italic_u ) end_CELL start_CELL if italic_t ( italic_u ) ∈ { ⊙ , ∙ } end_CELL end_ROW start_ROW start_CELL italic_u end_CELL start_CELL otherwise end_CELL end_ROW , italic_v start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT = { start_ROW start_CELL italic_μ ( italic_v ) end_CELL start_CELL if italic_t ( italic_v ) ∈ { ⊙ , ∙ } end_CELL end_ROW start_ROW start_CELL italic_v end_CELL start_CELL otherwise end_CELL end_ROW ,
(A2)

For each ( x , y ) E ( S ) 𝑥 𝑦 𝐸 𝑆 (x,y)\in E(S) ( italic_x , italic_y ) ∈ italic_E ( italic_S ) we have ( x , y ) E ( A ) 𝑥 𝑦 𝐸 𝐴 (x,y)\in E(A) ( italic_x , italic_y ) ∈ italic_E ( italic_A ) .

(A3)

For each u V ( T ) 𝑢 𝑉 𝑇 u\in V(T) italic_u ∈ italic_V ( italic_T ) with t ( u ) { , } 𝑡 𝑢 t(u)\in\{\square,\triangle\} italic_t ( italic_u ) ∈ { □ , △ } we have ( u , l c a S ( σ T ¯ ( u ) ) ) E ( A ) 𝑢 𝑙 𝑐 subscript 𝑎 𝑆 subscript 𝜎 subscript 𝑇 ¯ 𝑢 𝐸 𝐴 (u,lca_{S}(\sigma_{T_{\mathcal{\overline{E}}}}(u)))\in E(A) ( italic_u , italic_l italic_c italic_a start_POSTSUBSCRIPT italic_S end_POSTSUBSCRIPT ( italic_σ start_POSTSUBSCRIPT italic_T start_POSTSUBSCRIPT ¯ start_ARG caligraphic_E end_ARG end_POSTSUBSCRIPT end_POSTSUBSCRIPT ( italic_u ) ) ) ∈ italic_E ( italic_A ) .

(A4)

For each ( u , v ) 𝑢 𝑣 (u,v)\in\mathcal{E} ( italic_u , italic_v ) ∈ caligraphic_E we have ( l c a S ( σ T ¯ ( u ) σ T ¯ ( v ) ) , u ) E ( A ) 𝑙 𝑐 subscript 𝑎 𝑆 subscript 𝜎 subscript 𝑇 ¯ 𝑢 subscript 𝜎 subscript 𝑇 ¯ 𝑣 𝑢 𝐸 𝐴 (lca_{S}(\sigma_{T_{\mathcal{\overline{E}}}}(u)\cup\sigma_{T_{\mathcal{% \overline{E}}}}(v)),u)\in E(A) ( italic_l italic_c italic_a start_POSTSUBSCRIPT italic_S end_POSTSUBSCRIPT ( italic_σ start_POSTSUBSCRIPT italic_T start_POSTSUBSCRIPT ¯ start_ARG caligraphic_E end_ARG end_POSTSUBSCRIPT end_POSTSUBSCRIPT ( italic_u ) ∪ italic_σ start_POSTSUBSCRIPT italic_T start_POSTSUBSCRIPT ¯ start_ARG caligraphic_E end_ARG end_POSTSUBSCRIPT end_POSTSUBSCRIPT ( italic_v ) ) , italic_u ) ∈ italic_E ( italic_A )

(A5)

For each u V ( T ) 𝑢 𝑉 𝑇 u\in V(T) italic_u ∈ italic_V ( italic_T ) with t ( u ) { , } 𝑡 𝑢 t(u)\in\{\triangle,\square\} italic_t ( italic_u ) ∈ { △ , □ } and μ ( u ) = ( x , y ) E ( S ) 𝜇 𝑢 𝑥 𝑦 𝐸 𝑆 \mu(u)=(x,y)\in E(S) italic_μ ( italic_u ) = ( italic_x , italic_y ) ∈ italic_E ( italic_S ) we have ( x , u ) E ( A ) 𝑥 𝑢 𝐸 𝐴 (x,u)\in E(A) ( italic_x , italic_u ) ∈ italic_E ( italic_A ) and ( u , y ) E ( A ) 𝑢 𝑦 𝐸 𝐴 (u,y)\in E(A) ( italic_u , italic_y ) ∈ italic_E ( italic_A ) .

We define A 1 subscript 𝐴 1 A_{1} italic_A start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT and A 2 subscript 𝐴 2 A_{2} italic_A start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT as the subgraphs of A 𝐴 A italic_A that contain only the edges defined by (A1), (A2), (A5) and (A1), (A2), (A3), (A4), respectively.


Definition 3.1 (Flow map in a domain) .

Let Ω ( t ) Ω 𝑡 \Omega(t) roman_Ω ( italic_t ) be a domain in 3 superscript 3 \mathbb{R}^{3} blackboard_R start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT depending on time t [ 0 , T ) 𝑡 0 𝑇 t\in[0,T) italic_t ∈ [ 0 , italic_T ) for some T ( 0 , ] 𝑇 0 T\in(0,\infty] italic_T ∈ ( 0 , ∞ ] , and x ~ = ( x ~ 1 , x ~ 2 , x ~ 3 ) t [ C 3 ( 4 ) ] 3 fragments ~ 𝑥 superscript fragments ( subscript ~ 𝑥 1 , subscript ~ 𝑥 2 , subscript ~ 𝑥 3 ) 𝑡 superscript fragments [ superscript 𝐶 3 fragments ( superscript 4 ) ] 3 \tilde{x}={}^{t}(\tilde{x}_{1},\tilde{x}_{2},\tilde{x}_{3})\in[C^{3}(\mathbb{R% }^{4})]^{3} ~ start_ARG italic_x end_ARG = start_FLOATSUPERSCRIPT italic_t end_FLOATSUPERSCRIPT ( ~ start_ARG italic_x end_ARG start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , ~ start_ARG italic_x end_ARG start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , ~ start_ARG italic_x end_ARG start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT ) ∈ [ italic_C start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT ( blackboard_R start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT ) ] start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT . We call x ~ = x ~ ( ξ , t ) ~ 𝑥 ~ 𝑥 𝜉 𝑡 \tilde{x}=\tilde{x}(\xi,t) ~ start_ARG italic_x end_ARG = ~ start_ARG italic_x end_ARG ( italic_ξ , italic_t ) a flow map in Ω ( t ) Ω 𝑡 \Omega(t) roman_Ω ( italic_t ) if the three properties hold:
( i ) i (\mathrm{i}) ( roman_i ) for every ξ Ω ( 0 ) 𝜉 Ω 0 \xi\in\Omega(0) italic_ξ ∈ roman_Ω ( 0 )

x ~ ( ξ , 0 ) = ξ , ~ 𝑥 𝜉 0 𝜉 \tilde{x}(\xi,0)=\xi, ~ start_ARG italic_x end_ARG ( italic_ξ , 0 ) = italic_ξ ,

( ii ) ii (\mathrm{ii}) ( roman_ii ) for all ξ Ω ( 0 ) 𝜉 Ω 0 \xi\in\Omega(0) italic_ξ ∈ roman_Ω ( 0 ) and 0 t < T 0 𝑡 𝑇 0\leq t<T 0 ≤ italic_t < italic_T

x ~ ( ξ , t ) Ω ( t ) , ~ 𝑥 𝜉 𝑡 Ω 𝑡 \tilde{x}(\xi,t)\in\Omega(t), ~ start_ARG italic_x end_ARG ( italic_ξ , italic_t ) ∈ roman_Ω ( italic_t ) ,

( iii ) iii (\mathrm{iii}) ( roman_iii ) for each 0 t < T 0 𝑡 𝑇 0\leq t<T 0 ≤ italic_t < italic_T

x ~ ( , t ) : Ω ( 0 ) Ω ( t ) is bijective . : ~ 𝑥 𝑡 Ω 0 Ω 𝑡 is bijective \tilde{x}(\cdot,t):\Omega(0)\to\Omega(t)\text{ is bijective}. ~ start_ARG italic_x end_ARG ( ⋅ , italic_t ) : roman_Ω ( 0 ) → roman_Ω ( italic_t ) is bijective .
Definition 4.1 (Flow map in a variation of the domain Ω ( t ) Ω 𝑡 \Omega(t) roman_Ω ( italic_t ) ) .

