Definition 2.1 .

Let 𝒜 𝒜 \mathcal{A} caligraphic_A be a Banach algebra and let σ H o m ( 𝒜 ) 𝜎 𝐻 𝑜 𝑚 𝒜 \sigma\in Hom(\mathcal{A}) italic_σ ∈ italic_H italic_o italic_m ( caligraphic_A ) . Then 𝒜 𝒜 \mathcal{A} caligraphic_A is σ 𝜎 \sigma italic_σ -biflat if there exists a bounded linear map ρ : ( 𝒜 ^ 𝒜 ) * 𝒜 * : 𝜌 superscript 𝒜 ^ tensor-product 𝒜 superscript 𝒜 \rho:(\mathcal{A}\widehat{\otimes}\mathcal{A})^{*}\longrightarrow\mathcal{A}^{*} italic_ρ : ( caligraphic_A ^ start_ARG ⊗ end_ARG caligraphic_A ) start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT ⟶ caligraphic_A start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT satisfying

ρ ( σ ( a ) λ ) = a ρ ( λ ) and ρ ( λ σ ( a ) ) = ρ ( λ ) a ( 1 ) formulae-sequence 𝜌 𝜎 𝑎 𝜆 𝑎 𝜌 𝜆 and 𝜌 𝜆 𝜎 𝑎 𝜌 𝜆 𝑎 1 \rho(\sigma(a)\cdot\lambda)=a\cdot\rho(\lambda)\ \ \ \text{and}\ \ \ \rho(% \lambda\cdot\sigma(a))=\rho(\lambda)\cdot a\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (1) italic_ρ ( italic_σ ( italic_a ) ⋅ italic_λ ) = italic_a ⋅ italic_ρ ( italic_λ ) and italic_ρ ( italic_λ ⋅ italic_σ ( italic_a ) ) = italic_ρ ( italic_λ ) ⋅ italic_a ( 1 )

for a 𝒜 , λ 𝒜 formulae-sequence 𝑎 𝒜 𝜆 superscript 𝒜 a\in\mathcal{A},\lambda\in\mathcal{A}^{\ast} italic_a ∈ caligraphic_A , italic_λ ∈ caligraphic_A start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT such that ρ π * = σ * 𝜌 superscript 𝜋 superscript 𝜎 \rho\circ\pi^{*}=\sigma^{*} italic_ρ ∘ italic_π start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT = italic_σ start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT .


Definition 2.15 (Orientation) .

Let x , y , z 𝑥 𝑦 𝑧 x,y,z italic_x , italic_y , italic_z be three points in X 𝑋 X italic_X . Define

sign ( x , y , z ) = { 0 if any two points coincide , 1 if { x , y , z } is counterclockwise , - 1 otherwise . fragments sign fragments ( x , y , z ) fragments { 0 if any two points coincide 1 if 𝑥 𝑦 𝑧 is counterclockwise 1 otherwise \mathrm{sign}(x,y,z)=\left\{\begin{aligned} \displaystyle 0&\displaystyle\text% { if any two points coincide},\\ \displaystyle 1&\displaystyle\text{ if }\{x,y,z\}\text{ is counterclockwise},% \\ \displaystyle-1&\displaystyle\text{ otherwise}.\end{aligned}\right. roman_sign ( italic_x , italic_y , italic_z ) = { start_ROW start_CELL 0 end_CELL start_CELL if any two points coincide , end_CELL end_ROW start_ROW start_CELL 1 end_CELL start_CELL if { italic_x , italic_y , italic_z } is counterclockwise , end_CELL end_ROW start_ROW start_CELL - 1 end_CELL start_CELL otherwise . end_CELL end_ROW

Definition 1.1

A left (respectively right) pre-Lie algebra is a linear space A 𝐴 A italic_A endowed with a linear map : A A A fragments normal-⋅ normal-: A tensor-product A normal-→ A \cdot:A\otimes A\rightarrow A ⋅ : italic_A ⊗ italic_A → italic_A satisfying (for all x , y , z A 𝑥 𝑦 𝑧 𝐴 x,y,z\in A italic_x , italic_y , italic_z ∈ italic_A )

x ( y z ) - ( x y ) z = y ( x z ) - ( y x ) z , 𝑥 𝑦 𝑧 𝑥 𝑦 𝑧 𝑦 𝑥 𝑧 𝑦 𝑥 𝑧 \displaystyle x\cdot(y\cdot z)-(x\cdot y)\cdot z=y\cdot(x\cdot z)-(y\cdot x)% \cdot z, italic_x ⋅ ( italic_y ⋅ italic_z ) - ( italic_x ⋅ italic_y ) ⋅ italic_z = italic_y ⋅ ( italic_x ⋅ italic_z ) - ( italic_y ⋅ italic_x ) ⋅ italic_z , (1.1)

respectively

x ( y z ) - ( x y ) z = x ( z y ) - ( x z ) y . 𝑥 𝑦 𝑧 𝑥 𝑦 𝑧 𝑥 𝑧 𝑦 𝑥 𝑧 𝑦 \displaystyle x\cdot(y\cdot z)-(x\cdot y)\cdot z=x\cdot(z\cdot y)-(x\cdot z)% \cdot y. italic_x ⋅ ( italic_y ⋅ italic_z ) - ( italic_x ⋅ italic_y ) ⋅ italic_z = italic_x ⋅ ( italic_z ⋅ italic_y ) - ( italic_x ⋅ italic_z ) ⋅ italic_y . (1.2)
Definition 1.2

( [ 13 ] ) A left (respectively right) Leibniz algebra is a linear space L 𝐿 L italic_L endowed with a bilinear map [ , ] : L × L L normal-: normal-⋅ normal-⋅ normal-→ 𝐿 𝐿 𝐿 [\cdot,\cdot]:L\times L\rightarrow L [ ⋅ , ⋅ ] : italic_L × italic_L → italic_L satisfying (for all x , y , z L 𝑥 𝑦 𝑧 𝐿 x,y,z\in L italic_x , italic_y , italic_z ∈ italic_L ):

[ x , [ y , z ] ] = [ [ x , y ] , z ] + [ y , [ x , z ] ] , 𝑥 𝑦 𝑧 𝑥 𝑦 𝑧 𝑦 𝑥 𝑧 \displaystyle[x,[y,z]]=[[x,y],z]+[y,[x,z]], [ italic_x , [ italic_y , italic_z ] ] = [ [ italic_x , italic_y ] , italic_z ] + [ italic_y , [ italic_x , italic_z ] ] , (1.3)

respectively

[ [ x , y ] , z ] = [ [ x , z ] , y ] + [ x , [ y , z ] ] . 𝑥 𝑦 𝑧 𝑥 𝑧 𝑦 𝑥 𝑦 𝑧 \displaystyle[[x,y],z]=[[x,z],y]+[x,[y,z]]. [ [ italic_x , italic_y ] , italic_z ] = [ [ italic_x , italic_z ] , italic_y ] + [ italic_x , [ italic_y , italic_z ] ] . (1.4)

A morphism of (left or right) Leibniz algebras L 𝐿 L italic_L and L superscript 𝐿 normal-′ L^{\prime} italic_L start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT is a linear map f : L L normal-: 𝑓 normal-→ 𝐿 superscript 𝐿 normal-′ f:L\rightarrow L^{\prime} italic_f : italic_L → italic_L start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT such that f ( [ x , y ] ) = [ f ( x ) , f ( y ) ] 𝑓 𝑥 𝑦 𝑓 𝑥 𝑓 𝑦 f([x,y])=[f(x),f(y)] italic_f ( [ italic_x , italic_y ] ) = [ italic_f ( italic_x ) , italic_f ( italic_y ) ] , for all x , y L 𝑥 𝑦 𝐿 x,y\in L italic_x , italic_y ∈ italic_L .

Definition 1.4

A BiHom-associative algebra over 𝕜 normal-𝕜 \Bbbk roman_𝕜 is a 4-tuple ( A , μ , α , β ) 𝐴 𝜇 𝛼 𝛽 \left(A,\mu,\alpha,\beta\right) ( italic_A , italic_μ , italic_α , italic_β ) , where A 𝐴 A italic_A is a 𝕜 normal-𝕜 \Bbbk roman_𝕜 -linear space, α : A A normal-: 𝛼 normal-→ 𝐴 𝐴 \alpha:A\rightarrow A italic_α : italic_A → italic_A , β : A A normal-: 𝛽 normal-→ 𝐴 𝐴 \beta:A\rightarrow A italic_β : italic_A → italic_A and μ : A A A normal-: 𝜇 normal-→ tensor-product 𝐴 𝐴 𝐴 \mu:A\otimes A\rightarrow A italic_μ : italic_A ⊗ italic_A → italic_A are linear maps, with notation μ ( x y ) = x y 𝜇 tensor-product 𝑥 𝑦 𝑥 𝑦 \mu(x\otimes y)=xy italic_μ ( italic_x ⊗ italic_y ) = italic_x italic_y , for all x , y A 𝑥 𝑦 𝐴 x,y\in A italic_x , italic_y ∈ italic_A , satisfying the following conditions, for all x , y , z A 𝑥 𝑦 𝑧 𝐴 x,y,z\in A italic_x , italic_y , italic_z ∈ italic_A :

α β = β α , 𝛼 𝛽 𝛽 𝛼 \displaystyle\alpha\circ\beta=\beta\circ\alpha, italic_α ∘ italic_β = italic_β ∘ italic_α , (1.6)
α ( x y ) = α ( x ) α ( y ) and β ( x y ) = β ( x ) β ( y ) , (multiplicativity) formulae-sequence 𝛼 𝑥 𝑦 𝛼 𝑥 𝛼 𝑦 and 𝛽 𝑥 𝑦 𝛽 𝑥 𝛽 𝑦 (multiplicativity) \displaystyle\alpha(xy)=\alpha(x)\alpha(y)\text{ and }\beta(xy)=\beta(x)\beta(% y),\quad\text{(multiplicativity)} italic_α ( italic_x italic_y ) = italic_α ( italic_x ) italic_α ( italic_y ) and italic_β ( italic_x italic_y ) = italic_β ( italic_x ) italic_β ( italic_y ) , (multiplicativity) (1.7)
α ( x ) ( y z ) = ( x y ) β ( z ) . (BiHom-associativity) fragments α fragments ( x ) fragments ( y z ) fragments ( x y ) β fragments ( z ) . italic- (BiHom-associativity) \displaystyle\alpha(x)(yz)=(xy)\beta(z).\quad\text{(BiHom-associativity)} italic_α ( italic_x ) ( italic_y italic_z ) = ( italic_x italic_y ) italic_β ( italic_z ) . (BiHom-associativity) (1.8)

We call α 𝛼 \alpha italic_α and β 𝛽 \beta italic_β (in this order) the structure maps of A 𝐴 A italic_A .

