Definition 2.9

A unit speed nonconstant geodesic γ : I M : 𝛾 𝐼 𝑀 \gamma:I\to M italic_γ : italic_I → italic_M called an f 𝑓 f italic_f -geodesic if

f ( γ ( t ) ) - f ( γ ( s ) ) = t - s 𝑓 𝛾 𝑡 𝑓 𝛾 𝑠 𝑡 𝑠 f(\gamma(t))-f(\gamma(s))=t-s italic_f ( italic_γ ( italic_t ) ) - italic_f ( italic_γ ( italic_s ) ) = italic_t - italic_s (2.8)

for any s , t I , 𝑠 𝑡 𝐼 s,t\in I, italic_s , italic_t ∈ italic_I , where I 𝐼 I italic_I denotes an interval.


Definition \thedefinition@alt .

We say that a linear functional b : Lip ( X , 𝖽 ) L 0 ( X , 𝔪 ) : 𝑏 Lip 𝑋 𝖽 superscript 𝐿 0 𝑋 𝔪 b:\operatorname{Lip}(X,\mathsf{d})\to L^{0}(X,\mathfrak{m}) italic_b : roman_Lip ( italic_X , sansserif_d ) → italic_L start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT ( italic_X , fraktur_m ) is a derivation if it satisfies the Leibniz rule, that is

b ( f g ) = b ( f ) g + f b ( g ) , 𝑏 𝑓 𝑔 𝑏 𝑓 𝑔 𝑓 𝑏 𝑔 b(fg)=b(f)g+fb(g), italic_b ( italic_f italic_g ) = italic_b ( italic_f ) italic_g + italic_f italic_b ( italic_g ) , (1.12)

for any f , g Lip ( X , 𝖽 ) 𝑓 𝑔 Lip 𝑋 𝖽 f,g\in\operatorname{Lip}(X,\mathsf{d}) italic_f , italic_g ∈ roman_Lip ( italic_X , sansserif_d ) .

Given a derivation b 𝑏 b italic_b we will write | b | L p 𝑏 superscript 𝐿 𝑝 \left\lvert b\right\rvert\in L^{p} | italic_b | ∈ italic_L start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT if there exist some function g L p ( X , 𝔪 ) 𝑔 superscript 𝐿 𝑝 𝑋 𝔪 g\in L^{p}(X,\mathfrak{m}) italic_g ∈ italic_L start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT ( italic_X , fraktur_m ) such that

b ( f ) g | f | 𝔪 -a.e. on X , 𝑏 𝑓 𝑔 𝑓 𝔪 -a.e. on X , b(f)\leq g\left\lvert\nabla f\right\rvert\quad\text{$\mathfrak{m}$-a.e. on $X$,} italic_b ( italic_f ) ≤ italic_g | ∇ italic_f | fraktur_m -a.e. on italic_X , (1.13)

for any f Lip ( X , 𝖽 ) 𝑓 Lip 𝑋 𝖽 f\in\operatorname{Lip}(X,\mathsf{d}) italic_f ∈ roman_Lip ( italic_X , sansserif_d ) and we will denote by | b | 𝑏 \left\lvert b\right\rvert | italic_b | the minimal (in the 𝔪 𝔪 \mathfrak{m} fraktur_m -a.e. sense) g 𝑔 g italic_g with such property.


Definition 1 .

[ 11 ] Consider the nonlinear system

(1.3) x ˙ = g ( t , x ) ˙ 𝑥 𝑔 𝑡 𝑥 \dot{x}=g(t,x) ˙ start_ARG italic_x end_ARG = italic_g ( italic_t , italic_x )

with g ( t , 0 ) = 0 𝑔 𝑡 0 0 g(t,0)=0 italic_g ( italic_t , 0 ) = 0 for any t 0 . 𝑡 0 t\geq 0. italic_t ≥ 0 . The equilibrium point x = 0 𝑥 0 x=0 italic_x = 0 is uniformly asymptotically stable if there exist a 𝒦 𝒦 \mathcal{KL} caligraphic_K caligraphic_L function β : + × + + normal-: 𝛽 normal-→ superscript superscript superscript \beta\colon\mathbb{R}^{+}\times\mathbb{R}^{+}\to\mathbb{R}^{+} italic_β : blackboard_R start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT × blackboard_R start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT → blackboard_R start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT and c > 0 𝑐 0 c>0 italic_c > 0 with

| x ( t ) | β ( | x ( t 0 ) | , t - t 0 ) t t 0 0 , for all | x ( t 0 ) | < c , formulae-sequence formulae-sequence 𝑥 𝑡 𝛽 𝑥 subscript 𝑡 0 𝑡 subscript 𝑡 0 for-all 𝑡 subscript 𝑡 0 0 for all 𝑥 subscript 𝑡 0 𝑐 |x(t)|\leq\beta(|x(t_{0})|,t-t_{0})\quad\forall t\geq t_{0}\geq 0,\quad% \textnormal{for all}\quad|x(t_{0})|<c, | italic_x ( italic_t ) | ≤ italic_β ( | italic_x ( italic_t start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) | , italic_t - italic_t start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) ∀ italic_t ≥ italic_t start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ≥ 0 , for all | italic_x ( italic_t start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) | < italic_c ,

where c 𝑐 c italic_c is independent of t 0 subscript 𝑡 0 t_{0} italic_t start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT . We recall that β 𝒦 𝛽 𝒦 \beta\in\mathcal{KL} italic_β ∈ caligraphic_K caligraphic_L if s β ( s , r ) maps-to 𝑠 𝛽 𝑠 𝑟 s\mapsto\beta(s,r) italic_s ↦ italic_β ( italic_s , italic_r ) is strictly increasing with β ( 0 , r ) = 0 , 𝛽 0 𝑟 0 \beta(0,r)=0, italic_β ( 0 , italic_r ) = 0 , for any fixed r 0 𝑟 0 r\geq 0 italic_r ≥ 0 and r β ( s , r ) maps-to 𝑟 𝛽 𝑠 𝑟 r\mapsto\beta(s,r) italic_r ↦ italic_β ( italic_s , italic_r ) is decreasing and tends to zero when r normal-→ 𝑟 r\to\infty italic_r → ∞ for any fixed s 𝑠 s italic_s .


Definition 6.1 .

Let f : 0 × 0 normal-: 𝑓 normal-→ subscript 0 subscript 0 f:\mathbb{N}_{0}\times\mathbb{N}_{0}\to\mathbb{Z} italic_f : blackboard_N start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT × blackboard_N start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT → blackboard_Z be a function defined as follows. Set:

f ( 0 , 0 ) = 0 , f ( 0 , 1 ) = f ( 1 , 0 ) = - 1 , f ( 1 , 1 ) = 2 . formulae-sequence formulae-sequence 𝑓 0 0 0 𝑓 0 1 𝑓 1 0 1 𝑓 1 1 2 f(0,0)=0,f(0,1)=f(1,0)=-1,f(1,1)=2. italic_f ( 0 , 0 ) = 0 , italic_f ( 0 , 1 ) = italic_f ( 1 , 0 ) = - 1 , italic_f ( 1 , 1 ) = 2 .

In all other points f 𝑓 f italic_f is defined by the following recurrent relations:

f ( a , b ) = { 8 f ( a 2 , b 2 ) if a 0 ( mod 2 ) and b 0 ( mod 2 ) , 4 ( f ( a - 1 2 , b 2 ) + f ( a + 1 2 , b 2 ) ) + 3 𝑖𝑓 a 1 ( mod 2 ) and b 0 ( mod 2 ) , 4 ( f ( a 2 , b - 1 2 ) + f ( a 2 , b + 1 2 ) ) + 3 if a 0 ( mod 2 ) and b 1 ( mod 2 ) , 2 ( f ( a - 1 2 , b - 1 2 ) + f ( a - 1 2 , b + 1 2 ) + f ( a + 1 2 , b - 1 2 ) + f ( a + 1 2 , b + 1 2 ) ) + 2 , 𝑖𝑓 a 1 ( mod 2 ) and b 1 ( mod 2 ) . 𝑓 𝑎 𝑏 cases 8 𝑓 𝑎 2 𝑏 2 if 𝑎 0 mod 2 and 𝑏 0 mod 2 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 4 𝑓 𝑎 1 2 𝑏 2 𝑓 𝑎 1 2 𝑏 2 3 𝑖𝑓 𝑎 1 mod 2 and 𝑏 0 mod 2 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 4 𝑓 𝑎 2 𝑏 1 2 𝑓 𝑎 2 𝑏 1 2 3 if 𝑎 0 mod 2 and 𝑏 1 mod 2 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 2 𝑓 𝑎 1 2 𝑏 1 2 𝑓 𝑎 1 2 𝑏 1 2 𝑓 𝑎 1 2 𝑏 1 2 𝑓 𝑎 1 2 𝑏 1 2 2 absent 𝑖𝑓 𝑎 1 mod 2 and 𝑏 1 mod 2 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 \displaystyle f(a,b)=\begin{cases}8f({a\over 2},{b\over 2})\ \text{if }a\equiv 0% \ (\mathrm{mod}\ 2)\text{ and }b\equiv 0\ (\mathrm{mod}\ 2),\\ 4\left(f({a-1\over 2},{b\over 2})+f({a+1\over 2},{b\over 2})\right)+3\ \text{% if}\ a\equiv 1\ (\mathrm{mod}\ 2)\text{ and }b\equiv 0\ (\mathrm{mod}\ 2),\\ 4\left(f({a\over 2},{b-1\over 2})+f({a\over 2},{b+1\over 2})\right)+3\ \text{% if }a\equiv 0\ (\mathrm{mod}\ 2)\ \text{and }b\equiv 1\ (\mathrm{mod}\ 2),\\ 2\left(f({a-1\over 2},{b-1\over 2})+f({a-1\over 2},{b+1\over 2})+f({a+1\over 2% },{b-1\over 2})+f({a+1\over 2},{b+1\over 2})\right)+2,&\\ \text{if}\ a\equiv 1\ (\mathrm{mod}\ 2)\text{ and}\ b\equiv 1\ (\mathrm{mod}\ % 2).\end{cases} italic_f ( italic_a , italic_b ) = { start_ROW start_CELL 8 italic_f ( divide start_ARG italic_a end_ARG start_ARG 2 end_ARG , divide start_ARG italic_b end_ARG start_ARG 2 end_ARG ) if italic_a ≡ 0 ( roman_mod 2 ) and italic_b ≡ 0 ( roman_mod 2 ) , end_CELL start_CELL end_CELL end_ROW start_ROW start_CELL 4 ( italic_f ( divide start_ARG italic_a - 1 end_ARG start_ARG 2 end_ARG , divide start_ARG italic_b end_ARG start_ARG 2 end_ARG ) + italic_f ( divide start_ARG italic_a + 1 end_ARG start_ARG 2 end_ARG , divide start_ARG italic_b end_ARG start_ARG 2 end_ARG ) ) + 3 if italic_a ≡ 1 ( roman_mod 2 ) and italic_b ≡ 0 ( roman_mod 2 ) , end_CELL start_CELL end_CELL end_ROW start_ROW start_CELL 4 ( italic_f ( divide start_ARG italic_a end_ARG start_ARG 2 end_ARG , divide start_ARG italic_b - 1 end_ARG start_ARG 2 end_ARG ) + italic_f ( divide start_ARG italic_a end_ARG start_ARG 2 end_ARG , divide start_ARG italic_b + 1 end_ARG start_ARG 2 end_ARG ) ) + 3 if italic_a ≡ 0 ( roman_mod 2 ) and italic_b ≡ 1 ( roman_mod 2 ) , end_CELL start_CELL end_CELL end_ROW start_ROW start_CELL 2 ( italic_f ( divide start_ARG italic_a - 1 end_ARG start_ARG 2 end_ARG , divide start_ARG italic_b - 1 end_ARG start_ARG 2 end_ARG ) + italic_f ( divide start_ARG italic_a - 1 end_ARG start_ARG 2 end_ARG , divide start_ARG italic_b + 1 end_ARG start_ARG 2 end_ARG ) + italic_f ( divide start_ARG italic_a + 1 end_ARG start_ARG 2 end_ARG , divide start_ARG italic_b - 1 end_ARG start_ARG 2 end_ARG ) + italic_f ( divide start_ARG italic_a + 1 end_ARG start_ARG 2 end_ARG , divide start_ARG italic_b + 1 end_ARG start_ARG 2 end_ARG ) ) + 2 , end_CELL start_CELL end_CELL end_ROW start_ROW start_CELL if italic_a ≡ 1 ( roman_mod 2 ) and italic_b ≡ 1 ( roman_mod 2 ) . end_CELL start_CELL end_CELL end_ROW (6.3)