For - 1 < ε < 1 1 𝜀 1 -1<\varepsilon<1 - 1 < italic_ε < 1 , let Ω ε ( t ) superscript Ω 𝜀 𝑡 \Omega^{\varepsilon}(t) roman_Ω start_POSTSUPERSCRIPT italic_ε end_POSTSUPERSCRIPT ( italic_t ) be a variation of Ω ( t ) Ω 𝑡 \Omega(t) roman_Ω ( italic_t ) . Let x ~ ε = ( x ~ 1 ε , x ~ 2 ε , x ~ 3 ε ) t [ C 3 ( 4 ) ] 3 fragments superscript ~ 𝑥 𝜀 superscript fragments ( subscript superscript ~ 𝑥 𝜀 1 , subscript superscript ~ 𝑥 𝜀 2 , subscript superscript ~ 𝑥 𝜀 3 ) 𝑡 superscript fragments [ superscript 𝐶 3 fragments ( superscript 4 ) ] 3 \tilde{x}^{\varepsilon}={}^{t}(\tilde{x}^{\varepsilon}_{1},\tilde{x}^{% \varepsilon}_{2},\tilde{x}^{\varepsilon}_{3})\in[C^{3}(\mathbb{R}^{4})]^{3} ~ start_ARG italic_x end_ARG start_POSTSUPERSCRIPT italic_ε end_POSTSUPERSCRIPT = start_FLOATSUPERSCRIPT italic_t end_FLOATSUPERSCRIPT ( ~ start_ARG italic_x end_ARG start_POSTSUPERSCRIPT italic_ε end_POSTSUPERSCRIPT start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , ~ start_ARG italic_x end_ARG start_POSTSUPERSCRIPT italic_ε end_POSTSUPERSCRIPT start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , ~ start_ARG italic_x end_ARG start_POSTSUPERSCRIPT italic_ε end_POSTSUPERSCRIPT start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT ) ∈ [ italic_C start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT ( blackboard_R start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT ) ] start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT . We call x ~ ε = x ~ ε ( ξ , t ) superscript ~ 𝑥 𝜀 superscript ~ 𝑥 𝜀 𝜉 𝑡 \tilde{x}^{\varepsilon}=\tilde{x}^{\varepsilon}(\xi,t) ~ start_ARG italic_x end_ARG start_POSTSUPERSCRIPT italic_ε end_POSTSUPERSCRIPT = ~ start_ARG italic_x end_ARG start_POSTSUPERSCRIPT italic_ε end_POSTSUPERSCRIPT ( italic_ξ , italic_t ) a flow map in Ω ε ( t ) superscript Ω 𝜀 𝑡 \Omega^{\varepsilon}(t) roman_Ω start_POSTSUPERSCRIPT italic_ε end_POSTSUPERSCRIPT ( italic_t ) if the three properties hold:
( i ) i (\mathrm{i}) ( roman_i ) for every ξ Ω ( 0 ) ( = Ω ( 0 ) ) 𝜉 annotated Ω 0 absent Ω 0 \xi\in\Omega(0)(=\Omega(0)) italic_ξ ∈ roman_Ω ( 0 ) ( = roman_Ω ( 0 ) )

x ~ ε ( ξ , 0 ) = ξ , superscript ~ 𝑥 𝜀 𝜉 0 𝜉 \tilde{x}^{\varepsilon}(\xi,0)=\xi, ~ start_ARG italic_x end_ARG start_POSTSUPERSCRIPT italic_ε end_POSTSUPERSCRIPT ( italic_ξ , 0 ) = italic_ξ ,

( ii ) ii (\mathrm{ii}) ( roman_ii ) for all ξ Ω ( 0 ) 𝜉 Ω 0 \xi\in\Omega(0) italic_ξ ∈ roman_Ω ( 0 ) and 0 t < T 0 𝑡 𝑇 0\leq t<T 0 ≤ italic_t < italic_T

x ~ ε ( ξ , t ) Ω ε ( t ) , superscript ~ 𝑥 𝜀 𝜉 𝑡 superscript Ω 𝜀 𝑡 \tilde{x}^{\varepsilon}(\xi,t)\in\Omega^{\varepsilon}(t), ~ start_ARG italic_x end_ARG start_POSTSUPERSCRIPT italic_ε end_POSTSUPERSCRIPT ( italic_ξ , italic_t ) ∈ roman_Ω start_POSTSUPERSCRIPT italic_ε end_POSTSUPERSCRIPT ( italic_t ) ,

( iii ) iii (\mathrm{iii}) ( roman_iii ) for each 0 t < T 0 𝑡 𝑇 0\leq t<T 0 ≤ italic_t < italic_T

x ~ ε ( , t ) : Ω ( 0 ) Ω ε ( t ) is bijective . : superscript ~ 𝑥 𝜀 𝑡 Ω 0 superscript Ω 𝜀 𝑡 is bijective \tilde{x}^{\varepsilon}(\cdot,t):\Omega(0)\to\Omega^{\varepsilon}(t)\text{ is % bijective}. ~ start_ARG italic_x end_ARG start_POSTSUPERSCRIPT italic_ε end_POSTSUPERSCRIPT ( ⋅ , italic_t ) : roman_Ω ( 0 ) → roman_Ω start_POSTSUPERSCRIPT italic_ε end_POSTSUPERSCRIPT ( italic_t ) is bijective .

Definition 1.1 .

For k 2 𝑘 2 k\geq 2 italic_k ≥ 2 , the generalized crank (abbreviated as k 𝑘 k italic_k -crank in what follows) of a k 𝑘 k italic_k -colored partition π = ( π ( 1 ) , π ( 2 ) , , π ( k ) ) 𝜋 superscript 𝜋 1 superscript 𝜋 2 superscript 𝜋 𝑘 \overrightarrow{\pi}=(\pi^{(1)},\pi^{(2)},\cdots,\pi^{(k)}) → start_ARG italic_π end_ARG = ( italic_π start_POSTSUPERSCRIPT ( 1 ) end_POSTSUPERSCRIPT , italic_π start_POSTSUPERSCRIPT ( 2 ) end_POSTSUPERSCRIPT , ⋯ , italic_π start_POSTSUPERSCRIPT ( italic_k ) end_POSTSUPERSCRIPT ) is defined as

(1.2) k -crank ( π ) = ( π ( 1 ) ) - ( π ( 2 ) ) , k -crank 𝜋 superscript 𝜋 1 superscript 𝜋 2 \displaystyle\textrm{$k$-crank}(\overrightarrow{\pi})=\ell(\pi^{(1)})-\ell(\pi% ^{(2)}), italic_k -crank ( → start_ARG italic_π end_ARG ) = roman_ℓ ( italic_π start_POSTSUPERSCRIPT ( 1 ) end_POSTSUPERSCRIPT ) - roman_ℓ ( italic_π start_POSTSUPERSCRIPT ( 2 ) end_POSTSUPERSCRIPT ) ,

where ( π ( i ) ) superscript 𝜋 𝑖 \ell(\pi^{(i)}) roman_ℓ ( italic_π start_POSTSUPERSCRIPT ( italic_i ) end_POSTSUPERSCRIPT ) denotes the number of parts in π ( i ) superscript 𝜋 𝑖 \pi^{(i)} italic_π start_POSTSUPERSCRIPT ( italic_i ) end_POSTSUPERSCRIPT .


Definition 3.1 (Flow map on an evolving surface) .