Definition 1.5

A BiHom-Lie algebra over 𝕜 normal-𝕜 \Bbbk roman_𝕜 is a 4-tuple ( L , [ , ] , α , β ) 𝐿 normal-⋅ normal-⋅ 𝛼 𝛽 \left(L,\left[\cdot,\cdot\right],\alpha,\beta\right) ( italic_L , [ ⋅ , ⋅ ] , italic_α , italic_β ) , where L 𝐿 L italic_L is a 𝕜 normal-𝕜 \Bbbk roman_𝕜 -linear space, α , β : L L normal-: 𝛼 𝛽 normal-→ 𝐿 𝐿 \alpha,\beta:L\rightarrow L italic_α , italic_β : italic_L → italic_L are linear maps and [ , ] : L × L L normal-: normal-⋅ normal-⋅ normal-→ 𝐿 𝐿 𝐿 \left[\cdot,\cdot\right]:L\times L\rightarrow L [ ⋅ , ⋅ ] : italic_L × italic_L → italic_L is a bilinear map, satisfying the following conditions, for all x , y , z L : normal-: 𝑥 𝑦 𝑧 𝐿 absent x,y,z\in L: italic_x , italic_y , italic_z ∈ italic_L :

α β = β α , 𝛼 𝛽 𝛽 𝛼 \displaystyle\alpha\circ\beta=\beta\circ\alpha, italic_α ∘ italic_β = italic_β ∘ italic_α ,
α ( [ x , y ] ) = [ α ( x ) , α ( y ) ] and β ( [ x , y ] ) = [ β ( x ) , β ( y ) ] , 𝛼 𝑥 𝑦 𝛼 𝑥 𝛼 𝑦 and 𝛽 𝑥 𝑦 𝛽 𝑥 𝛽 𝑦 \displaystyle\alpha(\left[x,y\right])=\left[\alpha\left(x\right),\alpha(y)% \right]\;\;\text{ and }\;\;\beta(\left[x,y\right])=\left[\beta\left(x\right),% \beta\left(y\right)\right], italic_α ( [ italic_x , italic_y ] ) = [ italic_α ( italic_x ) , italic_α ( italic_y ) ] and italic_β ( [ italic_x , italic_y ] ) = [ italic_β ( italic_x ) , italic_β ( italic_y ) ] ,
[ β ( x ) , α ( y ) ] = - [ β ( y ) , α ( x ) ] , (BiHom-skew-symmetry) 𝛽 𝑥 𝛼 𝑦 𝛽 𝑦 𝛼 𝑥 (BiHom-skew-symmetry) \displaystyle\left[\beta\left(x\right),\alpha\left(y\right)\right]=-\left[% \beta\left(y\right),\alpha\left(x\right)\right],\;\;\;\;\text{ (BiHom-skew-% symmetry)} [ italic_β ( italic_x ) , italic_α ( italic_y ) ] = - [ italic_β ( italic_y ) , italic_α ( italic_x ) ] , (BiHom-skew-symmetry)
[ β 2 ( x ) , [ β ( y ) , α ( z ) ] ] + [ β 2 ( y ) , [ β ( z ) , α ( x ) ] ] + [ β 2 ( z ) , [ β ( x ) , α ( y ) ] ] = 0 . superscript 𝛽 2 𝑥 𝛽 𝑦 𝛼 𝑧 superscript 𝛽 2 𝑦 𝛽 𝑧 𝛼 𝑥 superscript 𝛽 2 𝑧 𝛽 𝑥 𝛼 𝑦 0 \displaystyle\left[\beta^{2}\left(x\right),\left[\beta\left(y\right),\alpha% \left(z\right)\right]\right]+\left[\beta^{2}\left(y\right),\left[\beta\left(z% \right),\alpha\left(x\right)\right]\right]+\left[\beta^{2}\left(z\right),\left% [\beta\left(x\right),\alpha\left(y\right)\right]\right]=0. [ italic_β start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_x ) , [ italic_β ( italic_y ) , italic_α ( italic_z ) ] ] + [ italic_β start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_y ) , [ italic_β ( italic_z ) , italic_α ( italic_x ) ] ] + [ italic_β start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_z ) , [ italic_β ( italic_x ) , italic_α ( italic_y ) ] ] = 0 .
(BiHom-Jacobi condition)

We call α 𝛼 \alpha italic_α and β 𝛽 \beta italic_β (in this order) the structure maps of L 𝐿 L italic_L .

A morphism f : ( L , [ , ] , α , β ) ( L , [ , ] , α , β ) normal-: 𝑓 normal-→ 𝐿 normal-⋅ normal-⋅ 𝛼 𝛽 superscript 𝐿 normal-′ superscript normal-⋅ normal-⋅ normal-′ superscript 𝛼 normal-′ superscript 𝛽 normal-′ f:\left(L,\left[\cdot,\cdot\right],\alpha,\beta\right)\rightarrow\left(L^{% \prime},\left[\cdot,\cdot\right]^{\prime},\alpha^{\prime},\beta^{\prime}\right) italic_f : ( italic_L , [ ⋅ , ⋅ ] , italic_α , italic_β ) → ( italic_L start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT , [ ⋅ , ⋅ ] start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT , italic_α start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT , italic_β start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) of BiHom-Lie algebras is a linear map f : L L normal-: 𝑓 normal-→ 𝐿 superscript 𝐿 normal-′ f:L\rightarrow L^{\prime} italic_f : italic_L → italic_L start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT such that α f = f α superscript 𝛼 normal-′ 𝑓 𝑓 𝛼 \alpha^{\prime}\circ f=f\circ\alpha italic_α start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ∘ italic_f = italic_f ∘ italic_α , β f = f β superscript 𝛽 normal-′ 𝑓 𝑓 𝛽 \beta^{\prime}\circ f=f\circ\beta italic_β start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ∘ italic_f = italic_f ∘ italic_β and f ( [ x , y ] ) = [ f ( x ) , f ( y ) ] 𝑓 𝑥 𝑦 superscript 𝑓 𝑥 𝑓 𝑦 normal-′ f(\left[x,y\right])=[f(x),f(y)]^{\prime} italic_f ( [ italic_x , italic_y ] ) = [ italic_f ( italic_x ) , italic_f ( italic_y ) ] start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT , for all x , y L 𝑥 𝑦 𝐿 x,y\in L italic_x , italic_y ∈ italic_L .

Definition 2.1

A left (respectively right) BiHom-pre-Lie algebra is a 4-tuple ( A , , α , β ) 𝐴 normal-⋅ 𝛼 𝛽 (A,\cdot,\alpha,\beta) ( italic_A , ⋅ , italic_α , italic_β ) , where A 𝐴 A italic_A is a linear space and : A A A fragments normal-⋅ normal-: A tensor-product A normal-→ A \cdot:A\otimes A\rightarrow A ⋅ : italic_A ⊗ italic_A → italic_A and α , β : A A normal-: 𝛼 𝛽 normal-→ 𝐴 𝐴 \alpha,\beta:A\rightarrow A italic_α , italic_β : italic_A → italic_A are linear maps satifying α β = β α 𝛼 𝛽 𝛽 𝛼 \alpha\circ\beta=\beta\circ\alpha italic_α ∘ italic_β = italic_β ∘ italic_α , α ( x y ) = α ( x ) α ( y ) 𝛼 normal-⋅ 𝑥 𝑦 normal-⋅ 𝛼 𝑥 𝛼 𝑦 \alpha(x\cdot y)=\alpha(x)\cdot\alpha(y) italic_α ( italic_x ⋅ italic_y ) = italic_α ( italic_x ) ⋅ italic_α ( italic_y ) , β ( x y ) = β ( x ) β ( y ) 𝛽 normal-⋅ 𝑥 𝑦 normal-⋅ 𝛽 𝑥 𝛽 𝑦 \beta(x\cdot y)=\beta(x)\cdot\beta(y) italic_β ( italic_x ⋅ italic_y ) = italic_β ( italic_x ) ⋅ italic_β ( italic_y ) and

α β ( x ) ( α ( y ) z ) - ( β ( x ) α ( y ) ) β ( z ) = α β ( y ) ( α ( x ) z ) - ( β ( y ) α ( x ) ) β ( z ) , 𝛼 𝛽 𝑥 𝛼 𝑦 𝑧 𝛽 𝑥 𝛼 𝑦 𝛽 𝑧 𝛼 𝛽 𝑦 𝛼 𝑥 𝑧 𝛽 𝑦 𝛼 𝑥 𝛽 𝑧 \displaystyle\alpha\beta(x)\cdot(\alpha(y)\cdot z)-(\beta(x)\cdot\alpha(y))% \cdot\beta(z)=\alpha\beta(y)\cdot(\alpha(x)\cdot z)-(\beta(y)\cdot\alpha(x))% \cdot\beta(z), italic_α italic_β ( italic_x ) ⋅ ( italic_α ( italic_y ) ⋅ italic_z ) - ( italic_β ( italic_x ) ⋅ italic_α ( italic_y ) ) ⋅ italic_β ( italic_z ) = italic_α italic_β ( italic_y ) ⋅ ( italic_α ( italic_x ) ⋅ italic_z ) - ( italic_β ( italic_y ) ⋅ italic_α ( italic_x ) ) ⋅ italic_β ( italic_z ) , (2.1)

respectively

α ( x ) ( β ( y ) α ( z ) ) - ( x β ( y ) ) α β ( z ) = α ( x ) ( β ( z ) α ( y ) ) - ( x β ( z ) ) α β ( y ) , 𝛼 𝑥 𝛽 𝑦 𝛼 𝑧 𝑥 𝛽 𝑦 𝛼 𝛽 𝑧 𝛼 𝑥 𝛽 𝑧 𝛼 𝑦 𝑥 𝛽 𝑧 𝛼 𝛽 𝑦 \displaystyle\alpha(x)\cdot(\beta(y)\cdot\alpha(z))-(x\cdot\beta(y))\cdot% \alpha\beta(z)=\alpha(x)\cdot(\beta(z)\cdot\alpha(y))-(x\cdot\beta(z))\cdot% \alpha\beta(y), italic_α ( italic_x ) ⋅ ( italic_β ( italic_y ) ⋅ italic_α ( italic_z ) ) - ( italic_x ⋅ italic_β ( italic_y ) ) ⋅ italic_α italic_β ( italic_z ) = italic_α ( italic_x ) ⋅ ( italic_β ( italic_z ) ⋅ italic_α ( italic_y ) ) - ( italic_x ⋅ italic_β ( italic_z ) ) ⋅ italic_α italic_β ( italic_y ) , (2.2)

for all x , y , z A 𝑥 𝑦 𝑧 𝐴 x,y,z\in A italic_x , italic_y , italic_z ∈ italic_A . We call α 𝛼 \alpha italic_α and β 𝛽 \beta italic_β (in this order) the structure maps of A 𝐴 A italic_A .