Definition 3.1 .

A holomorphic Courant algebroid ( Q , , , [ , ] , π ) 𝑄 𝜋 (Q,\langle\cdot,\cdot\rangle,[\cdot,\cdot],\pi) ( italic_Q , ⟨ ⋅ , ⋅ ⟩ , [ ⋅ , ⋅ ] , italic_π ) over X 𝑋 X italic_X consists of a holomorphic vector bundle Q X 𝑄 𝑋 Q\to X italic_Q → italic_X , with sheaf of sections 𝒪 Q subscript 𝒪 𝑄 \mathcal{O}_{Q} caligraphic_O start_POSTSUBSCRIPT italic_Q end_POSTSUBSCRIPT , together with a holomorphic non-degenerate symmetric bilinear form , \langle\cdot,\cdot\rangle ⟨ ⋅ , ⋅ ⟩ , a holomorphic vector bundle morphism π : Q T X : 𝜋 𝑄 𝑇 𝑋 \pi:Q\to TX italic_π : italic_Q → italic_T italic_X , and an homomorphism of sheaves of ¯ ¯ \underline{{\mathbb{C}}} ¯ start_ARG blackboard_C end_ARG -modules

[ , ] : 𝒪 Q ¯ 𝒪 Q 𝒪 X , : subscript tensor-product ¯ subscript 𝒪 𝑄 subscript 𝒪 𝑄 subscript 𝒪 𝑋 [\cdot,\cdot]\colon\mathcal{O}_{Q}\otimes_{\underline{{\mathbb{C}}}}\mathcal{O% }_{Q}\to\mathcal{O}_{X}, [ ⋅ , ⋅ ] : caligraphic_O start_POSTSUBSCRIPT italic_Q end_POSTSUBSCRIPT ⊗ start_POSTSUBSCRIPT ¯ start_ARG blackboard_C end_ARG end_POSTSUBSCRIPT caligraphic_O start_POSTSUBSCRIPT italic_Q end_POSTSUBSCRIPT → caligraphic_O start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT ,

satisfying the identities, for e , e , e ′′ 𝒪 Q 𝑒 superscript 𝑒 superscript 𝑒 ′′ subscript 𝒪 𝑄 e,e^{\prime},e^{\prime\prime}\in\mathcal{O}_{Q} italic_e , italic_e start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT , italic_e start_POSTSUPERSCRIPT ′ ′ end_POSTSUPERSCRIPT ∈ caligraphic_O start_POSTSUBSCRIPT italic_Q end_POSTSUBSCRIPT and ϕ 𝒪 X italic-ϕ subscript 𝒪 𝑋 \phi\in\mathcal{O}_{X} italic_ϕ ∈ caligraphic_O start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT ,


Definition 47 .

Let ( , j ) 𝑗 (\mathscr{E},j) ( script_E , italic_j ) be an elementary ideal topos \mathscr{E} script_E equipped with a Lawvere-Tierney topology j 𝑗 j italic_j . A sheaf for j 𝑗 j italic_j on \mathscr{E} script_E is an element P 𝑃 P italic_P of \mathscr{E} script_E such that for every monic m 𝑚 m italic_m in \mathscr{E} script_E , and for every f : m ¯ P : 𝑓 ¯ 𝑚 𝑃 f:\bar{m}\to P italic_f : ¯ start_ARG italic_m end_ARG → italic_P in \mathscr{E} script_E , if m 𝑚 m italic_m is dense, there exists a unique g 𝑔 g\in\mathscr{E} italic_g ∈ script_E such that

g m = f . 𝑔 𝑚 𝑓 g\cdot m=f. italic_g ⋅ italic_m = italic_f .

Definition 2.1 .

An almost contact manifold is a (2n+1)-dimensional smooth manifold M 𝑀 M italic_M endowed with structure tensors ( ϕ , ξ , η ) italic-ϕ 𝜉 𝜂 (\phi,\xi,\eta) ( italic_ϕ , italic_ξ , italic_η ) , such that ϕ End ( T M ) italic-ϕ End 𝑇 𝑀 \phi\in{\text{End}}(TM) italic_ϕ ∈ End ( italic_T italic_M ) , ξ Γ ( T M ) 𝜉 Γ 𝑇 𝑀 \xi\in\Gamma(TM) italic_ξ ∈ roman_Γ ( italic_T italic_M ) and η Ω 1 ( M ) 𝜂 superscript Ω 1 𝑀 \eta\in\Omega^{1}(M) italic_η ∈ roman_Ω start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT ( italic_M ) satisfy

(2.1) ϕ ϕ = - id + η ξ , η ( ξ ) = 1 . formulae-sequence italic-ϕ italic-ϕ id tensor-product 𝜂 𝜉 𝜂 𝜉 1 \phi\circ\phi=-{\rm{id}}+\eta\otimes\xi,\ \ \eta(\xi)=1. italic_ϕ ∘ italic_ϕ = - roman_id + italic_η ⊗ italic_ξ , italic_η ( italic_ξ ) = 1 .

Definition 2.3 .

A linear map d : L L normal-: 𝑑 normal-→ 𝐿 𝐿 d:\,L\rightarrow L italic_d : italic_L → italic_L of a Leibniz algebra L 𝐿 L italic_L is a derivation if for all x , y L 𝑥 𝑦 𝐿 x,\,y\in L italic_x , italic_y ∈ italic_L

d ( [ x , y ] ) = [ d ( x ) , y ] + [ x , d ( y ) ] . 𝑑 𝑥 𝑦 𝑑 𝑥 𝑦 𝑥 𝑑 𝑦 d([x,y])=[d(x),y]+[x,d(y)]. italic_d ( [ italic_x , italic_y ] ) = [ italic_d ( italic_x ) , italic_y ] + [ italic_x , italic_d ( italic_y ) ] .

Definition 2.1 .

A Hom group consists of a set G 𝐺 G italic_G together with a distinguished member 1 G 1 𝐺 1\in G 1 ∈ italic_G , a bijective set map: α : G G normal-: 𝛼 normal-⟶ 𝐺 𝐺 \alpha:G\longrightarrow G italic_α : italic_G ⟶ italic_G , a binary operation μ : G × G G normal-: 𝜇 normal-⟶ 𝐺 𝐺 𝐺 \mu:G\times G\longrightarrow G italic_μ : italic_G × italic_G ⟶ italic_G , where these pieces of structure are subject to the following axioms:

i) The product map μ : G × G G normal-: 𝜇 normal-⟶ 𝐺 𝐺 𝐺 \mu:G\times G\longrightarrow G italic_μ : italic_G × italic_G ⟶ italic_G is satisfying the Hom-associativity property

μ ( α ( g ) , μ ( h , k ) ) = μ ( μ ( g , h ) , α ( k ) ) . 𝜇 𝛼 𝑔 𝜇 𝑘 𝜇 𝜇 𝑔 𝛼 𝑘 \mu(\alpha(g),\mu(h,k))=\mu(\mu(g,h),\alpha(k)). italic_μ ( italic_α ( italic_g ) , italic_μ ( italic_h , italic_k ) ) = italic_μ ( italic_μ ( italic_g , italic_h ) , italic_α ( italic_k ) ) .