Let Γ ( t ) Γ 𝑡 \Gamma(t) roman_Γ ( italic_t ) be an evolving 2 2 2 2 -dimensional surface in 3 superscript 3 \mathbb{R}^{3} blackboard_R start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT on [ 0 , T ) 0 𝑇 [0,T) [ 0 , italic_T ) for some T ( 0 , ] 𝑇 0 T\in(0,\infty] italic_T ∈ ( 0 , ∞ ] . Let x = ( x 1 , x 2 , x 3 ) t [ C ( 4 ) ] 3 fragments x superscript fragments ( subscript 𝑥 1 , subscript 𝑥 2 , subscript 𝑥 3 ) 𝑡 superscript fragments [ superscript 𝐶 fragments ( superscript 4 ) ] 3 x={}^{t}(x_{1},x_{2},x_{3})\in[C^{\infty}(\mathbb{R}^{4})]^{3} italic_x = start_FLOATSUPERSCRIPT italic_t end_FLOATSUPERSCRIPT ( italic_x start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_x start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , italic_x start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT ) ∈ [ italic_C start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT ( blackboard_R start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT ) ] start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT . We call x = x ^ ( ξ , t ) 𝑥 ^ 𝑥 𝜉 𝑡 x=\hat{x}(\xi,t) italic_x = ^ start_ARG italic_x end_ARG ( italic_ξ , italic_t ) a flow map on Γ ( t ) Γ 𝑡 \Gamma(t) roman_Γ ( italic_t ) if the three properties hold:
( i ) i (\mathrm{i}) ( roman_i ) for every ξ Γ ( 0 ) 𝜉 Γ 0 \xi\in\Gamma(0) italic_ξ ∈ roman_Γ ( 0 )

x ^ ( ξ , 0 ) = ξ , ^ 𝑥 𝜉 0 𝜉 \hat{x}(\xi,0)=\xi, ^ start_ARG italic_x end_ARG ( italic_ξ , 0 ) = italic_ξ ,

( ii ) ii (\mathrm{ii}) ( roman_ii ) for all ξ Γ ( 0 ) 𝜉 Γ 0 \xi\in\Gamma(0) italic_ξ ∈ roman_Γ ( 0 ) and 0 t < T 0 𝑡 𝑇 0\leq t<T 0 ≤ italic_t < italic_T

x ^ ( ξ , t ) Γ ( t ) , ^ 𝑥 𝜉 𝑡 Γ 𝑡 \hat{x}(\xi,t)\in\Gamma(t), ^ start_ARG italic_x end_ARG ( italic_ξ , italic_t ) ∈ roman_Γ ( italic_t ) ,

( iii ) iii (\mathrm{iii}) ( roman_iii ) for each 0 t < T 0 𝑡 𝑇 0\leq t<T 0 ≤ italic_t < italic_T

x ^ ( , t ) : Γ ( 0 ) Γ ( t ) is bijective . : ^ 𝑥 𝑡 Γ 0 Γ 𝑡 is bijective \hat{x}(\cdot,t):\Gamma(0)\to\Gamma(t)\text{ is bijective}. ^ start_ARG italic_x end_ARG ( ⋅ , italic_t ) : roman_Γ ( 0 ) → roman_Γ ( italic_t ) is bijective .

The mapping ξ x ^ ( ξ , t ) maps-to 𝜉 ^ 𝑥 𝜉 𝑡 \xi\mapsto\hat{x}(\xi,t) italic_ξ ↦ ^ start_ARG italic_x end_ARG ( italic_ξ , italic_t ) is called a flow map on Γ ( t ) Γ 𝑡 \Gamma(t) roman_Γ ( italic_t ) , while the mapping t x ^ ( ξ , t ) maps-to 𝑡 ^ 𝑥 𝜉 𝑡 t\mapsto\hat{x}(\xi,t) italic_t ↦ ^ start_ARG italic_x end_ARG ( italic_ξ , italic_t ) is called an orbit starting from ξ 𝜉 \xi italic_ξ .

Definition 3.3 (Flow map on a variation of an evolving surface) .

Let Γ ( t ) Γ 𝑡 \Gamma(t) roman_Γ ( italic_t ) be an evolving 2 2 2 2 -dimensional surface in 3 superscript 3 \mathbb{R}^{3} blackboard_R start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT on [ 0 , T ) 0 𝑇 [0,T) [ 0 , italic_T ) for some T ( 0 , ] 𝑇 0 T\in(0,\infty] italic_T ∈ ( 0 , ∞ ] . For - 1 < ε < 1 1 𝜀 1 -1<\varepsilon<1 - 1 < italic_ε < 1 , let Γ ε ( t ) superscript Γ 𝜀 𝑡 \Gamma^{\varepsilon}(t) roman_Γ start_POSTSUPERSCRIPT italic_ε end_POSTSUPERSCRIPT ( italic_t ) be a variation of Γ ( t ) Γ 𝑡 \Gamma(t) roman_Γ ( italic_t ) . Let x ^ ε = ( x 1 ε , x 2 ε , x 3 ε ) t [ C ( 4 ) ] 3 fragments superscript ^ 𝑥 𝜀 superscript fragments ( superscript subscript 𝑥 1 𝜀 , superscript subscript 𝑥 2 𝜀 , superscript subscript 𝑥 3 𝜀 ) 𝑡 superscript fragments [ superscript 𝐶 fragments ( superscript 4 ) ] 3 \hat{x}^{\varepsilon}={}^{t}(x_{1}^{\varepsilon},x_{2}^{\varepsilon},x_{3}^{% \varepsilon})\in[C^{\infty}(\mathbb{R}^{4})]^{3} ^ start_ARG italic_x end_ARG start_POSTSUPERSCRIPT italic_ε end_POSTSUPERSCRIPT = start_FLOATSUPERSCRIPT italic_t end_FLOATSUPERSCRIPT ( italic_x start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_ε end_POSTSUPERSCRIPT , italic_x start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_ε end_POSTSUPERSCRIPT , italic_x start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_ε end_POSTSUPERSCRIPT ) ∈ [ italic_C start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT ( blackboard_R start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT ) ] start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT . We call x ^ ε = x ^ ε ( ξ , t ) superscript ^ 𝑥 𝜀 superscript ^ 𝑥 𝜀 𝜉 𝑡 \hat{x}^{\varepsilon}=\hat{x}^{\varepsilon}(\xi,t) ^ start_ARG italic_x end_ARG start_POSTSUPERSCRIPT italic_ε end_POSTSUPERSCRIPT = ^ start_ARG italic_x end_ARG start_POSTSUPERSCRIPT italic_ε end_POSTSUPERSCRIPT ( italic_ξ , italic_t ) a flow map on Γ ε ( t ) superscript Γ 𝜀 𝑡 \Gamma^{\varepsilon}(t) roman_Γ start_POSTSUPERSCRIPT italic_ε end_POSTSUPERSCRIPT ( italic_t ) if the three properties hold:
( i ) i (\mathrm{i}) ( roman_i ) for every ξ Γ 0 ( = Γ ( 0 ) ) 𝜉 annotated subscript Γ 0 absent Γ 0 \xi\in\Gamma_{0}(=\Gamma(0)) italic_ξ ∈ roman_Γ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( = roman_Γ ( 0 ) )

x ^ ε ( ξ , 0 ) = ξ , superscript ^ 𝑥 𝜀 𝜉 0 𝜉 \hat{x}^{\varepsilon}(\xi,0)=\xi, ^ start_ARG italic_x end_ARG start_POSTSUPERSCRIPT italic_ε end_POSTSUPERSCRIPT ( italic_ξ , 0 ) = italic_ξ ,