A morphism f : ( A , , α , β ) ( A , , α , β ) normal-: 𝑓 normal-→ 𝐴 normal-⋅ 𝛼 𝛽 superscript 𝐴 normal-′ superscript normal-⋅ normal-′ superscript 𝛼 normal-′ superscript 𝛽 normal-′ f:(A,\cdot,\alpha,\beta)\rightarrow(A^{\prime},\cdot^{\prime},\alpha^{\prime},% \beta^{\prime}) italic_f : ( italic_A , ⋅ , italic_α , italic_β ) → ( italic_A start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT , ⋅ start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT , italic_α start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT , italic_β start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) of left or right BiHom-pre-Lie algebras is a linear map f : A A normal-: 𝑓 normal-→ 𝐴 superscript 𝐴 normal-′ f:A\rightarrow A^{\prime} italic_f : italic_A → italic_A start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT satisfying f ( x y ) = f ( x ) f ( y ) 𝑓 normal-⋅ 𝑥 𝑦 superscript normal-⋅ normal-′ 𝑓 𝑥 𝑓 𝑦 f(x\cdot y)=f(x)\cdot^{\prime}f(y) italic_f ( italic_x ⋅ italic_y ) = italic_f ( italic_x ) ⋅ start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT italic_f ( italic_y ) , for all x , y A 𝑥 𝑦 𝐴 x,y\in A italic_x , italic_y ∈ italic_A , as well as f α = α f 𝑓 𝛼 superscript 𝛼 normal-′ 𝑓 f\circ\alpha=\alpha^{\prime}\circ f italic_f ∘ italic_α = italic_α start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ∘ italic_f and f β = β f 𝑓 𝛽 superscript 𝛽 normal-′ 𝑓 f\circ\beta=\beta^{\prime}\circ f italic_f ∘ italic_β = italic_β start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ∘ italic_f .

Definition 2.5

( [ 12 ] A BiHom-dendriform algebra is a 5-tuple ( A , , , α , β ) 𝐴 precedes succeeds 𝛼 𝛽 (A,\prec,\succ,\alpha,\beta) ( italic_A , ≺ , ≻ , italic_α , italic_β ) consisting of a linear space A 𝐴 A italic_A and linear maps , : A A A fragments precedes normal-, succeeds normal-: A tensor-product A normal-→ A \prec,\succ:A\otimes A\rightarrow A ≺ , ≻ : italic_A ⊗ italic_A → italic_A and α , β : A A normal-: 𝛼 𝛽 normal-→ 𝐴 𝐴 \alpha,\beta:A\rightarrow A italic_α , italic_β : italic_A → italic_A satisfying the following conditions (for all x , y , z A 𝑥 𝑦 𝑧 𝐴 x,y,z\in A italic_x , italic_y , italic_z ∈ italic_A ):

α β = β α , 𝛼 𝛽 𝛽 𝛼 \displaystyle\alpha\circ\beta=\beta\circ\alpha, italic_α ∘ italic_β = italic_β ∘ italic_α , (2.3)
α ( x y ) = α ( x ) α ( y ) , α ( x y ) = α ( x ) α ( y ) , fragments α fragments ( x precedes y ) α fragments ( x ) precedes α fragments ( y ) , α fragments ( x succeeds y ) α fragments ( x ) succeeds α fragments ( y ) , \displaystyle\alpha(x\prec y)=\alpha(x)\prec\alpha(y),~{}\alpha(x\succ y)=% \alpha(x)\succ\alpha(y), italic_α ( italic_x ≺ italic_y ) = italic_α ( italic_x ) ≺ italic_α ( italic_y ) , italic_α ( italic_x ≻ italic_y ) = italic_α ( italic_x ) ≻ italic_α ( italic_y ) , (2.4)
β ( x y ) = β ( x ) β ( y ) , β ( x y ) = β ( x ) β ( y ) , fragments β fragments ( x precedes y ) β fragments ( x ) precedes β fragments ( y ) , β fragments ( x succeeds y ) β fragments ( x ) succeeds β fragments ( y ) , \displaystyle\beta(x\prec y)=\beta(x)\prec\beta(y),~{}\beta(x\succ y)=\beta(x)% \succ\beta(y), italic_β ( italic_x ≺ italic_y ) = italic_β ( italic_x ) ≺ italic_β ( italic_y ) , italic_β ( italic_x ≻ italic_y ) = italic_β ( italic_x ) ≻ italic_β ( italic_y ) , (2.5)
( x y ) β ( z ) = α ( x ) ( y z + y z ) , fragments fragments ( x precedes y ) precedes β fragments ( z ) α fragments ( x ) precedes fragments ( y precedes z y succeeds z ) , \displaystyle(x\prec y)\prec\beta(z)=\alpha(x)\prec(y\prec z+y\succ z), ( italic_x ≺ italic_y ) ≺ italic_β ( italic_z ) = italic_α ( italic_x ) ≺ ( italic_y ≺ italic_z + italic_y ≻ italic_z ) , (2.6)
( x y ) β ( z ) = α ( x ) ( y z ) , fragments fragments ( x succeeds y ) precedes β fragments ( z ) α fragments ( x ) succeeds fragments ( y precedes z ) , \displaystyle(x\succ y)\prec\beta(z)=\alpha(x)\succ(y\prec z), ( italic_x ≻ italic_y ) ≺ italic_β ( italic_z ) = italic_α ( italic_x ) ≻ ( italic_y ≺ italic_z ) , (2.7)
α ( x ) ( y z ) = ( x y + x y ) β ( z ) . fragments α fragments ( x ) succeeds fragments ( y succeeds z ) fragments ( x precedes y x succeeds y ) succeeds β fragments ( z ) . \displaystyle\alpha(x)\succ(y\succ z)=(x\prec y+x\succ y)\succ\beta(z). italic_α ( italic_x ) ≻ ( italic_y ≻ italic_z ) = ( italic_x ≺ italic_y + italic_x ≻ italic_y ) ≻ italic_β ( italic_z ) . (2.8)

We call α 𝛼 \alpha italic_α and β 𝛽 \beta italic_β (in this order) the structure maps of A 𝐴 A italic_A .

Definition 3.1

A left (respectively right) BiHom-Leibniz algebra is a 4-tuple ( L , [ , ] , α , β ) 𝐿 normal-⋅ normal-⋅ 𝛼 𝛽 (L,[\cdot,\cdot],\alpha,\beta) ( italic_L , [ ⋅ , ⋅ ] , italic_α , italic_β ) , where L 𝐿 L italic_L is a linear space, [ , ] : L × L L normal-: normal-⋅ normal-⋅ normal-→ 𝐿 𝐿 𝐿 [\cdot,\cdot]:L\times L\rightarrow L [ ⋅ , ⋅ ] : italic_L × italic_L → italic_L is a bilinear map and α , β : L L normal-: 𝛼 𝛽 normal-→ 𝐿 𝐿 \alpha,\beta:L\rightarrow L italic_α , italic_β : italic_L → italic_L are linear maps satisfying α β = β α 𝛼 𝛽 𝛽 𝛼 \alpha\circ\beta=\beta\circ\alpha italic_α ∘ italic_β = italic_β ∘ italic_α , α ( [ x , y ] ) = [ α ( x ) , α ( y ) ] 𝛼 𝑥 𝑦 𝛼 𝑥 𝛼 𝑦 \alpha([x,y])=[\alpha(x),\alpha(y)] italic_α ( [ italic_x , italic_y ] ) = [ italic_α ( italic_x ) , italic_α ( italic_y ) ] , β ( [ x , y ] ) = [ β ( x ) , β ( y ) ] 𝛽 𝑥 𝑦 𝛽 𝑥 𝛽 𝑦 \beta([x,y])=[\beta(x),\beta(y)] italic_β ( [ italic_x , italic_y ] ) = [ italic_β ( italic_x ) , italic_β ( italic_y ) ] and

[ α β ( x ) , [ y , z ] ] = [ [ β ( x ) , y ] , β ( z ) ] + [ β ( y ) , [ α ( x ) , z ] ] , 𝛼 𝛽 𝑥 𝑦 𝑧 𝛽 𝑥 𝑦 𝛽 𝑧 𝛽 𝑦 𝛼 𝑥 𝑧 \displaystyle[\alpha\beta(x),[y,z]]=[[\beta(x),y],\beta(z)]+[\beta(y),[\alpha(% x),z]], [ italic_α italic_β ( italic_x ) , [ italic_y , italic_z ] ] = [ [ italic_β ( italic_x ) , italic_y ] , italic_β ( italic_z ) ] + [ italic_β ( italic_y ) , [ italic_α ( italic_x ) , italic_z ] ] , (3.1)

respectively

[ [ x , y ] , α β ( z ) ] = [ [ x , β ( z ) ] , α ( y ) ] + [ α ( x ) , [ y , α ( z ) ] ] , 𝑥 𝑦 𝛼 𝛽 𝑧 𝑥 𝛽 𝑧 𝛼 𝑦 𝛼 𝑥 𝑦 𝛼 𝑧 \displaystyle[[x,y],\alpha\beta(z)]=[[x,\beta(z)],\alpha(y)]+[\alpha(x),[y,% \alpha(z)]], [ [ italic_x , italic_y ] , italic_α italic_β ( italic_z ) ] = [ [ italic_x , italic_β ( italic_z ) ] , italic_α ( italic_y ) ] + [ italic_α ( italic_x ) , [ italic_y , italic_α ( italic_z ) ] ] , (3.2)

for all x , y , z L 𝑥 𝑦 𝑧 𝐿 x,y,z\in L italic_x , italic_y , italic_z ∈ italic_L . We call α 𝛼 \alpha italic_α and β 𝛽 \beta italic_β (in this order) the structure maps of L 𝐿 L italic_L .