For simplicity when there is no confusion we omit the multiplication sign μ 𝜇 \mu italic_μ .

ii) The map α 𝛼 \alpha italic_α is multiplicative, i.e, α ( g k ) = α ( g ) α ( k ) 𝛼 𝑔 𝑘 𝛼 𝑔 𝛼 𝑘 \alpha(gk)=\alpha(g)\alpha(k) italic_α ( italic_g italic_k ) = italic_α ( italic_g ) italic_α ( italic_k ) .

iii) The element 1 1 1 1 is called unit and it satisfies the Hom-unitality conditions

g 1 = 1 g = α ( g ) , α ( 1 ) = 1 . formulae-sequence 𝑔 1 1 𝑔 𝛼 𝑔 𝛼 1 1 g1=1g=\alpha(g),\quad\quad~{}~{}~{}~{}~{}\alpha(1)=1. italic_g 1 = 1 italic_g = italic_α ( italic_g ) , italic_α ( 1 ) = 1 .

v) For every element g G 𝑔 𝐺 g\in G italic_g ∈ italic_G , there exists an element g - 1 G superscript 𝑔 1 𝐺 g^{-1}\in G italic_g start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ∈ italic_G which

g g - 1 = g - 1 g = 1 . 𝑔 superscript 𝑔 1 superscript 𝑔 1 𝑔 1 gg^{-1}=g^{-1}g=1. italic_g italic_g start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT = italic_g start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT italic_g = 1 .

Definition 0.1 ( [ 1 ] )

A Hom-associative superalgebra is a triple ( A , μ , α ) 𝐴 𝜇 𝛼 (A,\mu,\alpha) ( italic_A , italic_μ , italic_α ) where A 𝐴 A italic_A is a linear superspace, μ : A × A A normal-: 𝜇 normal-→ 𝐴 𝐴 𝐴 \mu:A\times A\rightarrow A italic_μ : italic_A × italic_A → italic_A is an even bilinear map, and α : A A normal-: 𝛼 normal-→ 𝐴 𝐴 \alpha:A\rightarrow A italic_α : italic_A → italic_A is an even linear map such that

μ ( α ( x ) , μ ( y , z ) ) = μ ( μ ( x , y ) , α ( z ) ) . 𝜇 𝛼 𝑥 𝜇 𝑦 𝑧 𝜇 𝜇 𝑥 𝑦 𝛼 𝑧 \mu(\alpha(x),\mu(y,z))=\mu(\mu(x,y),\alpha(z)). italic_μ ( italic_α ( italic_x ) , italic_μ ( italic_y , italic_z ) ) = italic_μ ( italic_μ ( italic_x , italic_y ) , italic_α ( italic_z ) ) .

Definition 1.2 (Invariant Polynomial) .

Let H G 𝐻 𝐺 H\subset G italic_H ⊂ italic_G be algebraic groups over F 𝐹 F italic_F , C 𝐶 C italic_C the algebraic closure of F 𝐹 F italic_F . Suppose H ( C ) G ( C ) 𝐻 𝐶 𝐺 𝐶 H(C)\subset G(C) italic_H ( italic_C ) ⊂ italic_G ( italic_C ) is identified by blockwise diagonal embedding GL h ( C ) × GL h ( C ) GL 2 h ( C ) subscript normal-GL 𝐶 subscript normal-GL 𝐶 subscript normal-GL 2 𝐶 \operatorname{\mathrm{GL}}_{h}(C)\times\operatorname{\mathrm{GL}}_{h}(C)% \subset\operatorname{\mathrm{GL}}_{2h}(C) roman_GL start_POSTSUBSCRIPT italic_h end_POSTSUBSCRIPT ( italic_C ) × roman_GL start_POSTSUBSCRIPT italic_h end_POSTSUBSCRIPT ( italic_C ) ⊂ roman_GL start_POSTSUBSCRIPT 2 italic_h end_POSTSUBSCRIPT ( italic_C ) . For any element g G ( C ) = GL 2 h ( C ) 𝑔 𝐺 𝐶 subscript normal-GL 2 𝐶 g\in G(C)=\operatorname{\mathrm{GL}}_{2h}(C) italic_g ∈ italic_G ( italic_C ) = roman_GL start_POSTSUBSCRIPT 2 italic_h end_POSTSUBSCRIPT ( italic_C ) , write

g = [ a b c d ] 𝑔 delimited-[] 𝑎 𝑏 𝑐 𝑑 g=\left[\begin{array}[]{cc}a&b\\ c&d\\ \end{array}\right] italic_g = [ start_ARRAY start_ROW start_CELL italic_a end_CELL start_CELL italic_b end_CELL end_ROW start_ROW start_CELL italic_c end_CELL start_CELL italic_d end_CELL end_ROW end_ARRAY ]

with a , b , c , d 𝑎 𝑏 𝑐 𝑑 a,b,c,d italic_a , italic_b , italic_c , italic_d all h × h h\times h italic_h × italic_h matrices. Put

(1.3) [ g g ′′ ] = [ a d ] [ a b c d ] - 1 [ a d ] [ a - b - c d ] - 1 . delimited-[] superscript 𝑔 missing-subexpression missing-subexpression superscript 𝑔 ′′ delimited-[] 𝑎 missing-subexpression missing-subexpression 𝑑 superscript delimited-[] 𝑎 𝑏 𝑐 𝑑 1 delimited-[] 𝑎 missing-subexpression missing-subexpression 𝑑 superscript delimited-[] 𝑎 𝑏 𝑐 𝑑 1 \left[\begin{array}[]{cc}g^{\prime}&\\ &g^{\prime\prime}\\ \end{array}\right]=\left[\begin{array}[]{cc}a&\\ &d\\ \end{array}\right]\left[\begin{array}[]{cc}a&b\\ c&d\\ \end{array}\right]^{-1}\left[\begin{array}[]{cc}a&\\ &d\\ \end{array}\right]\left[\begin{array}[]{cc}a&-b\\ -c&d\\ \end{array}\right]^{-1}. [ start_ARRAY start_ROW start_CELL italic_g start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT end_CELL start_CELL end_CELL end_ROW start_ROW start_CELL end_CELL start_CELL italic_g start_POSTSUPERSCRIPT ′ ′ end_POSTSUPERSCRIPT end_CELL end_ROW end_ARRAY ] = [ start_ARRAY start_ROW start_CELL italic_a end_CELL start_CELL end_CELL end_ROW start_ROW start_CELL end_CELL start_CELL italic_d end_CELL end_ROW end_ARRAY ] [ start_ARRAY start_ROW start_CELL italic_a end_CELL start_CELL italic_b end_CELL end_ROW start_ROW start_CELL italic_c end_CELL start_CELL italic_d end_CELL end_ROW end_ARRAY ] start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT [ start_ARRAY start_ROW start_CELL italic_a end_CELL start_CELL end_CELL end_ROW start_ROW start_CELL end_CELL start_CELL italic_d end_CELL end_ROW end_ARRAY ] [ start_ARRAY start_ROW start_CELL italic_a end_CELL start_CELL - italic_b end_CELL end_ROW start_ROW start_CELL - italic_c end_CELL start_CELL italic_d end_CELL end_ROW end_ARRAY ] start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT .

Then g superscript 𝑔 normal-′ g^{\prime} italic_g start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT and g ′′ superscript 𝑔 normal-′′ g^{\prime\prime} italic_g start_POSTSUPERSCRIPT ′ ′ end_POSTSUPERSCRIPT have the same characteristic polynomial. We call this polynomial as the invariant polynomial of g 𝑔 g italic_g denoted by P g subscript 𝑃 𝑔 P_{g} italic_P start_POSTSUBSCRIPT italic_g end_POSTSUBSCRIPT . For g G ( F ) 𝑔 𝐺 𝐹 g\in G(F) italic_g ∈ italic_G ( italic_F ) , the invariant polynomial of g 𝑔 g italic_g is defined by viewing it as an element in G ( C ) 𝐺 𝐶 G(C) italic_G ( italic_C ) .

Definition 2.15 .

A pair of morphism in ( 2.1 ) is called as equi-height, if

0 p t ( τ ) = 0 p t ( φ ) . 0 𝑝 𝑡 𝜏 0 𝑝 𝑡 𝜑 0pt(\tau)=0pt(\varphi). 0 italic_p italic_t ( italic_τ ) = 0 italic_p italic_t ( italic_φ ) .

We denote the set of maps ( φ , τ ) : 𝒩 normal-: 𝜑 𝜏 normal-⟶ superscript subscript 𝒩 normal-∙ similar-to superscript subscript normal-∙ similar-to (\varphi,\tau):{\mathcal{N}_{\bullet}}^{\sim}\longrightarrow{\mathcal{M}_{% \bullet}}^{\sim} ( italic_φ , italic_τ ) : caligraphic_N start_POSTSUBSCRIPT ∙ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∼ end_POSTSUPERSCRIPT ⟶ caligraphic_M start_POSTSUBSCRIPT ∙ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∼ end_POSTSUPERSCRIPT induced by equi-height pairs as Equi h ( K / F ) subscript normal-Equi 𝐾 𝐹 \mathrm{Equi}_{h}(K/F) roman_Equi start_POSTSUBSCRIPT italic_h end_POSTSUBSCRIPT ( italic_K / italic_F ) .


Definition 2.5 .

[ 15 ] A loop satisfying the right Bol identity

( ( x y ) z ) y = x ( y ( z y ) ) 𝑥 𝑦 𝑧 𝑦 𝑥 𝑦 𝑧 𝑦 ((xy)z)y=x(y(zy)) ( ( italic_x italic_y ) italic_z ) italic_y = italic_x ( italic_y ( italic_z italic_y ) )

or equivalently

R y R z R y = R y ( z y ) subscript 𝑅 𝑦 subscript 𝑅 𝑧 subscript 𝑅 𝑦 subscript 𝑅 𝑦 𝑧 𝑦 R_{y}R_{z}R_{y}=R_{y(zy)} italic_R start_POSTSUBSCRIPT italic_y end_POSTSUBSCRIPT italic_R start_POSTSUBSCRIPT italic_z end_POSTSUBSCRIPT italic_R start_POSTSUBSCRIPT italic_y end_POSTSUBSCRIPT = italic_R start_POSTSUBSCRIPT italic_y ( italic_z italic_y ) end_POSTSUBSCRIPT

for all x , y , z L 𝑥 𝑦 𝑧 𝐿 x,y,z\in L italic_x , italic_y , italic_z ∈ italic_L is called a right Bol loop. A loop satisfying the mirror identity ( ( x y ) x ) z = x ( y ( x z ) ) 𝑥 𝑦 𝑥 𝑧 𝑥 𝑦 𝑥 𝑧 ((xy)x)z=x(y(xz)) ( ( italic_x italic_y ) italic_x ) italic_z = italic_x ( italic_y ( italic_x italic_z ) ) for all x , y , z L 𝑥 𝑦 𝑧 𝐿 x,y,z\in L italic_x , italic_y , italic_z ∈ italic_L is called a left Bol loop, and a loop which is both left and right Bol is a Moufang loop.