( ii ) ii (\mathrm{ii}) ( roman_ii ) for all ξ Γ 0 𝜉 subscript Γ 0 \xi\in\Gamma_{0} italic_ξ ∈ roman_Γ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT and 0 t < T 0 𝑡 𝑇 0\leq t<T 0 ≤ italic_t < italic_T

x ^ ε ( ξ , t ) Γ ε ( t ) , superscript ^ 𝑥 𝜀 𝜉 𝑡 superscript Γ 𝜀 𝑡 \hat{x}^{\varepsilon}(\xi,t)\in\Gamma^{\varepsilon}(t), ^ start_ARG italic_x end_ARG start_POSTSUPERSCRIPT italic_ε end_POSTSUPERSCRIPT ( italic_ξ , italic_t ) ∈ roman_Γ start_POSTSUPERSCRIPT italic_ε end_POSTSUPERSCRIPT ( italic_t ) ,

( iii ) iii (\mathrm{iii}) ( roman_iii ) for each 0 t < T 0 𝑡 𝑇 0\leq t<T 0 ≤ italic_t < italic_T

x ^ ε ( , t ) : Γ 0 Γ ε ( t ) is bijective . : superscript ^ 𝑥 𝜀 𝑡 subscript Γ 0 superscript Γ 𝜀 𝑡 is bijective \hat{x}^{\varepsilon}(\cdot,t):\Gamma_{0}\to\Gamma^{\varepsilon}(t)\text{ is % bijective}. ^ start_ARG italic_x end_ARG start_POSTSUPERSCRIPT italic_ε end_POSTSUPERSCRIPT ( ⋅ , italic_t ) : roman_Γ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT → roman_Γ start_POSTSUPERSCRIPT italic_ε end_POSTSUPERSCRIPT ( italic_t ) is bijective .

Definition 2.2.1 .

A vector space 𝔤 𝔤 \mathfrak{g} fraktur_g with a bilinear form [ , ] : 𝔤 × 𝔤 𝔤 fragments fragments [ , ] : g g g [,]:\mathfrak{g}\times\mathfrak{g}\rightarrow\mathfrak{g} [ , ] : fraktur_g × fraktur_g → fraktur_g is called a Lie algebra if the following properties are satisfied:

  1. 1.

    [ x , x ] = 0 𝑥 𝑥 0 [x,x]=0 [ italic_x , italic_x ] = 0 ,

  2. 2.

    [ x , [ y , z ] ] + [ y , [ z , x ] ] + [ z , [ x , y ] ] = 0 𝑥 𝑦 𝑧 𝑦 𝑧 𝑥 𝑧 𝑥 𝑦 0 [x,[y,z]]+[y,[z,x]]+[z,[x,y]]=0 [ italic_x , [ italic_y , italic_z ] ] + [ italic_y , [ italic_z , italic_x ] ] + [ italic_z , [ italic_x , italic_y ] ] = 0 (called the Jacobi Identity ),

for all x , y , z 𝔤 𝑥 𝑦 𝑧 𝔤 x,y,z\in\mathfrak{g} italic_x , italic_y , italic_z ∈ fraktur_g . A vector subspace 𝔥 𝔥 \mathfrak{h} fraktur_h of 𝔤 𝔤 \mathfrak{g} fraktur_g is a Lie subalgebra if it is also a Lie algebra with the same [ , ] fragments [ , ] [,] [ , ] .

Furthermore, we say that a subspace 𝔧 𝔧 \mathfrak{j} fraktur_j of a Lie algebra 𝔤 𝔤 \mathfrak{g} fraktur_g is an ideal if for any a 𝔧 𝑎 𝔧 a\in\mathfrak{j} italic_a ∈ fraktur_j implies [ a , b ] 𝔧 𝑎 𝑏 𝔧 [a,b]\in\mathfrak{j} [ italic_a , italic_b ] ∈ fraktur_j for all b 𝔤 𝑏 𝔤 b\in\mathfrak{g} italic_b ∈ fraktur_g . It is clear that every ideal is also a Lie subalgebra.


Definition 2.45 .

Let R 𝑅 R italic_R be a semifield with a negation map, and let A 𝐴 A italic_A be a nonassociative semialgebra with an involution * * * . An element x A 𝑥 𝐴 x\in A italic_x ∈ italic_A is called symmetric , if

x * = x superscript 𝑥 𝑥 x^{*}=x italic_x start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT = italic_x

x 𝑥 x italic_x is called skew-symmetric , if

x * = ( - ) x superscript 𝑥 𝑥 x^{*}=\left(-\right)x italic_x start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT = ( - ) italic_x

Definition 2

A self-similarity structure for a semigroup G 𝐺 G italic_G is the data of a set X 𝑋 X italic_X and a map Φ : X × G G × X : Φ 𝑋 𝐺 𝐺 𝑋 \Phi\colon X\times G\to G\times X roman_Φ : italic_X × italic_G → italic_G × italic_X satisfying

Φ ( x , 𝟙 ) = ( 𝟙 , x ) , Φ ( x , g ) = ( h , y ) Φ ( y , g ) = ( h , z ) Φ ( x , g g ) = ( h h , z ) . formulae-sequence Φ 𝑥 double-struck-𝟙 double-struck-𝟙 𝑥 Φ 𝑥 𝑔 𝑦 Φ 𝑦 superscript 𝑔 superscript 𝑧 Φ 𝑥 𝑔 superscript 𝑔 superscript 𝑧 \Phi(x,{\mathbb{1}})=({\mathbb{1}},x),\quad\Phi(x,g)=(h,y)\wedge\Phi(y,g^{% \prime})=(h^{\prime},z)\Rightarrow\Phi(x,gg^{\prime})=(hh^{\prime},z). roman_Φ ( italic_x , blackboard_𝟙 ) = ( blackboard_𝟙 , italic_x ) , roman_Φ ( italic_x , italic_g ) = ( italic_h , italic_y ) ∧ roman_Φ ( italic_y , italic_g start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) = ( italic_h start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT , italic_z ) ⇒ roman_Φ ( italic_x , italic_g italic_g start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) = ( italic_h italic_h start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT , italic_z ) .

Definition 4

[ 17 , Definitions 5.6.1, 5.6.5]

( x 1 ) ( x n ) ( y 1 ) ( y n ) ( x 1 y 1 & & x n y n F ( x 1 , , x n ) F ( y 1 , , y n ) ) fragments fragments ( for-all subscript 𝑥 1 ) fragments ( for-all subscript 𝑥 𝑛 ) fragments ( for-all subscript 𝑦 1 ) fragments ( for-all subscript 𝑦 𝑛 ) fragments ( subscript 𝑥 1 subscript 𝑦 1 subscript 𝑥 𝑛 subscript 𝑦 𝑛 F fragments ( subscript 𝑥 1 , , subscript 𝑥 𝑛 ) F fragments ( subscript 𝑦 1 , , subscript 𝑦 𝑛 ) ) (\forall x_{1})\dotsb(\forall x_{n})(\forall y_{1})\dotsb(\forall y_{n})(x_{1}% \approx y_{1}\&\dotsb\&x_{n}\approx y_{n}\rightarrow F(x_{1},\ldots,x_{n})% \approx F(y_{1},\ldots,y_{n})) ( ∀ italic_x start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) ⋯ ( ∀ italic_x start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) ( ∀ italic_y start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) ⋯ ( ∀ italic_y start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) ( italic_x start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ≈ italic_y start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT & ⋯ & italic_x start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ≈ italic_y start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT → italic_F ( italic_x start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … , italic_x start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) ≈ italic_F ( italic_y start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … , italic_y start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) )