A morphism f : ( L , [ , ] , α , β ) ( L , [ , ] , α , β ) normal-: 𝑓 normal-→ 𝐿 normal-⋅ normal-⋅ 𝛼 𝛽 superscript 𝐿 normal-′ superscript normal-⋅ normal-⋅ normal-′ superscript 𝛼 normal-′ superscript 𝛽 normal-′ f:(L,[\cdot,\cdot],\alpha,\beta)\rightarrow(L^{\prime},[\cdot,\cdot]^{\prime},% \alpha^{\prime},\beta^{\prime}) italic_f : ( italic_L , [ ⋅ , ⋅ ] , italic_α , italic_β ) → ( italic_L start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT , [ ⋅ , ⋅ ] start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT , italic_α start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT , italic_β start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) of BiHom-Leibniz algebras is a linear map f : L L normal-: 𝑓 normal-→ 𝐿 superscript 𝐿 normal-′ f:L\rightarrow L^{\prime} italic_f : italic_L → italic_L start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT such that α f = f α superscript 𝛼 normal-′ 𝑓 𝑓 𝛼 \alpha^{\prime}\circ f=f\circ\alpha italic_α start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ∘ italic_f = italic_f ∘ italic_α , β f = f β superscript 𝛽 normal-′ 𝑓 𝑓 𝛽 \beta^{\prime}\circ f=f\circ\beta italic_β start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ∘ italic_f = italic_f ∘ italic_β and f ( [ x , y ] ) = [ f ( x ) , f ( y ) ] 𝑓 𝑥 𝑦 superscript 𝑓 𝑥 𝑓 𝑦 normal-′ f([x,y])=[f(x),f(y)]^{\prime} italic_f ( [ italic_x , italic_y ] ) = [ italic_f ( italic_x ) , italic_f ( italic_y ) ] start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT , for all x , y L 𝑥 𝑦 𝐿 x,y\in L italic_x , italic_y ∈ italic_L .


Definition 2.5 .

We say that the fragmentation process (or the characteristics ( ( c i ) i [ K ] , ( ν i ) i [ K ] ) ) fragments fragments normal-( subscript fragments normal-( subscript 𝑐 𝑖 normal-) 𝑖 delimited-[] 𝐾 normal-, subscript fragments normal-( subscript 𝜈 𝑖 normal-) 𝑖 delimited-[] 𝐾 normal-) normal-) \big{(}(c_{i})_{i\in[K]},(\nu_{i})_{i\in[K]}\big{)}) ( ( italic_c start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) start_POSTSUBSCRIPT italic_i ∈ [ italic_K ] end_POSTSUBSCRIPT , ( italic_ν start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) start_POSTSUBSCRIPT italic_i ∈ [ italic_K ] end_POSTSUBSCRIPT ) ) is Malthusian if it is irreducible and there exists a number p * ( 0 , 1 ] superscript 𝑝 0 1 p^{*}\in(0,1] italic_p start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT ∈ ( 0 , 1 ] called the Malthusian exponent such that

λ ( p * ) = 0 . 𝜆 superscript 𝑝 0 \lambda(p^{*})=0. italic_λ ( italic_p start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT ) = 0 .

Definition 2 .

A magic element of type ( n , 0 ) 𝑛 0 (n,0) ( italic_n , 0 ) is inductively defined by the following formula:

= \raisebox{-4.0pt}{\includegraphics[]{onezero.pdf}}=\raisebox{-3.0pt}{% \includegraphics[]{one.pdf}} =
= - [ n - 1 ] [ n ] delimited-[] 𝑛 1 delimited-[] 𝑛 \raisebox{-4.0pt}{\includegraphics[]{nzero.pdf}}=\raisebox{-13.0pt}{% \includegraphics[]{none.pdf}}-\frac{[n-1]}{[n]}\quad\raisebox{-14.0pt}{% \includegraphics[]{ntwo.pdf}} = - divide start_ARG [ italic_n - 1 ] end_ARG start_ARG [ italic_n ] end_ARG

Definition 7 .

A compatible almost complex structure J 𝐽 J italic_J on ( M , ω ) 𝑀 𝜔 (M,\omega) ( italic_M , italic_ω ) is called special if there exists λ 𝐑 𝜆 𝐑 \lambda\in\mathbf{R} italic_λ ∈ bold_R such that the Chern-Ricci form of J 𝐽 J italic_J satisfies

ρ = λ ω . 𝜌 𝜆 𝜔 \rho=\lambda\omega. italic_ρ = italic_λ italic_ω . (12)

6.1 Definition .

For 0 < a < 1 0 𝑎 1 0<a<1 0 < italic_a < 1 , let

c ( a ) = c + ( a ) c - ( a ) , 𝑐 𝑎 superscript 𝑐 𝑎 superscript 𝑐 𝑎 c(a)=c^{+}(a)\cup c^{-}(a), italic_c ( italic_a ) = italic_c start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT ( italic_a ) ∪ italic_c start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT ( italic_a ) ,

where c ± ( a ) superscript 𝑐 plus-or-minus 𝑎 c^{\pm}(a) italic_c start_POSTSUPERSCRIPT ± end_POSTSUPERSCRIPT ( italic_a ) are the circles ( 𝐁 ) { z = ± a } fragments fragments ( B ) fragments { z plus-or-minus a } (\partial\mathbf{B})\cap\{z=\pm a\} ( ∂ bold_B ) ∩ { italic_z = ± italic_a } . We orient c - ( a ) superscript 𝑐 𝑎 c^{-}(a) italic_c start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT ( italic_a ) by d θ 𝑑 𝜃 d\theta italic_d italic_θ and c + ( a ) superscript 𝑐 𝑎 c^{+}(a) italic_c start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT ( italic_a ) by - d θ 𝑑 𝜃 -d\theta - italic_d italic_θ . Let

( a ) 𝑎 \mathcal{M}(a) caligraphic_M ( italic_a )

be the set of rotationally invariant area-minimizing surfaces bounded by c ( a ) 𝑐 𝑎 c(a) italic_c ( italic_a ) .


Definition 2.4 .

Fix κ 𝜅 \kappa\in\mathbb{R} italic_κ ∈ blackboard_R . Let ( Σ , h ) Σ (\Sigma,h) ( roman_Σ , italic_h ) a complete three-dimensional Riemannian manifold with constant sectional curvature κ 𝜅 \kappa italic_κ and I 𝐼 I\subset\mathbb{R} italic_I ⊂ blackboard_R an open interval. Let t 𝑡 t italic_t be a coordinate for I 𝐼 I italic_I . Define M = I × Σ 𝑀 𝐼 Σ M=I\times\Sigma italic_M = italic_I × roman_Σ . Let η 𝜂 \eta italic_η and π 𝜋 \pi italic_π be the projections of M 𝑀 M italic_M onto the first and second factors, respectively. Define the Lorentzian metric g = - η * d t 2 + ( a π ) 2 π * h 𝑔 superscript 𝜂 𝑑 superscript 𝑡 2 superscript 𝑎 𝜋 2 superscript 𝜋 g=-\eta^{*}dt^{2}+(a\circ\pi)^{2}\pi^{*}h italic_g = - italic_η start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT italic_d italic_t start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + ( italic_a ∘ italic_π ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_π start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT italic_h where a : I ( 0 , ) : 𝑎 𝐼 0 a:I\to(0,\infty) italic_a : italic_I → ( 0 , ∞ ) is a C k superscript 𝐶 𝑘 C^{k} italic_C start_POSTSUPERSCRIPT italic_k end_POSTSUPERSCRIPT function. Then we say ( M , g ) 𝑀 𝑔 (M,g) ( italic_M , italic_g ) is a C k superscript 𝐶 𝑘 C^{k} italic_C start_POSTSUPERSCRIPT italic_k end_POSTSUPERSCRIPT FLRW spacetime . a ( t ) 𝑎 𝑡 a(t) italic_a ( italic_t ) is called the scale factor . We will abuse notation and simply write

g = - d t 2 + a 2 h 𝑔 𝑑 superscript 𝑡 2 superscript 𝑎 2 g=-dt^{2}+a^{2}h italic_g = - italic_d italic_t start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_h (2.2)

for the metric. The comoving observers are the integral curves of U = / t 𝑈 𝑡 U=\partial/\partial t italic_U = ∂ / ∂ italic_t . If a ( t ) 0 𝑎 𝑡 0 a(t)\to 0 italic_a ( italic_t ) → 0 as t t i := inf I 𝑡 subscript 𝑡 𝑖 assign infimum 𝐼 t\searrow t_{i}:=\inf I italic_t ↘ italic_t start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT := roman_inf italic_I , then we say ( M , g ) 𝑀 𝑔 (M,g) ( italic_M , italic_g ) admits a big bang .


Definition 2 .

A para-Hermitian connection on an almost para-Hermitian manifold
( 𝒫 , η , K ) 𝒫 𝜂 𝐾 (\mathcal{P},\eta,K) ( caligraphic_P , italic_η , italic_K ) is a connection normal-∇ \nabla which preserves both η 𝜂 \eta italic_η and ω 𝜔 \omega italic_ω , i.e.