Definition 2.6 .

A loop is a generalized Bol loop if it satisfies the relation

( x y z ) y α = x ( y z y α ) 𝑥 𝑦 𝑧 superscript 𝑦 𝛼 𝑥 𝑦 𝑧 superscript 𝑦 𝛼 (xy\cdot z)y^{\alpha}=x(y\cdot zy^{\alpha}) ( italic_x italic_y ⋅ italic_z ) italic_y start_POSTSUPERSCRIPT italic_α end_POSTSUPERSCRIPT = italic_x ( italic_y ⋅ italic_z italic_y start_POSTSUPERSCRIPT italic_α end_POSTSUPERSCRIPT )

where y α superscript 𝑦 𝛼 y^{\alpha} italic_y start_POSTSUPERSCRIPT italic_α end_POSTSUPERSCRIPT is the image of y 𝑦 y italic_y under some mapping, α 𝛼 \alpha italic_α , of the loop onto itself.

Definition 2.7 .

A loop ( G , ) 𝐺 normal-⋅ (G,\cdot) ( italic_G , ⋅ ) is called a left inverse property loop if it satisfies the left inverse property (LIP) given by:

x λ ( x y ) = y . superscript 𝑥 𝜆 𝑥 𝑦 𝑦 x^{\lambda}(xy)=y. italic_x start_POSTSUPERSCRIPT italic_λ end_POSTSUPERSCRIPT ( italic_x italic_y ) = italic_y .
Definition 2.8 .

A loop ( G , ) 𝐺 normal-⋅ (G,\cdot) ( italic_G , ⋅ ) is called a right inverse property loop if it satisfies the right inverse property (RIP) given by:

( y x ) x ρ = y . 𝑦 𝑥 superscript 𝑥 𝜌 𝑦 (yx)x^{\rho}=y. ( italic_y italic_x ) italic_x start_POSTSUPERSCRIPT italic_ρ end_POSTSUPERSCRIPT = italic_y .
Definition 3.1 .

A loop Q ( ) 𝑄 normal-⋅ Q(\cdot) italic_Q ( ⋅ ) is called middle generalized Bol loop if it satisfies the identity

( x / y ) ( z α \ x α ) = x ( z α y \ x α ) . 𝑥 𝑦 \ superscript 𝑧 𝛼 superscript 𝑥 𝛼 𝑥 \ superscript 𝑧 𝛼 𝑦 superscript 𝑥 𝛼 (x/y)(z^{\alpha}\backslash x^{\alpha})=x(z^{\alpha}y\backslash x^{\alpha}). ( italic_x / italic_y ) ( italic_z start_POSTSUPERSCRIPT italic_α end_POSTSUPERSCRIPT \ italic_x start_POSTSUPERSCRIPT italic_α end_POSTSUPERSCRIPT ) = italic_x ( italic_z start_POSTSUPERSCRIPT italic_α end_POSTSUPERSCRIPT italic_y \ italic_x start_POSTSUPERSCRIPT italic_α end_POSTSUPERSCRIPT ) . (5)

Definition 12

Let t ˙ normal-˙ 𝑡 \dot{t} ˙ start_ARG italic_t end_ARG be a k 𝑘 k italic_k -ary star-tuple, and n k 𝑛 𝑘 n\geq k italic_n ≥ italic_k . Then 𝗁 ˙ n ( t ˙ ) superscript normal-˙ 𝗁 𝑛 normal-˙ 𝑡 \dot{\mathsf{h}}^{n}(\dot{t}) ˙ start_ARG sansserif_h end_ARG start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT ( ˙ start_ARG italic_t end_ARG ) , the n 𝑛 n italic_n -expansion of t ˙ normal-˙ 𝑡 \dot{t} ˙ start_ARG italic_t end_ARG , is the n 𝑛 n italic_n -ary star-tuple u ˙ normal-˙ 𝑢 \dot{u} ˙ start_ARG italic_u end_ARG , where

u ˙ ( i ) = { t ˙ ( i ) if i { 1 , , k } * if i { k + 1 , , n } t ˙ ( k + 1 ) if i = n + 1 , ˙ 𝑢 𝑖 cases ˙ 𝑡 𝑖 if 𝑖 1 𝑘 if 𝑖 𝑘 1 𝑛 ˙ 𝑡 𝑘 1 if 𝑖 𝑛 1 \dot{u}(i)=\left\{\begin{array}[]{ll}\dot{t}(i)&\mbox{\em if }i\in\{1,\ldots,k% \}\\ *&\mbox{\em if }i\in\{k+1,\ldots,n\}\\ \dot{t}(k+1)&\mbox{\em if }i=n+1,\end{array}\right. ˙ start_ARG italic_u end_ARG ( italic_i ) = { start_ARRAY start_ROW start_CELL ˙ start_ARG italic_t end_ARG ( italic_i ) end_CELL start_CELL if italic_i ∈ { 1 , … , italic_k } end_CELL end_ROW start_ROW start_CELL * end_CELL start_CELL if italic_i ∈ { italic_k + 1 , … , italic_n } end_CELL end_ROW start_ROW start_CELL ˙ start_ARG italic_t end_ARG ( italic_k + 1 ) end_CELL start_CELL if italic_i = italic_n + 1 , end_CELL end_ROW end_ARRAY

For a stored relation R ˙ normal-˙ 𝑅 \dot{R} ˙ start_ARG italic_R end_ARG and stored database 𝐑 ˙ normal-˙ 𝐑 \dot{\mathbf{R}} ˙ start_ARG bold_R end_ARG we have

𝗁 ˙ n ( R ˙ ) superscript ˙ 𝗁 𝑛 ˙ 𝑅 \displaystyle\dot{\mathsf{h}}^{n}(\dot{R}) ˙ start_ARG sansserif_h end_ARG start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT ( ˙ start_ARG italic_R end_ARG ) = \displaystyle= = { 𝗁 ˙ n ( t ˙ ) : t ˙ R ˙ } fragments { superscript ˙ 𝗁 𝑛 fragments ( ˙ 𝑡 ) : ˙ 𝑡 ˙ 𝑅 } \displaystyle\{\dot{\mathsf{h}}^{n}(\dot{t})\;:\;\dot{t}\in\dot{R}\} { ˙ start_ARG sansserif_h end_ARG start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT ( ˙ start_ARG italic_t end_ARG ) : ˙ start_ARG italic_t end_ARG ∈ ˙ start_ARG italic_R end_ARG }
𝗁 ˙ n ( 𝐑 ˙ ) superscript ˙ 𝗁 𝑛 ˙ 𝐑 \displaystyle\dot{\mathsf{h}}^{n}(\dot{\mathbf{R}}) ˙ start_ARG sansserif_h end_ARG start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT ( ˙ start_ARG bold_R end_ARG ) = \displaystyle= = ( 𝗁 ˙ n ( R ˙ 1 ) , , 𝗁 ˙ n ( R ˙ m ) , 𝗁 ˙ n ( { ( a , a ) : a 𝔻 } ) ) . superscript ˙ 𝗁 𝑛 subscript ˙ 𝑅 1 superscript ˙ 𝗁 𝑛 subscript ˙ 𝑅 𝑚 superscript ˙ 𝗁 𝑛 conditional-set 𝑎 𝑎 𝑎 𝔻 \displaystyle(\dot{\mathsf{h}}^{n}(\dot{R}_{1}),\ldots,\dot{\mathsf{h}}^{n}(% \dot{R}_{m}),\dot{\mathsf{h}}^{n}(\{(a,a):a\in\mathbb{D}\})). ( ˙ start_ARG sansserif_h end_ARG start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT ( ˙ start_ARG italic_R end_ARG start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) , … , ˙ start_ARG sansserif_h end_ARG start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT ( ˙ start_ARG italic_R end_ARG start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT ) , ˙ start_ARG sansserif_h end_ARG start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT ( { ( italic_a , italic_a ) : italic_a ∈ blackboard_D } ) ) .

Definition 1.1 .

A (right) Hom-Leibniz algebra, [ 28 ] , is a triple ( L , [ , ] , α ) 𝐿 𝛼 (L,[\cdot,\cdot],\alpha) ( italic_L , [ ⋅ , ⋅ ] , italic_α ) where L 𝐿 L italic_L is a vector space, with a bracket [ , ] : L L L : tensor-product 𝐿 𝐿 𝐿 [\cdot,\cdot]:L\otimes L\longrightarrow L [ ⋅ , ⋅ ] : italic_L ⊗ italic_L ⟶ italic_L and a linear map α : L L : 𝛼 𝐿 𝐿 \alpha:L\longrightarrow L italic_α : italic_L ⟶ italic_L satisfying

(1.1) [ [ x , y ] , α ( z ) ] = [ [ x , z ] , α ( y ) ] + [ α ( x ) , [ y , z ] ] . 𝑥 𝑦 𝛼 𝑧 𝑥 𝑧 𝛼 𝑦 𝛼 𝑥 𝑦 𝑧 [[x,y],\alpha(z)]=[[x,z],\alpha(y)]+[\alpha(x),[y,z]]. [ [ italic_x , italic_y ] , italic_α ( italic_z ) ] = [ [ italic_x , italic_z ] , italic_α ( italic_y ) ] + [ italic_α ( italic_x ) , [ italic_y , italic_z ] ] .

Definition 1.2 (The Reissner-Nordstrom manifolds) .