( x 1 ) ( x n ) ( y 1 ) ( y n ) ( x 1 y 1 & & x n y n ( P ( x 1 , , x n ) P ( y 1 , , y n ) ) fragments fragments ( for-all subscript 𝑥 1 ) fragments ( for-all subscript 𝑥 𝑛 ) fragments ( for-all subscript 𝑦 1 ) fragments ( for-all subscript 𝑦 𝑛 ) fragments ( subscript 𝑥 1 subscript 𝑦 1 subscript 𝑥 𝑛 subscript 𝑦 𝑛 fragments ( P fragments ( subscript 𝑥 1 , , subscript 𝑥 𝑛 ) P fragments ( subscript 𝑦 1 , , subscript 𝑦 𝑛 ) ) (\forall x_{1})\dotsb(\forall x_{n})(\forall y_{1})\dotsb(\forall y_{n})(x_{1}% \approx y_{1}\&\dotsb\&x_{n}\approx y_{n}\rightarrow(P(x_{1},\ldots,x_{n})% \leftrightarrow P(y_{1},\ldots,y_{n})) ( ∀ italic_x start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) ⋯ ( ∀ italic_x start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) ( ∀ italic_y start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) ⋯ ( ∀ italic_y start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) ( italic_x start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ≈ italic_y start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT & ⋯ & italic_x start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ≈ italic_y start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT → ( italic_P ( italic_x start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … , italic_x start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) ↔ italic_P ( italic_y start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … , italic_y start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) )


Definition 2.7

Let L 𝐿 L italic_L be a 3 3 3 3 -Hom-Lie algebra and r L L . 𝑟 tensor-product 𝐿 𝐿 r\in L\otimes L. italic_r ∈ italic_L ⊗ italic_L . The equation

[ [ r , r , r ] ] α = 0 superscript delimited-[] 𝑟 𝑟 𝑟 𝛼 0 [[r,r,r]]^{\alpha}=0 [ [ italic_r , italic_r , italic_r ] ] start_POSTSUPERSCRIPT italic_α end_POSTSUPERSCRIPT = 0

is called the 3 3 3 3 -Lie classical Hom-Yang-Baxter equation ( normal-( ( ( 3 3 3 3 -Lie CHYBE ) normal-) ) ) .


DEFINITION 1.3

E Q N 𝐸 subscript 𝑄 𝑁 EQ_{N} italic_E italic_Q start_POSTSUBSCRIPT italic_N end_POSTSUBSCRIPT is the calculus acting on sequents with one formula in the succedent, obtained from E Q 𝐸 𝑄 EQ italic_E italic_Q by replacing the rules = 1 subscript 1 =_{1} = start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT and = 2 subscript 2 =_{2} = start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT with the rule C N G 𝐶 𝑁 𝐺 CNG italic_C italic_N italic_G :

Γ F { v / r } Λ r = s Γ , Λ F { v / s } formulae-sequence Γ 𝐹 𝑣 𝑟 Λ 𝑟 𝑠 Γ Λ 𝐹 𝑣 𝑠 \begin{array}[]{c}\Gamma\Rightarrow F\{v/r\}~{}~{}~{}~{}~{}~{}~{}\Lambda% \Rightarrow r=s\\ \cline{1-1}\Gamma,\Lambda\Rightarrow F\{v/s\}\end{array} start_ARRAY start_ROW start_CELL roman_Γ ⇒ italic_F { italic_v / italic_r } roman_Λ ⇒ italic_r = italic_s end_CELL end_ROW start_ROW start_CELL roman_Γ , roman_Λ ⇒ italic_F { italic_v / italic_s } end_CELL end_ROW end_ARRAY

Definition 12 .

Let ( u , v ) L × L 𝑢 𝑣 𝐿 𝐿 (u,v)\in L\times L ( italic_u , italic_v ) ∈ italic_L × italic_L . We say that ( u , v ) 𝑢 𝑣 (u,v) ( italic_u , italic_v ) satisfies the ( ) (\star) ( ⋆ ) condition, if ( u , v ) ( ε , ε ) 𝑢 𝑣 𝜀 𝜀 (u,v)\neq(\varepsilon,\varepsilon) ( italic_u , italic_v ) ≠ ( italic_ε , italic_ε ) ,

( u v ) 1 mod 2 , ( u v 0 ) = 0 and ( u v 1 ) = 0 . formulae-sequence binomial 𝑢 𝑣 modulo 1 2 binomial 𝑢 𝑣 0 0 and binomial 𝑢 𝑣 1 0 \binom{u}{v}\equiv 1\bmod{2},\ \binom{u}{v0}=0\text{ and }\binom{u}{v1}=0. ( FRACOP start_ARG italic_u end_ARG start_ARG italic_v end_ARG ) ≡ 1 roman_mod 2 , ( FRACOP start_ARG italic_u end_ARG start_ARG italic_v 0 end_ARG ) = 0 and ( FRACOP start_ARG italic_u end_ARG start_ARG italic_v 1 end_ARG ) = 0 .

In particular, this condition implies that | v | | u | 𝑣 𝑢 |v|\leq|u| | italic_v | ≤ | italic_u | .


Definition 2.1 .

The space of flows 𝔽 𝔽 \mathbb{F} blackboard_F is the set of all families f ( s , x ) C x ( [ s , ) ) 𝑓 subscript product 𝑠 𝑥 subscript 𝐶 𝑥 𝑠 f\in\prod_{(s,x)}C_{x}([s,\infty)) italic_f ∈ ∏ start_POSTSUBSCRIPT ( italic_s , italic_x ) end_POSTSUBSCRIPT italic_C start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT ( [ italic_s , ∞ ) ) that satisfy following conditions.

F1 For all r s t , 𝑟 𝑠 𝑡 r\leq s\leq t, italic_r ≤ italic_s ≤ italic_t , x 𝑥 x\in\mathbb{R} italic_x ∈ blackboard_R

f ( s , f ( r , x ; s ) ; t ) = f ( r , x ; t ) ; 𝑓 𝑠 𝑓 𝑟 𝑥 𝑠 𝑡 𝑓 𝑟 𝑥 𝑡 f(s,f(r,x;s);t)=f(r,x;t); italic_f ( italic_s , italic_f ( italic_r , italic_x ; italic_s ) ; italic_t ) = italic_f ( italic_r , italic_x ; italic_t ) ;

F2 For all s 𝑠 s\in\mathbb{R} italic_s ∈ blackboard_R the set s ( f ) = { f ( r , x ; s ) : r < s , x } subscript 𝑠 𝑓 conditional-set 𝑓 𝑟 𝑥 𝑠 formulae-sequence 𝑟 𝑠 𝑥 \mathcal{R}_{s}(f)=\{f(r,x;s):r<s,x\in\mathbb{R}\} caligraphic_R start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT ( italic_f ) = { italic_f ( italic_r , italic_x ; italic_s ) : italic_r < italic_s , italic_x ∈ blackboard_R } is dense in . \mathbb{R}. blackboard_R .

F3 For all s t 𝑠 𝑡 s\leq t italic_s ≤ italic_t the mapping

x f ( s , x ; t ) 𝑥 𝑓 𝑠 𝑥 𝑡 x\to f(s,x;t) italic_x → italic_f ( italic_s , italic_x ; italic_t )

is right-continuous at each point x s ( f ) . 𝑥 subscript 𝑠 𝑓 x\not\in\mathcal{R}_{s}(f). italic_x ∉ caligraphic_R start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT ( italic_f ) .

F4 For all s < t 𝑠 𝑡 s<t italic_s < italic_t and x 𝑥 x\in\mathbb{R} italic_x ∈ blackboard_R there exist r < t 𝑟 𝑡 r<t italic_r < italic_t and y r ( f ) 𝑦 subscript 𝑟 𝑓 y\not\in\mathcal{R}_{r}(f) italic_y ∉ caligraphic_R start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT ( italic_f ) such that

f ( s , x ; t ) = f ( r , y ; t ) . 𝑓 𝑠 𝑥 𝑡 𝑓 𝑟 𝑦 𝑡 f(s,x;t)=f(r,y;t). italic_f ( italic_s , italic_x ; italic_t ) = italic_f ( italic_r , italic_y ; italic_t ) .

Definition 4.7 .