η = ω = 0 . 𝜂 𝜔 0 \nabla\eta=\nabla\omega=0. ∇ italic_η = ∇ italic_ω = 0 . (3.6)

Alternatively, a para-Hermitian connection preserves η 𝜂 \eta italic_η and K 𝐾 K italic_K . The Levi-Civita connection ̊ normal-̊ normal-∇ \mathring{\nabla} ̊ start_ARG ∇ end_ARG is the unique connection which preserves η 𝜂 \eta italic_η and is torsionless.


Definition 3.2 .

Let Γ = ( V , E ) Γ 𝑉 𝐸 \Gamma=(V,E) roman_Γ = ( italic_V , italic_E ) be a finite graph with n 𝑛 n italic_n vertices and adjacency matrix ε M n ( { 0 , 1 } ) 𝜀 subscript 𝑀 𝑛 0 1 \varepsilon\in M_{n}(\{0,1\}) italic_ε ∈ italic_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( { 0 , 1 } ) . The quantum automorphism group QAut Ban ( Γ ) subscript QAut Ban Γ \mathrm{QAut_{Ban}}(\Gamma) roman_QAut start_POSTSUBSCRIPT roman_Ban end_POSTSUBSCRIPT ( roman_Γ ) is the compact matrix quantum group ( C ( QAut Ban ( Γ ) ) , u ) 𝐶 subscript QAut Ban Γ 𝑢 (C(\mathrm{QAut_{Ban}}(\Gamma)),u) ( italic_C ( roman_QAut start_POSTSUBSCRIPT roman_Ban end_POSTSUBSCRIPT ( roman_Γ ) ) , italic_u ) , where C ( QAut Ban ( Γ ) ) 𝐶 subscript QAut Ban Γ C(\mathrm{QAut_{Ban}}(\Gamma)) italic_C ( roman_QAut start_POSTSUBSCRIPT roman_Ban end_POSTSUBSCRIPT ( roman_Γ ) ) is the universal C * superscript 𝐶 C^{*} italic_C start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT -algebra with generators u i j , 1 i , j n formulae-sequence subscript 𝑢 𝑖 𝑗 1 𝑖 𝑗 𝑛 u_{ij},1\leq i,j\leq n italic_u start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT , 1 ≤ italic_i , italic_j ≤ italic_n and Relations ( 3.1 ), ( 3.2 ) together with

(3.7) u ε = ε u , 𝑢 𝜀 𝜀 𝑢 \displaystyle u\varepsilon=\varepsilon u, italic_u italic_ε = italic_ε italic_u ,

which is nothing but k u i k ε k j = k ε i k u k j subscript 𝑘 subscript 𝑢 𝑖 𝑘 subscript 𝜀 𝑘 𝑗 subscript 𝑘 subscript 𝜀 𝑖 𝑘 subscript 𝑢 𝑘 𝑗 \sum_{k}u_{ik}\varepsilon_{kj}=\sum_{k}\varepsilon_{ik}u_{kj} ∑ start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT italic_u start_POSTSUBSCRIPT italic_i italic_k end_POSTSUBSCRIPT italic_ε start_POSTSUBSCRIPT italic_k italic_j end_POSTSUBSCRIPT = ∑ start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT italic_ε start_POSTSUBSCRIPT italic_i italic_k end_POSTSUBSCRIPT italic_u start_POSTSUBSCRIPT italic_k italic_j end_POSTSUBSCRIPT .


Definition B.1 .

Define the algebra 𝒰 𝒰 \mathcal{U} caligraphic_U to be the unital associative algebra over ( q , t ) 𝑞 𝑡 \mathbb{Q}(q,t) blackboard_Q ( italic_q , italic_t ) generated by the currents x ± ( z ) = n x n ± z - n superscript 𝑥 plus-or-minus 𝑧 subscript 𝑛 subscript superscript 𝑥 plus-or-minus 𝑛 superscript 𝑧 𝑛 x^{\pm}(z)=\sum_{n\in\mathbb{Z}}x^{\pm}_{n}z^{-n} italic_x start_POSTSUPERSCRIPT ± end_POSTSUPERSCRIPT ( italic_z ) = ∑ start_POSTSUBSCRIPT italic_n ∈ blackboard_Z end_POSTSUBSCRIPT italic_x start_POSTSUPERSCRIPT ± end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT italic_z start_POSTSUPERSCRIPT - italic_n end_POSTSUPERSCRIPT , ψ ± ( z ) = ± n 0 ψ n ± z - n superscript 𝜓 plus-or-minus 𝑧 subscript plus-or-minus 𝑛 subscript absent 0 subscript superscript 𝜓 plus-or-minus 𝑛 superscript 𝑧 𝑛 \psi^{\pm}(z)=\sum_{\pm n\in\mathbb{Z}_{\geq 0}}\psi^{\pm}_{n}z^{-n} italic_ψ start_POSTSUPERSCRIPT ± end_POSTSUPERSCRIPT ( italic_z ) = ∑ start_POSTSUBSCRIPT ± italic_n ∈ blackboard_Z start_POSTSUBSCRIPT ≥ 0 end_POSTSUBSCRIPT end_POSTSUBSCRIPT italic_ψ start_POSTSUPERSCRIPT ± end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT italic_z start_POSTSUPERSCRIPT - italic_n end_POSTSUPERSCRIPT and the central element γ ± 1 / 2 superscript 𝛾 plus-or-minus 1 2 \gamma^{\pm 1/2} italic_γ start_POSTSUPERSCRIPT ± 1 / 2 end_POSTSUPERSCRIPT satisfying the defining relations

ψ ± ( z ) ψ ± ( w ) = ψ ± ( w ) ψ ± ( z ) , ψ + ( z ) ψ - ( w ) = g ( γ + 1 w / z ) g ( γ - 1 w / z ) ψ - ( w ) ψ + ( z ) , formulae-sequence superscript 𝜓 plus-or-minus 𝑧 superscript 𝜓 plus-or-minus 𝑤 superscript 𝜓 plus-or-minus 𝑤 superscript 𝜓 plus-or-minus 𝑧 superscript 𝜓 𝑧 superscript 𝜓 𝑤 𝑔 superscript 𝛾 1 𝑤 𝑧 𝑔 superscript 𝛾 1 𝑤 𝑧 superscript 𝜓 𝑤 superscript 𝜓 𝑧 \displaystyle\psi^{\pm}(z)\psi^{\pm}(w)=\psi^{\pm}(w)\psi^{\pm}(z),\quad\psi^{% +}(z)\psi^{-}(w)=\dfrac{g(\gamma^{+1}w/z)}{g(\gamma^{-1}w/z)}\psi^{-}(w)\psi^{% +}(z), italic_ψ start_POSTSUPERSCRIPT ± end_POSTSUPERSCRIPT ( italic_z ) italic_ψ start_POSTSUPERSCRIPT ± end_POSTSUPERSCRIPT ( italic_w ) = italic_ψ start_POSTSUPERSCRIPT ± end_POSTSUPERSCRIPT ( italic_w ) italic_ψ start_POSTSUPERSCRIPT ± end_POSTSUPERSCRIPT ( italic_z ) , italic_ψ start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT ( italic_z ) italic_ψ start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT ( italic_w ) = divide start_ARG italic_g ( italic_γ start_POSTSUPERSCRIPT + 1 end_POSTSUPERSCRIPT italic_w / italic_z ) end_ARG start_ARG italic_g ( italic_γ start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT italic_w / italic_z ) end_ARG italic_ψ start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT ( italic_w ) italic_ψ start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT ( italic_z ) , (B.2)
ψ + ( z ) x ± ( w ) = g ( γ 1 / 2 w / z ) 1 x ± ( w ) ψ + ( z ) , superscript 𝜓 𝑧 superscript 𝑥 plus-or-minus 𝑤 𝑔 superscript superscript 𝛾 minus-or-plus 1 2 𝑤 𝑧 minus-or-plus 1 superscript 𝑥 plus-or-minus 𝑤 superscript 𝜓 𝑧 \displaystyle\psi^{+}(z)x^{\pm}(w)=g(\gamma^{\mp 1/2}w/z)^{\mp 1}x^{\pm}(w)% \psi^{+}(z), italic_ψ start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT ( italic_z ) italic_x start_POSTSUPERSCRIPT ± end_POSTSUPERSCRIPT ( italic_w ) = italic_g ( italic_γ start_POSTSUPERSCRIPT ∓ 1 / 2 end_POSTSUPERSCRIPT italic_w / italic_z ) start_POSTSUPERSCRIPT ∓ 1 end_POSTSUPERSCRIPT italic_x start_POSTSUPERSCRIPT ± end_POSTSUPERSCRIPT ( italic_w ) italic_ψ start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT ( italic_z ) , (B.3)
ψ - ( z ) x ± ( w ) = g ( γ 1 / 2 z / w ) ± 1 x ± ( w ) ψ - ( z ) , superscript 𝜓 𝑧 superscript 𝑥 plus-or-minus 𝑤 𝑔 superscript superscript 𝛾 minus-or-plus 1 2 𝑧 𝑤 plus-or-minus 1 superscript 𝑥 plus-or-minus 𝑤 superscript 𝜓 𝑧 \displaystyle\psi^{-}(z)x^{\pm}(w)=g(\gamma^{\mp 1/2}z/w)^{\pm 1}x^{\pm}(w)% \psi^{-}(z), italic_ψ start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT ( italic_z ) italic_x start_POSTSUPERSCRIPT ± end_POSTSUPERSCRIPT ( italic_w ) = italic_g ( italic_γ start_POSTSUPERSCRIPT ∓ 1 / 2 end_POSTSUPERSCRIPT italic_z / italic_w ) start_POSTSUPERSCRIPT ± 1 end_POSTSUPERSCRIPT italic_x start_POSTSUPERSCRIPT ± end_POSTSUPERSCRIPT ( italic_w ) italic_ψ start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT ( italic_z ) , (B.4)
[ x + ( z ) , x - ( w ) ] = ( 1 - q ) ( 1 - 1 / t ) 1 - q / t ( δ ( γ - 1 z / w ) ψ + ( γ 1 / 2 w ) - δ ( γ z / w ) ψ - ( γ - 1 / 2 w ) ) , superscript 𝑥 𝑧 superscript 𝑥 𝑤 1 𝑞 1 1 𝑡 1 𝑞 𝑡 𝛿 superscript 𝛾 1 𝑧 𝑤 superscript 𝜓 superscript 𝛾 1 2 𝑤 𝛿 𝛾 𝑧 𝑤 superscript 𝜓 superscript 𝛾 1 2 𝑤 \displaystyle[x^{+}(z),x^{-}(w)]=\dfrac{(1-q)(1-1/t)}{1-q/t}\big{(}\delta(% \gamma^{-1}z/w)\psi^{+}(\gamma^{1/2}w)-\delta(\gamma z/w)\psi^{-}(\gamma^{-1/2% }w)\big{)}, [ italic_x start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT ( italic_z ) , italic_x start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT ( italic_w ) ] = divide start_ARG ( 1 - italic_q ) ( 1 - 1 / italic_t ) end_ARG start_ARG 1 - italic_q / italic_t end_ARG ( italic_δ ( italic_γ start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT italic_z / italic_w ) italic_ψ start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT ( italic_γ start_POSTSUPERSCRIPT 1 / 2 end_POSTSUPERSCRIPT italic_w ) - italic_δ ( italic_γ italic_z / italic_w ) italic_ψ start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT ( italic_γ start_POSTSUPERSCRIPT - 1 / 2 end_POSTSUPERSCRIPT italic_w ) ) , (B.5)
G ( z / w ) x ± ( z ) x ± ( w ) = G ± ( z / w ) x ± ( w ) x ± ( z ) . superscript 𝐺 minus-or-plus 𝑧 𝑤 superscript 𝑥 plus-or-minus 𝑧 superscript 𝑥 plus-or-minus 𝑤 superscript 𝐺 plus-or-minus 𝑧 𝑤 superscript 𝑥 plus-or-minus 𝑤 superscript 𝑥 plus-or-minus 𝑧 \displaystyle G^{\mp}(z/w)x^{\pm}(z)x^{\pm}(w)=G^{\pm}(z/w)x^{\pm}(w)x^{\pm}(z). italic_G start_POSTSUPERSCRIPT ∓ end_POSTSUPERSCRIPT ( italic_z / italic_w ) italic_x start_POSTSUPERSCRIPT ± end_POSTSUPERSCRIPT ( italic_z ) italic_x start_POSTSUPERSCRIPT ± end_POSTSUPERSCRIPT ( italic_w ) = italic_G start_POSTSUPERSCRIPT ± end_POSTSUPERSCRIPT ( italic_z / italic_w ) italic_x start_POSTSUPERSCRIPT ± end_POSTSUPERSCRIPT ( italic_w ) italic_x start_POSTSUPERSCRIPT ± end_POSTSUPERSCRIPT ( italic_z ) . (B.6)