The Reissner-Nordstrom manifold is defined by M 3 = ( s 0 , ) × 𝕊 2 , superscript 𝑀 3 subscript 𝑠 0 superscript 𝕊 2 M^{3}=(s_{0},\infty)\times\mathbb{S}^{2}, italic_M start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT = ( italic_s start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , ∞ ) × blackboard_S start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT , with the metric

, = 1 1 - m r - 1 + q 2 r - 2 d r 2 + r 2 d ω 2 , 1 1 𝑚 superscript 𝑟 1 superscript 𝑞 2 superscript 𝑟 2 𝑑 superscript 𝑟 2 superscript 𝑟 2 𝑑 superscript 𝜔 2 \langle\cdot,\cdot\rangle=\dfrac{1}{1-mr^{-1}+q^{2}r^{-2}}dr^{2}+r^{2}d\omega^% {2}, ⟨ ⋅ , ⋅ ⟩ = divide start_ARG 1 end_ARG start_ARG 1 - italic_m italic_r start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT + italic_q start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_r start_POSTSUPERSCRIPT - 2 end_POSTSUPERSCRIPT end_ARG italic_d italic_r start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_r start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_d italic_ω start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ,

where m > 2 q > 0 𝑚 2 𝑞 0 m>2q>0 italic_m > 2 italic_q > 0 and s 0 = 2 q 2 m - m 2 - 4 q 2 subscript 𝑠 0 2 superscript 𝑞 2 𝑚 superscript 𝑚 2 4 superscript 𝑞 2 s_{0}=\frac{2q^{2}}{m-\sqrt{m^{2}-4q^{2}}} italic_s start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT = divide start_ARG 2 italic_q start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG italic_m - square-root start_ARG italic_m start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - 4 italic_q start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG end_ARG is the larger of the two solutions of 1 - m r - 1 + q 2 r - 2 = 0 . 1 𝑚 superscript 𝑟 1 superscript 𝑞 2 superscript 𝑟 2 0 1-mr^{-1}+q^{2}r^{-2}=0. 1 - italic_m italic_r start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT + italic_q start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_r start_POSTSUPERSCRIPT - 2 end_POSTSUPERSCRIPT = 0 . In order to write the metric in the form ( 1.2 ), define F : [ s 0 , ) : 𝐹 subscript 𝑠 0 F:[s_{0},\infty)\rightarrow\mathbb{R} italic_F : [ italic_s start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , ∞ ) → blackboard_R by

F ( r ) = 1 1 - m r - 1 + q 2 r - 2 , F ( s 0 ) = 0 . formulae-sequence superscript 𝐹 𝑟 1 1 𝑚 superscript 𝑟 1 superscript 𝑞 2 superscript 𝑟 2 𝐹 subscript 𝑠 0 0 F^{\prime}(r)=\dfrac{1}{\sqrt{1-mr^{-1}+q^{2}r^{-2}}},\ F(s_{0})=0. italic_F start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( italic_r ) = divide start_ARG 1 end_ARG start_ARG square-root start_ARG 1 - italic_m italic_r start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT + italic_q start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_r start_POSTSUPERSCRIPT - 2 end_POSTSUPERSCRIPT end_ARG end_ARG , italic_F ( italic_s start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) = 0 .

Taking t = F ( r ) , 𝑡 𝐹 𝑟 t=F(r), italic_t = italic_F ( italic_r ) , we can write , = d t 2 + h ( t ) 2 d ω 2 , 𝑑 superscript 𝑡 2 superscript 𝑡 2 𝑑 superscript 𝜔 2 \langle\cdot,\cdot\rangle=dt^{2}+h(t)^{2}d\omega^{2}, ⟨ ⋅ , ⋅ ⟩ = italic_d italic_t start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_h ( italic_t ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_d italic_ω start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT , where h : [ 0 , ) [ s 0 , ) : 0 subscript 𝑠 0 h:[0,\infty)\rightarrow[s_{0},\infty) italic_h : [ 0 , ∞ ) → [ italic_s start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , ∞ ) denotes the inverse function of F . 𝐹 F. italic_F . The function h ( t ) 𝑡 h(t) italic_h ( italic_t ) clearly satisfies

(1.4) h ( t ) = 1 - m h ( t ) - 1 + q 2 h ( t ) - 2 , h ( 0 ) = s 0 , and h ( 0 ) = 0 . formulae-sequence superscript 𝑡 1 𝑚 superscript 𝑡 1 superscript 𝑞 2 superscript 𝑡 2 formulae-sequence 0 subscript 𝑠 0 and superscript 0 0 h^{\prime}(t)=\sqrt{1-mh(t)^{-1}+q^{2}h(t)^{-2}},\ h(0)=s_{0},\ \mbox{and}\ h^% {\prime}(0)=0. italic_h start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( italic_t ) = square-root start_ARG 1 - italic_m italic_h ( italic_t ) start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT + italic_q start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_h ( italic_t ) start_POSTSUPERSCRIPT - 2 end_POSTSUPERSCRIPT end_ARG , italic_h ( 0 ) = italic_s start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , and italic_h start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( 0 ) = 0 .

Definition 3.2

[ 30 , Definition 1] A polynomial f ( x ) Z ( R [ x ; θ ] ) 𝑓 𝑥 𝑍 𝑅 𝑥 𝜃 f(x)\in Z(R[x;\theta]) italic_f ( italic_x ) ∈ italic_Z ( italic_R [ italic_x ; italic_θ ] ) of R [ x ; θ ] 𝑅 𝑥 𝜃 R[x;\theta] italic_R [ italic_x ; italic_θ ] is said to be central polynomial if

f ( x ) r ( x ) = r ( x ) f ( x ) , 𝑓 𝑥 𝑟 𝑥 𝑟 𝑥 𝑓 𝑥 f(x)\ast r(x)=r(x)\ast f(x), italic_f ( italic_x ) ∗ italic_r ( italic_x ) = italic_r ( italic_x ) ∗ italic_f ( italic_x ) ,

for all r ( x ) R [ x ; θ ] . 𝑟 𝑥 𝑅 𝑥 𝜃 r(x)\in R[x;\theta]. italic_r ( italic_x ) ∈ italic_R [ italic_x ; italic_θ ] .


Definition 6 .

A double Stone algebra (DSA) < L , , , * , + , 0 , 1 > fragments L , , , , , 0 , 1 <L,\wedge,\vee,*,+,0,1> < italic_L , ∧ , ∨ , * , + , 0 , 1 > is an algebra of type < 2 , 2 , 1 , 1 , 0 , 0 > fragments 2 , 2 , 1 , 1 , 0 , 0 <2,2,1,1,0,0> < 2 , 2 , 1 , 1 , 0 , 0 > such that:

  1. (1)

    < L , , , 0 , 1 > fragments L , , , 0 , 1 <L,\vee,\wedge,0,1> < italic_L , ∨ , ∧ , 0 , 1 > is a bounded distributive lattice

  2. (2)

    x * superscript 𝑥 x^{*} italic_x start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT is the pseudocomplement of x 𝑥 x italic_x i.e y x * y x = 0 𝑦 superscript 𝑥 𝑦 𝑥 0 y\leq x^{*}\leftrightarrow y\wedge x=0 italic_y ≤ italic_x start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT ↔ italic_y ∧ italic_x = 0

  3. (3)

    x + superscript 𝑥 x^{+} italic_x start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT is the dual pseudocomplement of x 𝑥 x italic_x i.e y x + y x = 1 𝑦 superscript 𝑥 𝑦 𝑥 1 y\geq x^{+}\leftrightarrow y\vee x=1 italic_y ≥ italic_x start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT ↔ italic_y ∨ italic_x = 1

  4. (4)

    x * x * * = 1 superscript 𝑥 superscript 𝑥 absent 1 x^{*}\vee x^{**}=1 italic_x start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT ∨ italic_x start_POSTSUPERSCRIPT * * end_POSTSUPERSCRIPT = 1 , x + x + + = 0 superscript 𝑥 superscript 𝑥 absent 0 x^{+}\wedge x^{++}=0 italic_x start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT ∧ italic_x start_POSTSUPERSCRIPT + + end_POSTSUPERSCRIPT = 0 , e.g. the Stone identities.
    Condition 4. is what distinguishes a double Stone algebra from a double p-algebra and conditions 2. and 3. are equivalent to the equations

    • x ( x y ) * = x y * 𝑥 superscript 𝑥 𝑦 𝑥 superscript 𝑦 x\wedge(x\wedge y)^{*}=x\wedge y^{*} italic_x ∧ ( italic_x ∧ italic_y ) start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT = italic_x ∧ italic_y start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT , x ( x y ) + = x y + 𝑥 superscript 𝑥 𝑦 𝑥 superscript 𝑦 x\vee(x\vee y)^{+}=x\vee y^{+} italic_x ∨ ( italic_x ∨ italic_y ) start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT = italic_x ∨ italic_y start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT

    • x 0 * = x 𝑥 superscript 0 𝑥 x\wedge 0^{*}=x italic_x ∧ 0 start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT = italic_x , x 1 + = x 𝑥 superscript 1 𝑥 x\vee 1^{+}=x italic_x ∨ 1 start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT = italic_x

    • 0 * * = 0 superscript 0 absent 0 0^{**}=0 0 start_POSTSUPERSCRIPT * * end_POSTSUPERSCRIPT = 0 , 1 + + = 1 superscript 1 absent 1 1^{++}=1 1 start_POSTSUPERSCRIPT + + end_POSTSUPERSCRIPT = 1

    so that DSA is an equational class. A double Stone algebra L is called regular, (RDSA), if it additionally satisfies

  5. (5)

    x x + y y * 𝑥 superscript 𝑥 𝑦 superscript 𝑦 x\wedge x^{+}\leq y\vee y^{*} italic_x ∧ italic_x start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT ≤ italic_y ∨ italic_y start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT

    • this is equivalent to x + = y + superscript 𝑥 superscript 𝑦 x^{+}=y^{+} italic_x start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT = italic_y start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT and x * = y * x = y superscript 𝑥 superscript 𝑦 𝑥 𝑦 x^{*}=y^{*}\rightarrow x=y italic_x start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT = italic_y start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT → italic_x = italic_y


Definition 12 (Model intersection) .