A Lie algebroid 𝒜 𝒜 \mathcal{A} caligraphic_A over a manifold B 𝐵 B italic_B is a vector bundle 𝒜 B 𝒜 𝐵 \mathcal{A}\to B caligraphic_A → italic_B endowed with a Lie bracket [ , ] fragments [ , ] [\,,] [ , ] on C superscript 𝐶 {C}^{\infty} italic_C start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT -smooth sections and a vector bundle morphism # : 𝒜 T B : # 𝒜 𝑇 𝐵 \#\colon\mathcal{A}\to{T}B # : caligraphic_A → italic_T italic_B , called the anchor map , such that for any two C superscript 𝐶 {C}^{\infty} italic_C start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT -sections ζ , η 𝜁 𝜂 \zeta,\eta italic_ζ , italic_η of 𝒜 𝒜 \mathcal{A} caligraphic_A and any smooth function f C ( B ) 𝑓 superscript 𝐶 𝐵 f\in{C}^{\infty}(B) italic_f ∈ italic_C start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT ( italic_B ) , one has the following version of the Leibniz rule:

[ ζ , f η ] = f [ ζ , η ] + ( # ζ f ) η . 𝜁 𝑓 𝜂 𝑓 𝜁 𝜂 # 𝜁 𝑓 𝜂 [\zeta,f\eta]=f[\zeta,\eta]+({\#\zeta}\cdot f)\eta\,. [ italic_ζ , italic_f italic_η ] = italic_f [ italic_ζ , italic_η ] + ( # italic_ζ ⋅ italic_f ) italic_η .

Definition 3.2 .

A suitable return trajectory for time T > 0 𝑇 0 T>0 italic_T > 0 is a trajectory ( u ¯ , v ¯ , h ¯ ) C 11 ( [ 0 , T ] × [ 0 , L ] ) 3 normal-¯ 𝑢 normal-¯ 𝑣 normal-¯ superscript 𝐶 11 superscript 0 𝑇 0 𝐿 3 (\bar{u},\bar{v},\bar{h})\in\mathit{C}^{11}([0,T]\times[0,L])^{3} ( ¯ start_ARG italic_u end_ARG , ¯ start_ARG italic_v end_ARG , ¯ start_ARG italic_h end_ARG ) ∈ italic_C start_POSTSUPERSCRIPT 11 end_POSTSUPERSCRIPT ( [ 0 , italic_T ] × [ 0 , italic_L ] ) start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT of system ( 1.1 ), such that

u ¯ ( 0 , ) = 0 , ¯ 𝑢 0 0 \displaystyle\bar{u}(0,\cdot)=0, ¯ start_ARG italic_u end_ARG ( 0 , ⋅ ) = 0 , v ¯ ( 0 , ) = 0 , ¯ 𝑣 0 0 \displaystyle\bar{v}(0,\cdot)=0, ¯ start_ARG italic_v end_ARG ( 0 , ⋅ ) = 0 ,
u ¯ t ( 0 , ) = 0 , subscript ¯ 𝑢 𝑡 0 0 \displaystyle\bar{u}_{t}(0,\cdot)=0, ¯ start_ARG italic_u end_ARG start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT ( 0 , ⋅ ) = 0 , v ¯ t ( 0 , ) = 0 , subscript ¯ 𝑣 𝑡 0 0 \displaystyle\bar{v}_{t}(0,\cdot)=0, ¯ start_ARG italic_v end_ARG start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT ( 0 , ⋅ ) = 0 ,
u ¯ ( T , ) = 0 , ¯ 𝑢 𝑇 0 \displaystyle\bar{u}(T,\cdot)=0, ¯ start_ARG italic_u end_ARG ( italic_T , ⋅ ) = 0 , v ¯ ( T , ) = 0 , ¯ 𝑣 𝑇 0 \displaystyle\bar{v}(T,\cdot)=0, ¯ start_ARG italic_v end_ARG ( italic_T , ⋅ ) = 0 ,
u ¯ t ( T , ) = 0 , subscript ¯ 𝑢 𝑡 𝑇 0 \displaystyle\bar{u}_{t}(T,\cdot)=0, ¯ start_ARG italic_u end_ARG start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT ( italic_T , ⋅ ) = 0 , v ¯ t ( T , ) = 0 , subscript ¯ 𝑣 𝑡 𝑇 0 \displaystyle\bar{v}_{t}(T,\cdot)=0, ¯ start_ARG italic_v end_ARG start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT ( italic_T , ⋅ ) = 0 ,
supp ( u ¯ , v ¯ , h ¯ ) [ 0 , T ] × [ a , b ] , supp ¯ 𝑢 ¯ 𝑣 ¯ 0 𝑇 𝑎 𝑏 \textup{supp}\ (\bar{u},\bar{v},\bar{h})\subset[0,T]\times[a,b], supp ( ¯ start_ARG italic_u end_ARG , ¯ start_ARG italic_v end_ARG , ¯ start_ARG italic_h end_ARG ) ⊂ [ 0 , italic_T ] × [ italic_a , italic_b ] ,
𝒟 ( u ¯ , v ¯ , h ¯ ) = ( 0 , 0 ) , 𝒟 ¯ 𝑢 ¯ 𝑣 ¯ 0 0 \mathscr{D}(\bar{u},\bar{v},\bar{h})=(0,0), script_D ( ¯ start_ARG italic_u end_ARG , ¯ start_ARG italic_v end_ARG , ¯ start_ARG italic_h end_ARG ) = ( 0 , 0 ) ,

and such that there exists 0 < δ < min ( T / 2 , ( b - a ) / 2 ) 0 𝛿 𝑇 2 𝑏 𝑎 2 0<\delta<\min\left(T/2,(b-a)/2\right) 0 < italic_δ < roman_min ( italic_T / 2 , ( italic_b - italic_a ) / 2 ) satisfying ( 2.8 ), a δ 𝛿 \delta italic_δ -covering set 𝒬 δ subscript 𝒬 𝛿 \mathcal{Q}_{\delta} caligraphic_Q start_POSTSUBSCRIPT italic_δ end_POSTSUBSCRIPT , a smooth closed set 𝒬 𝒬 \mathcal{Q} caligraphic_Q such that 𝒬 δ 𝒬 subscript 𝒬 𝛿 𝒬 \mathcal{Q}_{\delta}\subset\overset{\circ}{\mathcal{Q}} caligraphic_Q start_POSTSUBSCRIPT italic_δ end_POSTSUBSCRIPT ⊂ ∘ start_ARG caligraphic_Q end_ARG such that

( t , x ) 𝒬 , u ¯ ( t , x ) 0 . formulae-sequence for-all 𝑡 𝑥 𝒬 ¯ 𝑢 𝑡 𝑥 0 \forall(t,x)\in\mathcal{Q},\ \bar{u}(t,x)\neq 0. ∀ ( italic_t , italic_x ) ∈ caligraphic_Q , ¯ start_ARG italic_u end_ARG ( italic_t , italic_x ) ≠ 0 .

Definition 3.6 .

We say that a function z 𝑧 z italic_z is an upper pointed zig-zag function on [ - π / 2 , π / 2 ] 𝜋 2 𝜋 2 [-\pi/2,\pi/2] [ - italic_π / 2 , italic_π / 2 ] if there is a c [ - π / 2 , π / 2 ] 𝑐 𝜋 2 𝜋 2 c\in[-\pi/2,\pi/2] italic_c ∈ [ - italic_π / 2 , italic_π / 2 ] such that z 𝑧 z italic_z can be written as

z ( x ) = { ( x - c ) + z ( c ) if x [ - π / 2 , c ] , - ( x - c ) + z ( c ) if x [ c , π / 2 ] . 𝑧 𝑥 cases 𝑥 𝑐 𝑧 𝑐 if 𝑥 𝜋 2 𝑐 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 𝑥 𝑐 𝑧 𝑐 if 𝑥 𝑐 𝜋 2 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 z(x)=\begin{cases}(x-c)+z(c)\quad\text{if }x\in[-\pi/2,c],\\ -(x-c)+z(c)\quad\text{if }x\in[c,\pi/2].\end{cases} italic_z ( italic_x ) = { start_ROW start_CELL ( italic_x - italic_c ) + italic_z ( italic_c ) if italic_x ∈ [ - italic_π / 2 , italic_c ] , end_CELL start_CELL end_CELL end_ROW start_ROW start_CELL - ( italic_x - italic_c ) + italic_z ( italic_c ) if italic_x ∈ [ italic_c , italic_π / 2 ] . end_CELL start_CELL end_CELL end_ROW

A function z 𝑧 z italic_z is called lower pointed zig-zag if - z 𝑧 -z - italic_z is upper pointed zig-zag.