Definition 1.2 ( [ Mac05 , definition 3.3.1] ) :

Let M 𝑀 M italic_M be a manifold. A Lie algebroid 𝒜 𝒜 \mathcal{A} caligraphic_A is a triple ( A M , 𝖺 , [ , ] ) 𝐴 𝑀 𝖺 (A\to M,\mathsf{a},[\cdot,\cdot]) ( italic_A → italic_M , sansserif_a , [ ⋅ , ⋅ ] ) , where A M 𝐴 𝑀 A\to M italic_A → italic_M is a vector bundle on M 𝑀 M italic_M , 𝖺 𝖺 \mathsf{a} sansserif_a is an anchor on A M 𝐴 𝑀 A\to M italic_A → italic_M , and [ , ] [\cdot,\cdot] [ ⋅ , ⋅ ] is a \mathbb{R} blackboard_R -bilinear operation on the 𝒞 ( M ) superscript 𝒞 𝑀 \mathcal{C}^{\infty}(M) caligraphic_C start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT ( italic_M ) -module Γ ( A ) Γ 𝐴 \Gamma(A) roman_Γ ( italic_A ) of sections of A M 𝐴 𝑀 A\to M italic_A → italic_M called the bracket , such that ( Γ ( A ) , [ , ] ) Γ 𝐴 (\Gamma(A),[\cdot,\cdot]) ( roman_Γ ( italic_A ) , [ ⋅ , ⋅ ] ) is a Lie algebra and a right Leibniz rule is satisfied:

[ u , f v ] = f [ u , v ] + ( 𝖺 ( u ) f ) v , 𝑢 𝑓 𝑣 𝑓 𝑢 𝑣 𝖺 𝑢 𝑓 𝑣 [u,fv]=f[u,v]+(\mathsf{a}(u)\cdot f)v, [ italic_u , italic_f italic_v ] = italic_f [ italic_u , italic_v ] + ( sansserif_a ( italic_u ) ⋅ italic_f ) italic_v ,

for all u , v Γ ( A ) 𝑢 𝑣 Γ 𝐴 u,v\in\Gamma(A) italic_u , italic_v ∈ roman_Γ ( italic_A ) and f 𝒞 ( M ) 𝑓 superscript 𝒞 𝑀 f\in\mathcal{C}^{\infty}(M) italic_f ∈ caligraphic_C start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT ( italic_M ) .


Definition 1 (Agent Invariance) .

If for any permutation (bijection) p : { 1 , , d } { 1 , , d } normal-: 𝑝 normal-→ 1 normal-… 𝑑 1 normal-… 𝑑 p:\{1,...,d\}\to\{1,...,d\} italic_p : { 1 , … , italic_d } → { 1 , … , italic_d } ,

π ( p ( h ¯ ) ) = p ( π ( h ¯ ) ) 𝜋 𝑝 ¯ 𝑝 𝜋 ¯ \pi(p(\bar{h}))=p(\pi(\bar{h})) italic_π ( italic_p ( ¯ start_ARG italic_h end_ARG ) ) = italic_p ( italic_π ( ¯ start_ARG italic_h end_ARG ) )

we say that π 𝜋 \pi italic_π is agent invariant .


Definition 2.1 .

Given a graded k 𝑘 k italic_k -algebra T = i 0 [ T ] i 𝑇 subscript direct-sum 𝑖 0 subscript delimited-[] 𝑇 𝑖 T=\bigoplus_{i\geq 0}[T]_{i} italic_T = ⊕ start_POSTSUBSCRIPT italic_i ≥ 0 end_POSTSUBSCRIPT [ italic_T ] start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT , a differential on T 𝑇 T italic_T is a linear map δ : T T : 𝛿 𝑇 𝑇 \delta:T\smash{\mathop{\hbox to 20.0pt{\rightarrowfill}}\limits}T italic_δ : italic_T BIGOP italic_T such that δ ( [ T ] i ) [ T ] i + 1 𝛿 subscript delimited-[] 𝑇 𝑖 subscript delimited-[] 𝑇 𝑖 1 \delta([T]_{i})\subseteq[T]_{i+1} italic_δ ( [ italic_T ] start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) ⊆ [ italic_T ] start_POSTSUBSCRIPT italic_i + 1 end_POSTSUBSCRIPT , for all i 𝑖 i italic_i , and such that for any homogeneous elements a , b T 𝑎 𝑏 𝑇 a,b\in T italic_a , italic_b ∈ italic_T , the following Leibniz rule holds:

δ ( a b ) = δ ( a ) b + ( - 1 ) deg ( a ) a δ ( b ) . 𝛿 𝑎 𝑏 𝛿 𝑎 𝑏 superscript 1 degree 𝑎 𝑎 𝛿 𝑏 \delta(ab)=\delta(a)b+(-1)^{\deg(a)}a\delta(b). italic_δ ( italic_a italic_b ) = italic_δ ( italic_a ) italic_b + ( - 1 ) start_POSTSUPERSCRIPT roman_deg ( italic_a ) end_POSTSUPERSCRIPT italic_a italic_δ ( italic_b ) .

Definition 2.1 .

Let Q 𝑄 Q italic_Q be a graph. The Brauer monoid BrM ( Q ) BrM 𝑄 {\rm BrM}(Q) roman_BrM ( italic_Q ) is the monoid generated by the symbols R i subscript 𝑅 𝑖 R_{i} italic_R start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT and E i subscript 𝐸 𝑖 E_{i} italic_E start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT , for each node i 𝑖 i italic_i of Q 𝑄 Q italic_Q and δ 𝛿 \delta italic_δ , δ - 1 superscript 𝛿 1 \delta^{-1} italic_δ start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT subject to the following relation, where similar-to \sim denotes adjacency between nodes of Q 𝑄 Q italic_Q .