Given a propositional signature Σ normal-Σ \Sigma roman_Σ and two Σ normal-Σ \Sigma roman_Σ -models ν , ν : Σ { 0 , 1 } normal-: 𝜈 superscript 𝜈 normal-′ normal-→ normal-Σ 0 1 \nu,\nu^{\prime}:\Sigma\to\{0,1\} italic_ν , italic_ν start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT : roman_Σ → { 0 , 1 } , we note ν ν : Σ { 0 , 1 } normal-: 𝜈 superscript 𝜈 normal-′ normal-→ normal-Σ 0 1 \nu\cap\nu^{\prime}:\Sigma\to\{0,1\} italic_ν ∩ italic_ν start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT : roman_Σ → { 0 , 1 } the Σ normal-Σ \Sigma roman_Σ -model defined by:

p { 1 if ν ( p ) = ν ( p ) = 1 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 maps-to 𝑝 cases 1 if ν ( p ) = ν ( p ) = 1 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 p\mapsto\left\{\begin{array}[]{ll}1&\mbox{if $\nu(p)=\nu^{\prime}(p)=1$}\\ 0&\mbox{otherwise}\end{array}\right. italic_p ↦ { start_ARRAY start_ROW start_CELL 1 end_CELL start_CELL if italic_ν ( italic_p ) = italic_ν start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( italic_p ) = 1 end_CELL end_ROW start_ROW start_CELL 0 end_CELL start_CELL otherwise end_CELL end_ROW end_ARRAY

Given a set of Σ normal-Σ \Sigma roman_Σ -models 𝒮 𝒮 \mathcal{S} caligraphic_S , we note

c l ( 𝒮 ) = 𝒮 { ν ν ν , ν 𝒮 } 𝑐 subscript 𝑙 𝒮 𝒮 conditional-set 𝜈 superscript 𝜈 𝜈 superscript 𝜈 𝒮 cl_{\cap}(\mathcal{S})=\mathcal{S}\cup\{\nu\cap\nu^{\prime}\mid\nu,\nu^{\prime% }\in\mathcal{S}\} italic_c italic_l start_POSTSUBSCRIPT ∩ end_POSTSUBSCRIPT ( caligraphic_S ) = caligraphic_S ∪ { italic_ν ∩ italic_ν start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ∣ italic_ν , italic_ν start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ∈ caligraphic_S }

which is the closure of 𝒮 𝒮 \mathcal{S} caligraphic_S under intersection of positive atoms.


Definition .

A differential field is a field K 𝐾 K italic_K with a derivation map δ : K K : 𝛿 𝐾 𝐾 \delta:K\rightarrow K italic_δ : italic_K → italic_K wit the properties:

{}_{\blacksquare} start_FLOATSUBSCRIPT ■ end_FLOATSUBSCRIPT


Definition 12

Let X 𝑋 X italic_X and Y 𝑌 Y italic_Y be locally compact Hausdorff spaces, σ 𝜎 \sigma italic_σ a local homeomorphism from an open subset U σ subscript 𝑈 𝜎 U_{\sigma} italic_U start_POSTSUBSCRIPT italic_σ end_POSTSUBSCRIPT of X 𝑋 X italic_X to an open subset V σ subscript 𝑉 𝜎 V_{\sigma} italic_V start_POSTSUBSCRIPT italic_σ end_POSTSUBSCRIPT of X 𝑋 X italic_X , and τ 𝜏 \tau italic_τ a local homeomorphism from an open subset U τ subscript 𝑈 𝜏 U_{\tau} italic_U start_POSTSUBSCRIPT italic_τ end_POSTSUBSCRIPT of Y 𝑌 Y italic_Y to an open subset V τ subscript 𝑉 𝜏 V_{\tau} italic_V start_POSTSUBSCRIPT italic_τ end_POSTSUBSCRIPT of Y 𝑌 Y italic_Y . We say that ( X , σ ) 𝑋 𝜎 (X,\sigma) ( italic_X , italic_σ ) and ( Y , τ ) 𝑌 𝜏 (Y,\tau) ( italic_Y , italic_τ ) are continuous orbit equivalent if there exist a homeomorphism h : X Y : 𝑋 𝑌 h:X\to Y italic_h : italic_X → italic_Y and continuous maps k , l : U σ 0 : 𝑘 𝑙 subscript 𝑈 𝜎 subscript 0 k,l:U_{\sigma}\to\mathbb{N}_{0} italic_k , italic_l : italic_U start_POSTSUBSCRIPT italic_σ end_POSTSUBSCRIPT → blackboard_N start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT and k , l : U τ 0 : superscript 𝑘 superscript 𝑙 subscript 𝑈 𝜏 subscript 0 k^{\prime},l^{\prime}:U_{\tau}\to\mathbb{N}_{0} italic_k start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT , italic_l start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT : italic_U start_POSTSUBSCRIPT italic_τ end_POSTSUBSCRIPT → blackboard_N start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT such that

τ l ( x ) ( h ( x ) ) = τ k ( x ) ( h ( σ ( x ) ) ) and σ l ( y ) ( h - 1 ( y ) ) = σ k ( y ) ( h - 1 ( τ ( y ) ) ) formulae-sequence superscript 𝜏 𝑙 𝑥 𝑥 superscript 𝜏 𝑘 𝑥 𝜎 𝑥 and superscript 𝜎 superscript 𝑙 𝑦 superscript 1 𝑦 superscript 𝜎 superscript 𝑘 𝑦 superscript 1 𝜏 𝑦 \tau^{l(x)}(h(x))=\tau^{k(x)}(h(\sigma(x)))\quad\text{ and }\quad\sigma^{l^{% \prime}(y)}(h^{-1}(y))=\sigma^{k^{\prime}(y)}(h^{-1}(\tau(y))) italic_τ start_POSTSUPERSCRIPT italic_l ( italic_x ) end_POSTSUPERSCRIPT ( italic_h ( italic_x ) ) = italic_τ start_POSTSUPERSCRIPT italic_k ( italic_x ) end_POSTSUPERSCRIPT ( italic_h ( italic_σ ( italic_x ) ) ) and italic_σ start_POSTSUPERSCRIPT italic_l start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( italic_y ) end_POSTSUPERSCRIPT ( italic_h start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ( italic_y ) ) = italic_σ start_POSTSUPERSCRIPT italic_k start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( italic_y ) end_POSTSUPERSCRIPT ( italic_h start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ( italic_τ ( italic_y ) ) )

for all x , y 𝑥 𝑦 x,y italic_x , italic_y . We call ( h , l , k , l , k ) 𝑙 𝑘 superscript 𝑙 superscript 𝑘 (h,l,k,l^{\prime},k^{\prime}) ( italic_h , italic_l , italic_k , italic_l start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT , italic_k start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) a continuous orbit equivalence and we call h h italic_h the underlying homeomorphism . We say that ( h , l , k , l , k ) 𝑙 𝑘 superscript 𝑙 superscript 𝑘 (h,l,k,l^{\prime},k^{\prime}) ( italic_h , italic_l , italic_k , italic_l start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT , italic_k start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) preserves stabilisers if Stab min ( h ( x ) ) < Stab min ( x ) < iff subscript Stab 𝑥 subscript Stab 𝑥 \operatorname{Stab}_{\min}(h(x))<\infty\iff\operatorname{Stab}_{\min}(x)<\infty roman_Stab start_POSTSUBSCRIPT roman_min end_POSTSUBSCRIPT ( italic_h ( italic_x ) ) < ∞ ⇔ roman_Stab start_POSTSUBSCRIPT roman_min end_POSTSUBSCRIPT ( italic_x ) < ∞ , and

| n = 0 Stab min ( x ) - 1 l ( σ n ( x ) ) - k ( σ n ( x ) ) | = Stab min ( h ( x ) ) and superscript subscript 𝑛 0 subscript Stab 𝑥 1 𝑙 superscript 𝜎 𝑛 𝑥 𝑘 superscript 𝜎 𝑛 𝑥 subscript Stab 𝑥 and \displaystyle\bigg{|}\sum_{n=0}^{\operatorname{Stab}_{\min}(x)-1}l(\sigma^{n}(% x))-k(\sigma^{n}(x))\bigg{|}=\operatorname{Stab}_{\min}(h(x))\text{ and} | ∑ start_POSTSUBSCRIPT italic_n = 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT roman_Stab start_POSTSUBSCRIPT roman_min end_POSTSUBSCRIPT ( italic_x ) - 1 end_POSTSUPERSCRIPT italic_l ( italic_σ start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT ( italic_x ) ) - italic_k ( italic_σ start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT ( italic_x ) ) | = roman_Stab start_POSTSUBSCRIPT roman_min end_POSTSUBSCRIPT ( italic_h ( italic_x ) ) and
| n = 0 Stab min ( y ) - 1 l ( τ n ( y ) ) - k ( τ n ( y ) ) | = Stab min ( h - 1 ( y ) ) superscript subscript 𝑛 0 subscript Stab 𝑦 1 superscript 𝑙 superscript 𝜏 𝑛 𝑦 superscript 𝑘 superscript 𝜏 𝑛 𝑦 subscript Stab superscript 1 𝑦 \displaystyle\bigg{|}\sum_{n=0}^{\operatorname{Stab}_{\min}(y)-1}l^{\prime}(% \tau^{n}(y))-k^{\prime}(\tau^{n}(y))\bigg{|}=\operatorname{Stab}_{\min}(h^{-1}% (y)) | ∑ start_POSTSUBSCRIPT italic_n = 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT roman_Stab start_POSTSUBSCRIPT roman_min end_POSTSUBSCRIPT ( italic_y ) - 1 end_POSTSUPERSCRIPT italic_l start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( italic_τ start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT ( italic_y ) ) - italic_k start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( italic_τ start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT ( italic_y ) ) | = roman_Stab start_POSTSUBSCRIPT roman_min end_POSTSUBSCRIPT ( italic_h start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ( italic_y ) )

whenever Stab ( x ) , Stab ( y ) Stab 𝑥 Stab 𝑦 \operatorname{Stab}(x),\operatorname{Stab}(y) roman_Stab ( italic_x ) , roman_Stab ( italic_y ) are nontrivial, σ Stab min ( x ) ( x ) = x superscript 𝜎 subscript Stab 𝑥 𝑥 𝑥 \sigma^{\operatorname{Stab}_{\min}(x)}(x)=x italic_σ start_POSTSUPERSCRIPT roman_Stab start_POSTSUBSCRIPT roman_min end_POSTSUBSCRIPT ( italic_x ) end_POSTSUPERSCRIPT ( italic_x ) = italic_x , and τ Stab min ( y ) ( y ) = y superscript 𝜏 subscript Stab 𝑦 𝑦 𝑦 \tau^{\operatorname{Stab}_{\min}(y)}(y)=y italic_τ start_POSTSUPERSCRIPT roman_Stab start_POSTSUBSCRIPT roman_min end_POSTSUBSCRIPT ( italic_y ) end_POSTSUPERSCRIPT ( italic_y ) = italic_y .