Definition 2.9 .

For Hopf algebra H 𝐻 H italic_H , a cocycle σ : H H k normal-: 𝜎 normal-→ tensor-product 𝐻 𝐻 𝑘 \sigma:H\otimes H\rightarrow k italic_σ : italic_H ⊗ italic_H → italic_k is a convolution invertible morphism satisfies: g , h , l H for-all 𝑔 𝑙 𝐻 \forall g,h,l\in H ∀ italic_g , italic_h , italic_l ∈ italic_H

σ ( 1 , h ) = ε ( h ) = σ ( h , 1 ) , 𝜎 1 𝜀 𝜎 1 \displaystyle\sigma(1,h)=\varepsilon(h)=\sigma(h,1), italic_σ ( 1 , italic_h ) = italic_ε ( italic_h ) = italic_σ ( italic_h , 1 ) ,
σ ( g ( 1 ) , h ( 1 ) ) σ ( g ( 2 ) h ( 2 ) , l ) = σ ( h ( 1 ) , l ( 1 ) ) σ ( g , h ( 2 ) l ( 2 ) ) . 𝜎 subscript 𝑔 1 subscript 1 𝜎 subscript 𝑔 2 subscript 2 𝑙 𝜎 subscript 1 subscript 𝑙 1 𝜎 𝑔 subscript 2 subscript 𝑙 2 \displaystyle\sigma(g_{(1)},h_{(1)})\sigma(g_{(2)}h_{(2)},l)=\sigma(h_{(1)},l_% {(1)})\sigma(g,h_{(2)}l_{(2)}). italic_σ ( italic_g start_POSTSUBSCRIPT ( 1 ) end_POSTSUBSCRIPT , italic_h start_POSTSUBSCRIPT ( 1 ) end_POSTSUBSCRIPT ) italic_σ ( italic_g start_POSTSUBSCRIPT ( 2 ) end_POSTSUBSCRIPT italic_h start_POSTSUBSCRIPT ( 2 ) end_POSTSUBSCRIPT , italic_l ) = italic_σ ( italic_h start_POSTSUBSCRIPT ( 1 ) end_POSTSUBSCRIPT , italic_l start_POSTSUBSCRIPT ( 1 ) end_POSTSUBSCRIPT ) italic_σ ( italic_g , italic_h start_POSTSUBSCRIPT ( 2 ) end_POSTSUBSCRIPT italic_l start_POSTSUBSCRIPT ( 2 ) end_POSTSUBSCRIPT ) .

Definition 1.1 .

A skew brace is a triple ( A , , ) 𝐴 normal-⋅ (A,\cdot,\circ) ( italic_A , ⋅ , ∘ ) , where ( A , ) 𝐴 normal-⋅ (A,\cdot) ( italic_A , ⋅ ) and ( A , ) 𝐴 (A,\circ) ( italic_A , ∘ ) are groups and the compatibility condition

(1.1) a ( b c ) = ( a b ) a - 1 ( a c ) 𝑎 𝑏 𝑐 𝑎 𝑏 superscript 𝑎 1 𝑎 𝑐 \displaystyle a\circ(bc)=(a\circ b)a^{-1}(a\circ c) italic_a ∘ ( italic_b italic_c ) = ( italic_a ∘ italic_b ) italic_a start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ( italic_a ∘ italic_c )

holds for all a , b , c A 𝑎 𝑏 𝑐 𝐴 a,b,c\in A italic_a , italic_b , italic_c ∈ italic_A , where a - 1 superscript 𝑎 1 a^{-1} italic_a start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT denotes the inverse of a 𝑎 a italic_a with respect to the group ( A , ) 𝐴 normal-⋅ (A,\cdot) ( italic_A , ⋅ ) . Following the theory of classical braces, the group ( A , ) 𝐴 normal-⋅ (A,\cdot) ( italic_A , ⋅ ) will be the additive group of the brace and ( A , ) 𝐴 (A,\circ) ( italic_A , ∘ ) will be the multiplicative group of the brace. A skew brace is said to be classical if its additive group is abelian.

Definition 1.13 .

A skew brace A 𝐴 A italic_A is said to be a two-sided skew brace if

( a b ) c = ( a c ) c - 1 ( b c ) 𝑎 𝑏 𝑐 𝑎 𝑐 superscript 𝑐 1 𝑏 𝑐 (ab)\circ c=(a\circ c)c^{-1}(b\circ c) ( italic_a italic_b ) ∘ italic_c = ( italic_a ∘ italic_c ) italic_c start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ( italic_b ∘ italic_c )

holds for all a , b , c A 𝑎 𝑏 𝑐 𝐴 a,b,c\in A italic_a , italic_b , italic_c ∈ italic_A .

Definition 2.29 .

Given a matched pair ( A , B , α , β ) 𝐴 𝐵 𝛼 𝛽 (A,B,\alpha,\beta) ( italic_A , italic_B , italic_α , italic_β ) of skew braces, define the biproduct A B normal-⋈ 𝐴 𝐵 A\bowtie B italic_A ⋈ italic_B as the set of ordered pairs ( a , b ) A × B 𝑎 𝑏 𝐴 𝐵 (a,b)\in A\times B ( italic_a , italic_b ) ∈ italic_A × italic_B with the operations

(2.7) ( a , b ) ( a , b ) = ( a a , b b ) , 𝑎 𝑏 superscript 𝑎 superscript 𝑏 𝑎 superscript 𝑎 𝑏 superscript 𝑏 \displaystyle(a,b)(a^{\prime},b^{\prime})=(aa^{\prime},bb^{\prime}), ( italic_a , italic_b ) ( italic_a start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT , italic_b start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) = ( italic_a italic_a start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT , italic_b italic_b start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) ,
(2.8) ( a , b ) ( a , b ) = ( β b ( β b - 1 ( a ) a ) , α a ( α a - 1 ( b ) b ) ) . 𝑎 𝑏 superscript 𝑎 superscript 𝑏 subscript 𝛽 𝑏 subscript superscript 𝛽 1 𝑏 𝑎 superscript 𝑎 subscript 𝛼 𝑎 subscript superscript 𝛼 1 𝑎 𝑏 superscript 𝑏 \displaystyle(a,b)\circ(a^{\prime},b^{\prime})=(\beta_{b}(\beta^{-1}_{b}(a)% \circ a^{\prime}),\alpha_{a}(\alpha^{-1}_{a}(b)\circ b^{\prime})). ( italic_a , italic_b ) ∘ ( italic_a start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT , italic_b start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) = ( italic_β start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT ( italic_β start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT ( italic_a ) ∘ italic_a start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) , italic_α start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT ( italic_α start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT ( italic_b ) ∘ italic_b start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) ) .
Definition 5.4 .

Let A 𝐴 A italic_A and B 𝐵 B italic_B be crossed linear cycle sets. A homomorphism between A 𝐴 A italic_A and B 𝐵 B italic_B is a group homomorphism f : A B normal-: 𝑓 normal-→ 𝐴 𝐵 f\colon A\to B italic_f : italic_A → italic_B such that

f ( a a ) = f ( a ) f ( a ) 𝑓 𝑎 superscript 𝑎 𝑓 𝑎 𝑓 superscript 𝑎 f(a\bullet a^{\prime})=f(a)\bullet f(a^{\prime}) italic_f ( italic_a ∙ italic_a start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) = italic_f ( italic_a ) ∙ italic_f ( italic_a start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT )

for all a , a A 𝑎 superscript 𝑎 normal-′ 𝐴 a,a^{\prime}\in A italic_a , italic_a start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ∈ italic_A .