δ δ - 1 = 1 𝛿 superscript 𝛿 1 1 \delta\delta^{-1}=1 italic_δ italic_δ start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT = 1 (2.1)
R i 2 = 1 superscript subscript 𝑅 𝑖 2 1 R_{i}^{2}=1 italic_R start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT = 1 (2.2)
R i E i = E i R i = E i subscript 𝑅 𝑖 subscript 𝐸 𝑖 subscript 𝐸 𝑖 subscript 𝑅 𝑖 subscript 𝐸 𝑖 R_{i}E_{i}=E_{i}R_{i}=E_{i} italic_R start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT italic_E start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT = italic_E start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT italic_R start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT = italic_E start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT (2.3)
E i 2 = δ E i superscript subscript 𝐸 𝑖 2 𝛿 subscript 𝐸 𝑖 E_{i}^{2}=\delta E_{i} italic_E start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT = italic_δ italic_E start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT (2.4)
R i R j = R j R i , for i j formulae-sequence subscript 𝑅 𝑖 subscript 𝑅 𝑗 subscript 𝑅 𝑗 subscript 𝑅 𝑖 not-similar-to for 𝑖 𝑗 R_{i}R_{j}=R_{j}R_{i},\,\,\mbox{for}\,\it{i\nsim j} italic_R start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT italic_R start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT = italic_R start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT italic_R start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT , for italic_i ≁ italic_j (2.5)
E i R j = R j E i , for i j formulae-sequence subscript 𝐸 𝑖 subscript 𝑅 𝑗 subscript 𝑅 𝑗 subscript 𝐸 𝑖 not-similar-to for 𝑖 𝑗 E_{i}R_{j}=R_{j}E_{i},\,\,\mbox{for}\,\it{i\nsim j} italic_E start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT italic_R start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT = italic_R start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT italic_E start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT , for italic_i ≁ italic_j (2.6)
E i E j = E j E i , for i j formulae-sequence subscript 𝐸 𝑖 subscript 𝐸 𝑗 subscript 𝐸 𝑗 subscript 𝐸 𝑖 not-similar-to for 𝑖 𝑗 E_{i}E_{j}=E_{j}E_{i},\,\,\mbox{for}\,\it{i\nsim j} italic_E start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT italic_E start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT = italic_E start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT italic_E start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT , for italic_i ≁ italic_j (2.7)
R i R j R i = R j R i R j , for i j formulae-sequence subscript 𝑅 𝑖 subscript 𝑅 𝑗 subscript 𝑅 𝑖 subscript 𝑅 𝑗 subscript 𝑅 𝑖 subscript 𝑅 𝑗 similar-to for 𝑖 𝑗 R_{i}R_{j}R_{i}=R_{j}R_{i}R_{j},\,\,\mbox{for}\,\it{i\sim j} italic_R start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT italic_R start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT italic_R start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT = italic_R start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT italic_R start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT italic_R start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT , for italic_i ∼ italic_j (2.8)
R j R i E j = E i E j , for i j formulae-sequence subscript 𝑅 𝑗 subscript 𝑅 𝑖 subscript 𝐸 𝑗 subscript 𝐸 𝑖 subscript 𝐸 𝑗 similar-to for 𝑖 𝑗 R_{j}R_{i}E_{j}=E_{i}E_{j},\,\,\mbox{for}\,\it{i\sim j} italic_R start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT italic_R start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT italic_E start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT = italic_E start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT italic_E start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT , for italic_i ∼ italic_j (2.9)
R i E j R i = R j E i R j , for i j formulae-sequence subscript 𝑅 𝑖 subscript 𝐸 𝑗 subscript 𝑅 𝑖 subscript 𝑅 𝑗 subscript 𝐸 𝑖 subscript 𝑅 𝑗 similar-to for 𝑖 𝑗 R_{i}E_{j}R_{i}=R_{j}E_{i}R_{j},\,\,\mbox{for}\,\it{i\sim j} italic_R start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT italic_E start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT italic_R start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT = italic_R start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT italic_E start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT italic_R start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT , for italic_i ∼ italic_j (2.10)

The Brauer algebra Br ( Q ) Br 𝑄 {\rm Br}(Q) roman_Br ( italic_Q ) is the the free \mathbb{Z} blackboard_Z -algebra for Brauer monoid BrM ( Q ) BrM 𝑄 {\rm BrM}(Q) roman_BrM ( italic_Q ) .


Definition 2

The discrete dynamical system ( 𝒳 , f ) 𝒳 𝑓 (\mathcal{X},f) ( caligraphic_X , italic_f ) is topologically semi-conjugate to the system ( 𝒴 , g ) 𝒴 𝑔 (\mathcal{Y},g) ( caligraphic_Y , italic_g ) if it exists a function φ : 𝒳 𝒴 : 𝜑 𝒳 𝒴 \varphi:\mathcal{X}\longrightarrow\mathcal{Y} italic_φ : caligraphic_X ⟶ caligraphic_Y , both continuous and onto, such that:

φ f = g φ , 𝜑 𝑓 𝑔 𝜑 \varphi\circ f=g\circ\varphi, italic_φ ∘ italic_f = italic_g ∘ italic_φ ,

that is, which makes commutative the following diagram [ 7 ] .

𝒳 f 𝒳 φ φ 𝒴 g 𝒴 commutative-diagram 𝒳 superscript 𝑓 𝒳 𝜑 absent absent absent 𝜑 absent absent 𝒴 subscript 𝑔 𝒴 \begin{CD}\mathcal{X}@>{f}>{}>\mathcal{X}\\ @V{\varphi}V{}V@V{}V{\varphi}V\\ \mathcal{Y}@>{}>{g}>\mathcal{Y}\end{CD} start_ARG start_ROW start_CELL caligraphic_X end_CELL start_CELL SUPERSCRIPTOP start_ARG → end_ARG start_ARG italic_f end_ARG end_CELL start_CELL caligraphic_X end_CELL end_ROW start_ROW start_CELL start_ARG italic_φ end_ARG start_ARG ↓ end_ARG end_CELL start_CELL end_CELL start_CELL start_ARG ↓ end_ARG start_ARG italic_φ end_ARG end_CELL start_CELL end_CELL start_CELL end_CELL end_ROW start_ROW start_CELL caligraphic_Y end_CELL start_CELL start_ARROW SUBSCRIPTOP start_ARG → end_ARG start_ARG italic_g end_ARG end_ARROW end_CELL start_CELL caligraphic_Y end_CELL end_ROW end_ARG

In this case, the system ( 𝒴 , g ) 𝒴 𝑔 (\mathcal{Y},g) ( caligraphic_Y , italic_g ) is called a factor of the system ( 𝒳 , f ) 𝒳 𝑓 (\mathcal{X},f) ( caligraphic_X , italic_f ) . {}_{\Box} start_FLOATSUBSCRIPT □ end_FLOATSUBSCRIPT


Definition 2 .

A skew-symmetric Hochschild 2 2 2 2 -cocycle p 𝑝 p italic_p that satisfies the Jacobi identity

p ( a p ( b c ) ) + p ( b p ( c a ) ) + p ( c p ( a b ) ) = 0 𝑝 tensor-product 𝑎 𝑝 tensor-product 𝑏 𝑐 𝑝 tensor-product 𝑏 𝑝 tensor-product 𝑐 𝑎 𝑝 tensor-product 𝑐 𝑝 tensor-product 𝑎 𝑏 0 p(a\otimes p(b\otimes c))+p(b\otimes p(c\otimes a))+p(c\otimes p(a\otimes b))=0 italic_p ( italic_a ⊗ italic_p ( italic_b ⊗ italic_c ) ) + italic_p ( italic_b ⊗ italic_p ( italic_c ⊗ italic_a ) ) + italic_p ( italic_c ⊗ italic_p ( italic_a ⊗ italic_b ) ) = 0

is called an (algebraic) Poisson structure (or a Poisson bracket ). A commutative algebra together with a Poisson bracket is called a Poisson algebra . Its spectrum is called an affine Poisson variety .

Definition 3 .

A one-parameter formal deformation of an associative algebra A 𝐴 A italic_A is an associative algebra ( A [ [ ] ] , * ) 𝐴 delimited-[] delimited-[] Planck-constant-over-2-pi (A[[\hslash]],*) ( italic_A [ [ roman_ℏ ] ] , * ) , such that

a * b = a b ( mod ) , 𝑎 𝑏 𝑎 𝑏 mod Planck-constant-over-2-pi a*b=ab(\leavevmode\nobreak\ \text{mod}\leavevmode\nobreak\ \hslash), italic_a * italic_b = italic_a italic_b ( mod roman_ℏ ) ,

for each a , b A 𝑎 𝑏 𝐴 a,b\in A italic_a , italic_b ∈ italic_A . We require that * * * is associative, k [ [ ] ] 𝑘 delimited-[] delimited-[] Planck-constant-over-2-pi k[[\hslash]] italic_k [ [ roman_ℏ ] ] -bilinear and continuous, which means that

( m 0 b m m ) * ( n 0 c n n ) = m , n 0 ( b m * c n ) m + n . subscript 𝑚 0 subscript 𝑏 𝑚 superscript Planck-constant-over-2-pi 𝑚 subscript 𝑛 0 subscript 𝑐 𝑛 superscript Planck-constant-over-2-pi 𝑛 subscript 𝑚 𝑛 0 subscript 𝑏 𝑚 subscript 𝑐 𝑛 superscript Planck-constant-over-2-pi 𝑚 𝑛 (\sum_{m\geq 0}b_{m}\hslash^{m})*(\sum_{n\geq 0}c_{n}\hslash^{n})=\sum_{m,n% \geq 0}(b_{m}*c_{n})\hslash^{m+n}. ( ∑ start_POSTSUBSCRIPT italic_m ≥ 0 end_POSTSUBSCRIPT italic_b start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT roman_ℏ start_POSTSUPERSCRIPT italic_m end_POSTSUPERSCRIPT ) * ( ∑ start_POSTSUBSCRIPT italic_n ≥ 0 end_POSTSUBSCRIPT italic_c start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT roman_ℏ start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT ) = ∑ start_POSTSUBSCRIPT italic_m , italic_n ≥ 0 end_POSTSUBSCRIPT ( italic_b start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT * italic_c start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) roman_ℏ start_POSTSUPERSCRIPT italic_m + italic_n end_POSTSUPERSCRIPT .

Definition 1 (Generalized curvature) .

The derivative of f ( x ) : normal-: 𝑓 𝑥 normal-→ f(x):\mathbb{R}\rightarrow\mathbb{R} italic_f ( italic_x ) : blackboard_R → blackboard_R , can be written as

f ( x ) = h ( x ) ( x - x * ) superscript 𝑓 𝑥 𝑥 𝑥 superscript 𝑥 f^{\prime}(x)=h(x)(x-x^{*}) italic_f start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( italic_x ) = italic_h ( italic_x ) ( italic_x - italic_x start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT ) (3)

for some h ( x ) 𝑥 h(x)\in\mathbb{R} italic_h ( italic_x ) ∈ blackboard_R , where x * superscript 𝑥 x^{*} italic_x start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT is the global minimum of f ( x ) 𝑓 𝑥 f(x) italic_f ( italic_x ) . We call h ( x ) 𝑥 h(x) italic_h ( italic_x ) the generalized curvature .


Definition 2.1 .