Likewise, we say that ( h , l , k , l , k ) 𝑙 𝑘 superscript 𝑙 superscript 𝑘 (h,l,k,l^{\prime},k^{\prime}) ( italic_h , italic_l , italic_k , italic_l start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT , italic_k start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) preserves essential stabilisers if Stab min ess ( h ( x ) ) < Stab min ess ( x ) < iff subscript superscript Stab ess 𝑥 subscript superscript Stab ess 𝑥 \operatorname{Stab}^{\operatorname{ess}}_{\min}(h(x))<\infty\iff\operatorname{% Stab}^{\operatorname{ess}}_{\min}(x)<\infty roman_Stab start_POSTSUPERSCRIPT roman_ess end_POSTSUPERSCRIPT start_POSTSUBSCRIPT roman_min end_POSTSUBSCRIPT ( italic_h ( italic_x ) ) < ∞ ⇔ roman_Stab start_POSTSUPERSCRIPT roman_ess end_POSTSUPERSCRIPT start_POSTSUBSCRIPT roman_min end_POSTSUBSCRIPT ( italic_x ) < ∞ , and

| n = 0 Stab min ess ( x ) - 1 ( l ( σ n ( x ) ) - k ( σ n ( x ) ) ) | = Stab min ess ( h ( x ) ) and superscript subscript 𝑛 0 subscript superscript Stab ess 𝑥 1 𝑙 superscript 𝜎 𝑛 𝑥 𝑘 superscript 𝜎 𝑛 𝑥 subscript superscript Stab ess 𝑥 and \displaystyle\bigg{|}\sum_{n=0}^{\operatorname{Stab}^{\operatorname{ess}}_{% \min}(x)-1}\left(l(\sigma^{n}(x))-k(\sigma^{n}(x))\right)\bigg{|}=% \operatorname{Stab}^{\operatorname{ess}}_{\min}(h(x))\text{ and } | ∑ start_POSTSUBSCRIPT italic_n = 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT roman_Stab start_POSTSUPERSCRIPT roman_ess end_POSTSUPERSCRIPT start_POSTSUBSCRIPT roman_min end_POSTSUBSCRIPT ( italic_x ) - 1 end_POSTSUPERSCRIPT ( italic_l ( italic_σ start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT ( italic_x ) ) - italic_k ( italic_σ start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT ( italic_x ) ) ) | = roman_Stab start_POSTSUPERSCRIPT roman_ess end_POSTSUPERSCRIPT start_POSTSUBSCRIPT roman_min end_POSTSUBSCRIPT ( italic_h ( italic_x ) ) and
| n = 0 Stab min ess ( y ) - 1 ( l ( τ n ( y ) ) - k ( τ n ( y ) ) ) | = Stab min ess ( h - 1 ( y ) ) superscript subscript 𝑛 0 subscript superscript Stab ess 𝑦 1 superscript 𝑙 superscript 𝜏 𝑛 𝑦 superscript 𝑘 superscript 𝜏 𝑛 𝑦 subscript superscript Stab ess superscript 1 𝑦 \displaystyle\bigg{|}\sum_{n=0}^{\operatorname{Stab}^{\operatorname{ess}}_{% \min}(y)-1}\left(l^{\prime}(\tau^{n}(y))-k^{\prime}(\tau^{n}(y))\right)\bigg{|% }=\operatorname{Stab}^{\operatorname{ess}}_{\min}(h^{-1}(y)) | ∑ start_POSTSUBSCRIPT italic_n = 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT roman_Stab start_POSTSUPERSCRIPT roman_ess end_POSTSUPERSCRIPT start_POSTSUBSCRIPT roman_min end_POSTSUBSCRIPT ( italic_y ) - 1 end_POSTSUPERSCRIPT ( italic_l start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( italic_τ start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT ( italic_y ) ) - italic_k start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( italic_τ start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT ( italic_y ) ) ) | = roman_Stab start_POSTSUPERSCRIPT roman_ess end_POSTSUPERSCRIPT start_POSTSUBSCRIPT roman_min end_POSTSUBSCRIPT ( italic_h start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ( italic_y ) )

whenever Stab min ess ( x ) , Stab min ess ( y ) < subscript superscript Stab ess 𝑥 subscript superscript Stab ess 𝑦 \operatorname{Stab}^{\operatorname{ess}}_{\min}(x),\operatorname{Stab}^{% \operatorname{ess}}_{\min}(y)<\infty roman_Stab start_POSTSUPERSCRIPT roman_ess end_POSTSUPERSCRIPT start_POSTSUBSCRIPT roman_min end_POSTSUBSCRIPT ( italic_x ) , roman_Stab start_POSTSUPERSCRIPT roman_ess end_POSTSUPERSCRIPT start_POSTSUBSCRIPT roman_min end_POSTSUBSCRIPT ( italic_y ) < ∞ , σ Stab min ess ( x ) ( x ) = x superscript 𝜎 subscript superscript Stab ess 𝑥 𝑥 𝑥 \sigma^{\operatorname{Stab}^{\operatorname{ess}}_{\min}(x)}(x)=x italic_σ start_POSTSUPERSCRIPT roman_Stab start_POSTSUPERSCRIPT roman_ess end_POSTSUPERSCRIPT start_POSTSUBSCRIPT roman_min end_POSTSUBSCRIPT ( italic_x ) end_POSTSUPERSCRIPT ( italic_x ) = italic_x , and τ Stab min ess ( y ) ( y ) = y superscript 𝜏 subscript superscript Stab ess 𝑦 𝑦 𝑦 \tau^{\operatorname{Stab}^{\operatorname{ess}}_{\min}(y)}(y)=y italic_τ start_POSTSUPERSCRIPT roman_Stab start_POSTSUPERSCRIPT roman_ess end_POSTSUPERSCRIPT start_POSTSUBSCRIPT roman_min end_POSTSUBSCRIPT ( italic_y ) end_POSTSUPERSCRIPT ( italic_y ) = italic_y . {}_{\Box} start_FLOATSUBSCRIPT □ end_FLOATSUBSCRIPT


Definition 3 .

Let 𝒳 𝒳 \mathcal{X} caligraphic_X be a non-empty input set and \mathcal{R} caligraphic_R a Hilbert space of functions f : 𝒳 normal-: 𝑓 normal-→ 𝒳 f:\mathcal{X}\rightarrow\mathbb{C} italic_f : caligraphic_X → blackboard_C that map inputs to the real numbers. Let , normal-⋅ normal-⋅ \langle\cdot,\cdot\rangle ⟨ ⋅ , ⋅ ⟩ be an inner product defined on \mathcal{R} caligraphic_R (which gives rise to a norm via || f || = f , f norm 𝑓 𝑓 𝑓 ||f||=\sqrt{\langle f,f\rangle} | | italic_f | | = square-root start_ARG ⟨ italic_f , italic_f ⟩ end_ARG ). \mathcal{R} caligraphic_R is a reproducing kernel Hilbert space if every point evaluation is a continuous functional F : f f ( x ) normal-: 𝐹 normal-→ 𝑓 𝑓 𝑥 F:f\rightarrow f(x) italic_F : italic_f → italic_f ( italic_x ) for all x 𝒳 𝑥 𝒳 x\in\mathcal{X} italic_x ∈ caligraphic_X . This is equivalent to the condition that there exists a function κ : 𝒳 × 𝒳 normal-: 𝜅 normal-→ 𝒳 𝒳 \kappa:\mathcal{X}\times\mathcal{X}\rightarrow\mathbb{C} italic_κ : caligraphic_X × caligraphic_X → blackboard_C for which

f , κ ( x , ) = f ( x ) 𝑓 𝜅 𝑥 𝑓 𝑥 \langle f,\kappa(x,\cdot)\rangle=f(x) ⟨ italic_f , italic_κ ( italic_x , ⋅ ) ⟩ = italic_f ( italic_x ) (2)

with κ ( x , ) 𝜅 𝑥 normal-⋅ \kappa(x,\cdot)\in\mathcal{R} italic_κ ( italic_x , ⋅ ) ∈ caligraphic_R and for all f 𝑓 f\in\mathcal{H} italic_f ∈ caligraphic_H , x 𝒳 𝑥 𝒳 x\in\mathcal{X} italic_x ∈ caligraphic_X .


Definition 2.1 .

A strict NK structure on M 6 superscript 𝑀 6 M^{6} italic_M start_POSTSUPERSCRIPT 6 end_POSTSUPERSCRIPT is an SU ( 3 ) normal-SU 3 \mathrm{SU}(3) roman_SU ( 3 ) -structure ( ψ ± , ω ) superscript 𝜓 plus-or-minus 𝜔 (\psi^{\pm},\omega) ( italic_ψ start_POSTSUPERSCRIPT ± end_POSTSUPERSCRIPT , italic_ω ) satisfying

(2.4) d ω = 3 ψ + d 𝜔 3 superscript 𝜓 \mathrm{d}\omega=3\psi^{+} roman_d italic_ω = 3 italic_ψ start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT

and

(2.5) d ψ - = - 2 ω ω . d superscript 𝜓 2 𝜔 𝜔 \mathrm{d}\psi^{-}=-2\omega\wedge\omega. roman_d italic_ψ start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT = - 2 italic_ω ∧ italic_ω .

Definition 3.1

An additive category is a commutative monoid enriched category, that is a category in which each hom-set is a commutative monoid – with addition operation + + + and zero 0 0 – and in which composition preserves the additive structure, that is:

  1. (i)

    k ; ( f + g ) = k ; f + k ; g formulae-sequence 𝑘 𝑓 𝑔 𝑘 𝑓 𝑘 𝑔 k;(f\!+\!g)\!=k;f\!+\!k;g italic_k ; ( italic_f + italic_g ) = italic_k ; italic_f + italic_k ; italic_g and 0 ; f = 0 0 𝑓 0 0;f=0 0 ; italic_f = 0 ;

  2. (ii)

    ( f + g ) ; h = f ; h + g ; h formulae-sequence 𝑓 𝑔 𝑓 𝑔 (f\!+\!g);h\!=\!f;h\!+\!g;h ( italic_f + italic_g ) ; italic_h = italic_f ; italic_h + italic_g ; italic_h and f ; 0 = 0 𝑓 0 0 f;0=0 italic_f ; 0 = 0 .