Definition 2.3 .

Let M 𝑀 M italic_M and N 𝑁 N italic_N be von Neumann algebras and E 𝐸 E italic_E be a Hilbert N 𝑁 N italic_N -module. We call E 𝐸 E italic_E a Hilbert M 𝑀 M italic_M - N 𝑁 N italic_N -bimodule when it is an M 𝑀 M italic_M - N 𝑁 N italic_N -bimodule satisfying

( x , a y ) = ( a * x , y ) 𝑥 𝑎 𝑦 superscript 𝑎 𝑥 𝑦 (x,ay)=(a^{*}x,y) ( italic_x , italic_a italic_y ) = ( italic_a start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT italic_x , italic_y )

for every x , y E 𝑥 𝑦 𝐸 x,y\in E italic_x , italic_y ∈ italic_E and a M 𝑎 𝑀 a\in M italic_a ∈ italic_M .

Definition 2.4 .

Let M , N 𝑀 𝑁 M,N italic_M , italic_N and P 𝑃 P italic_P be von Neumann algebras, E 𝐸 E italic_E be a Hilbert N 𝑁 N italic_N - M 𝑀 M italic_M -bimodule and F 𝐹 F italic_F be a Hilbert M 𝑀 M italic_M - P 𝑃 P italic_P -bimodule. Left and right actions of a M 𝑎 𝑀 a\in M italic_a ∈ italic_M and c P 𝑐 𝑃 c\in P italic_c ∈ italic_P on the algebraic tensor product E alg F subscript tensor-product normal-alg 𝐸 𝐹 E\otimes_{{\rm alg}}F italic_E ⊗ start_POSTSUBSCRIPT roman_alg end_POSTSUBSCRIPT italic_F are defined by a ( x y ) c = ( a x ) ( y c ) 𝑎 tensor-product 𝑥 𝑦 𝑐 tensor-product 𝑎 𝑥 𝑦 𝑐 a(x\otimes y)c=(ax)\otimes(yc) italic_a ( italic_x ⊗ italic_y ) italic_c = ( italic_a italic_x ) ⊗ ( italic_y italic_c ) for each x E 𝑥 𝐸 x\in E italic_x ∈ italic_E and y F 𝑦 𝐹 y\in F italic_y ∈ italic_F . We define that

( x y , x y ) = ( y , ( x , x ) y ) tensor-product 𝑥 𝑦 tensor-product superscript 𝑥 superscript 𝑦 𝑦 𝑥 superscript 𝑥 superscript 𝑦 (x\otimes y,x^{\prime}\otimes y^{\prime})=(y,(x,x^{\prime})y^{\prime}) ( italic_x ⊗ italic_y , italic_x start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ⊗ italic_y start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) = ( italic_y , ( italic_x , italic_x start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) italic_y start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT )

for each x , x E 𝑥 superscript 𝑥 normal-′ 𝐸 x,x^{\prime}\in E italic_x , italic_x start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ∈ italic_E and y , y F 𝑦 superscript 𝑦 normal-′ 𝐹 y,y^{\prime}\in F italic_y , italic_y start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ∈ italic_F , and put 𝒩 = { z E alg F ( z , z ) = 0 } 𝒩 conditional-set 𝑧 subscript tensor-product normal-alg 𝐸 𝐹 𝑧 𝑧 0 \mathcal{N}=\{z\in E\otimes_{\rm alg}F\mid(z,z)=0\} caligraphic_N = { italic_z ∈ italic_E ⊗ start_POSTSUBSCRIPT roman_alg end_POSTSUBSCRIPT italic_F ∣ ( italic_z , italic_z ) = 0 } . The tensor product E M F subscript tensor-product 𝑀 𝐸 𝐹 E\otimes_{M}F italic_E ⊗ start_POSTSUBSCRIPT italic_M end_POSTSUBSCRIPT italic_F of E 𝐸 E italic_E and F 𝐹 F italic_F is defined by the completion of ( E alg F ) / 𝒩 subscript tensor-product normal-alg 𝐸 𝐹 𝒩 (E\otimes_{{\rm alg}}F)/\mathcal{N} ( italic_E ⊗ start_POSTSUBSCRIPT roman_alg end_POSTSUBSCRIPT italic_F ) / caligraphic_N with respect to the norm induced from the above inner product. The left and right actions can be extended on E M F subscript tensor-product 𝑀 𝐸 𝐹 E\otimes_{M}F italic_E ⊗ start_POSTSUBSCRIPT italic_M end_POSTSUBSCRIPT italic_F , thus E M F subscript tensor-product 𝑀 𝐸 𝐹 E\otimes_{M}F italic_E ⊗ start_POSTSUBSCRIPT italic_M end_POSTSUBSCRIPT italic_F becomes as Hilbert N 𝑁 N italic_N - P 𝑃 P italic_P -bimodules.


Definition 12 .

Given f : 𝔽 2 2 m 𝔽 2 normal-: 𝑓 normal-→ superscript subscript 𝔽 2 2 𝑚 subscript 𝔽 2 f:\mathbb{F}_{2}^{2m}\rightarrow\mathbb{F}_{2} italic_f : blackboard_F start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 italic_m end_POSTSUPERSCRIPT → blackboard_F start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , form the linear code C ( f ) 𝐶 𝑓 C(f) italic_C ( italic_f ) .

The graph R ( f ) 𝑅 𝑓 R(f) italic_R ( italic_f ) is defined as:

Vertices of R ( f ) 𝑅 𝑓 R(f) italic_R ( italic_f ) are code words of C ( f ) 𝐶 𝑓 C(f) italic_C ( italic_f ) .

For v , w C ( f ) 𝑣 𝑤 𝐶 𝑓 v,w\in C(f) italic_v , italic_w ∈ italic_C ( italic_f ) , edge ( u , v ) R ( f ) 𝑢 𝑣 𝑅 𝑓 (u,v)\in R(f) ( italic_u , italic_v ) ∈ italic_R ( italic_f ) if and only if

{ wt ( u + v ) = 2 2 m - 2 - 2 m - 1 ( if wc ( f ) = 0 ) . wt ( u + v ) = 2 2 m - 2 + 2 m - 1 ( if wc ( f ) = 1 ) . cases wt 𝑢 𝑣 superscript 2 2 𝑚 2 superscript 2 𝑚 1 if wc 𝑓 0 wt 𝑢 𝑣 superscript 2 2 𝑚 2 superscript 2 𝑚 1 if wc 𝑓 1 \displaystyle\begin{cases}\operatorname{wt}\left(u+v\right)=2^{2m-2}-2^{m-1}&(% \text{if~{}}\operatorname{wc}\left(f\right)=0).\\ \operatorname{wt}\left(u+v\right)=2^{2m-2}+2^{m-1}&(\text{if~{}}\operatorname{% wc}\left(f\right)=1).\end{cases} { start_ROW start_CELL roman_wt ( italic_u + italic_v ) = 2 start_POSTSUPERSCRIPT 2 italic_m - 2 end_POSTSUPERSCRIPT - 2 start_POSTSUPERSCRIPT italic_m - 1 end_POSTSUPERSCRIPT end_CELL start_CELL ( if roman_wc ( italic_f ) = 0 ) . end_CELL end_ROW start_ROW start_CELL roman_wt ( italic_u + italic_v ) = 2 start_POSTSUPERSCRIPT 2 italic_m - 2 end_POSTSUPERSCRIPT + 2 start_POSTSUPERSCRIPT italic_m - 1 end_POSTSUPERSCRIPT end_CELL start_CELL ( if roman_wc ( italic_f ) = 1 ) . end_CELL end_ROW