Given a division ring K 𝐾 K italic_K , an injective homomorphism σ : K K normal-: 𝜎 normal-→ 𝐾 𝐾 {\sigma:K\to K} italic_σ : italic_K → italic_K , and a σ 𝜎 \sigma italic_σ -derivation δ 𝛿 \delta italic_δ (an additive homomorphism δ : K K normal-: 𝛿 normal-→ 𝐾 𝐾 \delta:K\to K italic_δ : italic_K → italic_K such that δ ( a b ) = σ ( a ) δ ( b ) + δ ( a ) b 𝛿 𝑎 𝑏 𝜎 𝑎 𝛿 𝑏 𝛿 𝑎 𝑏 \delta(ab)=\sigma(a)\delta(b)+\delta(a)b italic_δ ( italic_a italic_b ) = italic_σ ( italic_a ) italic_δ ( italic_b ) + italic_δ ( italic_a ) italic_b for all a , b K 𝑎 𝑏 𝐾 a,b\in K italic_a , italic_b ∈ italic_K ), let R 𝑅 R italic_R be the set of polynomials of the form f ( x ) = i = 0 n a i x i 𝑓 𝑥 superscript subscript 𝑖 0 𝑛 subscript 𝑎 𝑖 superscript 𝑥 𝑖 f(x)=\sum_{i=0}^{n}a_{i}x^{i} italic_f ( italic_x ) = ∑ start_POSTSUBSCRIPT italic_i = 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT italic_a start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT italic_x start_POSTSUPERSCRIPT italic_i end_POSTSUPERSCRIPT , where n 𝑛 n\in\mathbb{N} italic_n ∈ blackboard_N and a i K subscript 𝑎 𝑖 𝐾 a_{i}\in K italic_a start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ∈ italic_K for i { 0 , , n } 𝑖 0 normal-… 𝑛 i\in\{0,\dots,n\} italic_i ∈ { 0 , … , italic_n } . The skew polynomial ring denoted R = K [ x ; σ , δ ] 𝑅 𝐾 𝑥 𝜎 𝛿 R=K[x;\sigma,\delta] italic_R = italic_K [ italic_x ; italic_σ , italic_δ ] is the set of polynomials with standard addition, but with multiplication determined by the rule

x a = σ ( a ) x + δ ( a ) 𝑥 𝑎 𝜎 𝑎 𝑥 𝛿 𝑎 xa=\sigma(a)x+\delta(a) italic_x italic_a = italic_σ ( italic_a ) italic_x + italic_δ ( italic_a )

for all a K 𝑎 𝐾 a\in K italic_a ∈ italic_K . We will call the elements of R 𝑅 R italic_R skew polynomials.


Definition 3.4 .

Let N 𝑁 N italic_N be an homogeneous norm on n superscript 𝑛 \mathbb{H}^{n} blackboard_H start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT . We say that N 𝑁 N italic_N is horizontally strictly convex if for all p , p e 𝑝 superscript 𝑝 𝑒 p,p^{\prime}\neq e italic_p , italic_p start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ≠ italic_e it holds

N ( p * p ) = N ( p ) + N ( p ) p , p lie on a horizontal line through the origin, i.e., formulae-sequence 𝑁 𝑝 superscript 𝑝 𝑁 𝑝 𝑁 superscript 𝑝 𝑝 superscript 𝑝 lie on a horizontal line through the origin, i.e., \displaystyle N(p*p^{\prime})=N(p)+N(p^{\prime})\Rightarrow p,p^{\prime}\text{% lie on a horizontal line through the origin, i.e.,} italic_N ( italic_p * italic_p start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) = italic_N ( italic_p ) + italic_N ( italic_p start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) ⇒ italic_p , italic_p start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT lie on a horizontal line through the origin, i.e.,
z 2 n \ { 0 } , s , s , such that p = ( s z , 0 ) and p = ( s z , 0 ) . formulae-sequence 𝑧 \ superscript 2 𝑛 0 𝑠 formulae-sequence superscript 𝑠 such that 𝑝 𝑠 𝑧 0 and superscript 𝑝 superscript 𝑠 𝑧 0 \displaystyle\exists z\in\mathbb{R}^{2n}\backslash\{0\},s,s^{\prime}\in\mathbb% {R},\ \text{such that}\ p=(sz,0)\ \text{and}\ p^{\prime}=(s^{\prime}z,0). ∃ italic_z ∈ blackboard_R start_POSTSUPERSCRIPT 2 italic_n end_POSTSUPERSCRIPT \ { 0 } , italic_s , italic_s start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ∈ blackboard_R , such that italic_p = ( italic_s italic_z , 0 ) and italic_p start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT = ( italic_s start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT italic_z , 0 ) .

Definition 2.2.4 .

Let X 𝑋 X italic_X be a strict C 1 superscript 𝐶 1 C^{1} italic_C start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT submanifold of K n superscript 𝐾 𝑛 K^{n} italic_K start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT . A distribution u 𝑢 u italic_u on X 𝑋 X italic_X is by definition a {\mathbb{C}} blackboard_C -linear map from 𝒮 ( X ) 𝒮 𝑋 {\mathcal{S}}(X) caligraphic_S ( italic_X ) to {\mathbb{C}} blackboard_C . Write 𝒮 ( X ) superscript 𝒮 𝑋 {\mathcal{S}}^{\prime}(X) caligraphic_S start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( italic_X ) to denote the collection of distributions on X 𝑋 X italic_X . For any Schwartz-Bruhat function φ 𝜑 \varphi italic_φ in 𝒮 ( X ) 𝒮 𝑋 {\mathcal{S}}(X) caligraphic_S ( italic_X ) , depending on the context we will denote the evaluation of u 𝑢 u italic_u on φ 𝜑 \varphi italic_φ by u ( φ ) 𝑢 𝜑 u(\varphi) italic_u ( italic_φ ) or u , φ 𝑢 𝜑 \langle u,\varphi\rangle ⟨ italic_u , italic_φ ⟩ . The vector space 𝒮 ( X ) superscript 𝒮 𝑋 {\mathcal{S}}^{\prime}(X) caligraphic_S start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( italic_X ) has a structure of 𝒞 ( X ) superscript 𝒞 𝑋 \mathcal{C}^{\infty}(X) caligraphic_C start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT ( italic_X ) -module by the following operation: For any 𝒞 superscript 𝒞 \mathcal{C}^{\infty} caligraphic_C start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT function ϕ italic-ϕ \phi italic_ϕ on X 𝑋 X italic_X and any distribution u 𝑢 u italic_u in 𝒮 ( X ) superscript 𝒮 𝑋 {\mathcal{S}}^{\prime}(X) caligraphic_S start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( italic_X ) , the distribution ϕ u italic-ϕ 𝑢 \phi u italic_ϕ italic_u is defined by

ϕ u , φ = u , ϕ φ italic-ϕ 𝑢 𝜑 𝑢 italic-ϕ 𝜑 \langle\phi u,\varphi\rangle=\langle u,\phi\varphi\rangle ⟨ italic_ϕ italic_u , italic_φ ⟩ = ⟨ italic_u , italic_ϕ italic_φ ⟩

for any Schwartz-Bruhat function φ 𝜑 \varphi italic_φ in 𝒮 ( X ) 𝒮 𝑋 {\mathcal{S}}(X) caligraphic_S ( italic_X ) .


Definition 2.1 .

A rack is set R 𝑅 R italic_R with binary operations ( * , / ) (*,/) ( * , / ) , such that every x 𝑥 x italic_x , y 𝑦 y italic_y and z 𝑧 z italic_z :

  1. (1)

    Self-Distributivity: ( x * y ) * z = ( x * z ) * ( y * z ) 𝑥 𝑦 𝑧 𝑥 𝑧 𝑦 𝑧 (x*y)*z=(x*z)*(y*z) ( italic_x * italic_y ) * italic_z = ( italic_x * italic_z ) * ( italic_y * italic_z ) and ( x / y ) / z = ( x / z ) / ( y / z ) 𝑥 𝑦 𝑧 𝑥 𝑧 𝑦 𝑧 (x/y)/z=(x/z)/(y/z) ( italic_x / italic_y ) / italic_z = ( italic_x / italic_z ) / ( italic_y / italic_z ) .

  2. (2)

    Existence of Right Inverse: ( x * y ) / y = x 𝑥 𝑦 𝑦 𝑥 (x*y)/y=x ( italic_x * italic_y ) / italic_y = italic_x , and ( x / y ) * y = x 𝑥 𝑦 𝑦 𝑥 (x/y)*y=x ( italic_x / italic_y ) * italic_y = italic_x .

Definition 2.5 (Legendrian rack) .

Let n 𝑛 n\in\mathbb{N} italic_n ∈ blackboard_N . An n 𝑛 n italic_n -Legendrian rack ( L R n , * ) 𝐿 subscript 𝑅 𝑛 (LR_{n},*) ( italic_L italic_R start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT , * ) is a rack such that:

x . x 2 n + 2 = x formulae-sequence for-all 𝑥 superscript 𝑥 2 𝑛 2 𝑥 \forall x.\ x^{2n+2}=x ∀ italic_x . italic_x start_POSTSUPERSCRIPT 2 italic_n + 2 end_POSTSUPERSCRIPT = italic_x

Definition 2.23 .

The renormalisation tangle below defines the nonassociative algebra structure ! ! ! on Q 4 subscript 𝑄 4 Q_{4} italic_Q start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT :

x ! y = 𝑥 𝑦 x!y=\mbox{$\begin{array}[c]{l}\psfig{width=108.405pt}\end{array}$} italic_x ! italic_y = start_ARRAY start_ROW start_CELL end_CELL end_ROW end_ARRAY

Definition 3.6 .

An HNN extension of a group G 𝐺 G italic_G is given by a subgroup H 𝐻 H italic_H which is embedded in G 𝐺 G italic_G in two different ways. Let φ , ψ : H G : 𝜑 𝜓 𝐻 𝐺 \varphi,\psi:H\to G italic_φ , italic_ψ : italic_H → italic_G be two such group monomorphisms. Then N ( H , G , φ , ψ ) 𝑁 𝐻 𝐺 𝜑 𝜓 N(H,G,\varphi,\psi) italic_N ( italic_H , italic_G , italic_φ , italic_ψ ) is the quotient of the free product G t 𝐺 delimited-⟨⟩ 𝑡 G\ast\left<t\right> italic_G ∗ ⟨ italic_t ⟩ of G 𝐺 G italic_G with the free group on one generator t 𝑡 t italic_t modulo the relation

t φ ( h ) = ψ ( h ) t 𝑡 𝜑 𝜓 𝑡 t\varphi(h)=\psi(h)t italic_t italic_φ ( italic_h ) = italic_ψ ( italic_h ) italic_t

for every h H 𝐻 h\in H italic_h ∈ italic_H .