An additive symmetric monoidal category is an additive category with a tensor product which is compatible with the additive structure in the sense that:

  1. (i)

    ( f + g ) h = f h + g h tensor-product 𝑓 𝑔 tensor-product 𝑓 tensor-product 𝑔 (f\!+\!g)\otimes h\!=\!f\otimes h\!+\!g\otimes h ( italic_f + italic_g ) ⊗ italic_h = italic_f ⊗ italic_h + italic_g ⊗ italic_h and 0 h = 0 tensor-product 0 0 0\otimes h\!=\!0 0 ⊗ italic_h = 0 ;

  2. (ii)

    k ( f + g ) = k f + k g tensor-product 𝑘 𝑓 𝑔 tensor-product 𝑘 𝑓 tensor-product 𝑘 𝑔 k\otimes(f\!+\!g)\!=\!k\otimes f\!+\!k\otimes g italic_k ⊗ ( italic_f + italic_g ) = italic_k ⊗ italic_f + italic_k ⊗ italic_g and h 0 = 0 tensor-product 0 0 h\otimes 0\!=\!0 italic_h ⊗ 0 = 0 .

Definition 3.2

A codifferential category [ 7 , 5 ] is an additive symmetric monoidal category with an algebra modality ( 𝖳 , μ , η , 𝗆 , 𝗎 ) 𝖳 𝜇 𝜂 𝗆 𝗎 (\mathsf{T},\mu,\eta,\mathsf{m},\mathsf{u}) ( sansserif_T , italic_μ , italic_η , sansserif_m , sansserif_u ) which comes equipped with a deriving transformation , that is, a natural transformation 𝖽 : 𝖳 ( A ) 𝖳 ( A ) A normal-: 𝖽 𝖳 𝐴 tensor-product 𝖳 𝐴 𝐴 \mathsf{d}:\mathsf{T}(A)\allowbreak\mathrel{\mathop{\hbox to 12.0pt{% \rightarrowfill}}\limits}\mathsf{T}(A)\otimes A sansserif_d : sansserif_T ( italic_A ) RELOP sansserif_T ( italic_A ) ⊗ italic_A such that the following equalities hold:

  1. [d.1]

    Constant Rule: 𝗎 ; 𝖽 = 0 𝗎 𝖽 0 \mathsf{u};\mathsf{d}=0 sansserif_u ; sansserif_d = 0

  2. [d.2]

    Leibniz Rule: 𝗆 ; 𝖽 = ( 𝖽 1 ) ; ( 1 σ ) ; ( 𝗆 1 ) + ( 1 𝖽 ) ; ( 𝗆 1 ) formulae-sequence 𝗆 𝖽 tensor-product 𝖽 1 tensor-product 1 𝜎 tensor-product 𝗆 1 tensor-product 1 𝖽 tensor-product 𝗆 1 \mathsf{m};\mathsf{d}=(\mathsf{d}\otimes 1);(1\otimes\sigma);(\mathsf{m}% \otimes 1)+(1\otimes\mathsf{d});(\mathsf{m}\otimes 1) sansserif_m ; sansserif_d = ( sansserif_d ⊗ 1 ) ; ( 1 ⊗ italic_σ ) ; ( sansserif_m ⊗ 1 ) + ( 1 ⊗ sansserif_d ) ; ( sansserif_m ⊗ 1 )

  3. [d.3]

    Linear Rule: η ; 𝖽 = 𝗎 1 𝜂 𝖽 tensor-product 𝗎 1 \eta;\mathsf{d}=\mathsf{u}\otimes 1 italic_η ; sansserif_d = sansserif_u ⊗ 1

  4. [d.4]

    Chain Rule: μ ; 𝖽 = 𝖽 ; ( μ 𝖽 ) ; ( 𝗆 1 fragments μ ; d d ; fragments ( μ tensor-product d ) ; fragments ( m tensor-product 1 \mu;\mathsf{d}=\mathsf{d};(\mu\otimes\mathsf{d});(\mathsf{m}\otimes 1 italic_μ ; sansserif_d = sansserif_d ; ( italic_μ ⊗ sansserif_d ) ; ( sansserif_m ⊗ 1

  5. [d.5]

    Interchange Rule: 𝖽 ; ( 𝖽 1 ) = 𝖽 ; ( 𝖽 1 ) ; ( 1 σ ) formulae-sequence 𝖽 tensor-product 𝖽 1 𝖽 tensor-product 𝖽 1 tensor-product 1 𝜎 \mathsf{d};(\mathsf{d}\otimes 1)=\mathsf{d};(\mathsf{d}\otimes 1);(1\otimes\sigma) sansserif_d ; ( sansserif_d ⊗ 1 ) = sansserif_d ; ( sansserif_d ⊗ 1 ) ; ( 1 ⊗ italic_σ )


Definition 1.2 .

A negation map on a 𝒯 𝒯 \mathcal{T} caligraphic_T -module 𝒜 𝒜 \mathcal{A} caligraphic_A is a semigroup isomorphism ( - ) : 𝒜 𝒜 normal-: normal-→ 𝒜 𝒜 (-):\mathcal{A}\to\mathcal{A} ( - ) : caligraphic_A → caligraphic_A of order 2 , absent 2 \leq 2, ≤ 2 , written a ( - ) a maps-to 𝑎 𝑎 a\mapsto(-)a italic_a ↦ ( - ) italic_a , which also respects the 𝒯 𝒯 \mathcal{T} caligraphic_T -action in the sense that

( - ) ( a b ) = a ( ( - ) b ) 𝑎 𝑏 𝑎 𝑏 (-)(ab)=a((-)b) ( - ) ( italic_a italic_b ) = italic_a ( ( - ) italic_b )

for a 𝒯 , 𝑎 𝒯 a\in\mathcal{T}, italic_a ∈ caligraphic_T , b 𝒜 . 𝑏 𝒜 b\in\mathcal{A}. italic_b ∈ caligraphic_A .

A semiring normal-† absent normal-† {}^{\dagger\dagger} start_FLOATSUPERSCRIPT † † end_FLOATSUPERSCRIPT negation map on a semiring normal-† absent normal-† {}^{\dagger\dagger} start_FLOATSUPERSCRIPT † † end_FLOATSUPERSCRIPT 𝒜 𝒜 \mathcal{A} caligraphic_A is a negation map which satisfies (-)(ab) = a((-)b) for all a , b 𝒜 . 𝑎 𝑏 𝒜 a,b\in\mathcal{A}. italic_a , italic_b ∈ caligraphic_A .


Definition 7.14 .

Let ( 𝔤 , [ , ] , δ 1 ) 𝔤 subscript 𝛿 1 (\mathfrak{g},[\cdot,\cdot],\delta_{1}) ( fraktur_g , [ ⋅ , ⋅ ] , italic_δ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) and ( 𝔤 , [ , ] , δ 2 ) 𝔤 subscript 𝛿 2 (\mathfrak{g},[\cdot,\cdot],\delta_{2}) ( fraktur_g , [ ⋅ , ⋅ ] , italic_δ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) be two Lie bialgebras, ( 𝔤 * , [ , ] 1 * ) fragments ( superscript 𝔤 , subscript superscript fragments [ , ] 1 ) (\mathfrak{g}^{*},[\;,\;]^{*}_{1}) ( fraktur_g start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT , [ , ] start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) and ( 𝔤 * , [ , ] 2 * ) fragments ( superscript 𝔤 , subscript superscript fragments [ , ] 2 ) (\mathfrak{g}^{*},[\;,\;]^{*}_{2}) ( fraktur_g start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT , [ , ] start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) the corresponding Lie algebra structures on 𝔤 * superscript 𝔤 \mathfrak{g}^{*} fraktur_g start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT respectively. A weak homomorphism from ( 𝔤 , [ , ] , δ 2 ) 𝔤 subscript 𝛿 2 (\mathfrak{g},[\cdot,\cdot],\delta_{2}) ( fraktur_g , [ ⋅ , ⋅ ] , italic_δ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) to ( 𝔤 , [ , ] , δ 1 ) 𝔤 subscript 𝛿 1 (\mathfrak{g},[\cdot,\cdot],\delta_{1}) ( fraktur_g , [ ⋅ , ⋅ ] , italic_δ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) consists of a Lie algebra homomorphism ϕ : 𝔤 𝔤 : italic-ϕ 𝔤 𝔤 \phi:\mathfrak{g}\rightarrow\mathfrak{g} italic_ϕ : fraktur_g → fraktur_g and a linear map φ : 𝔤 𝔤 : 𝜑 𝔤 𝔤 \varphi:\mathfrak{g}\rightarrow\mathfrak{g} italic_φ : fraktur_g → fraktur_g such that φ * : ( 𝔤 * , [ , ] 2 * ) ( 𝔤 * , [ , ] 1 * ) : superscript 𝜑 superscript 𝔤 subscript superscript 2 superscript 𝔤 superscript subscript 1 \varphi^{*}:(\mathfrak{g}^{*},[\cdot,\cdot]^{*}_{2})\rightarrow(\mathfrak{g}^{% *},[\cdot,\cdot]_{1}^{*}) italic_φ start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT : ( fraktur_g start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT , [ ⋅ , ⋅ ] start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) → ( fraktur_g start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT , [ ⋅ , ⋅ ] start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT ) is a Lie algebra homomorphism (that is, φ 𝜑 \varphi italic_φ is a Lie coalgebra homomorphism) and

(48) φ [ ϕ ( x ) , y ] = [ x , φ ( y ) ] , x , y 𝔤 . formulae-sequence 𝜑 italic-ϕ 𝑥 𝑦 𝑥 𝜑 𝑦 for-all 𝑥 𝑦 𝔤 \varphi[\phi(x),y]=[x,\varphi(y)],\;\;\forall x,y\in\mathfrak{g}. italic_φ [ italic_ϕ ( italic_x ) , italic_y ] = [ italic_x , italic_φ ( italic_y ) ] , ∀ italic_x , italic_y ∈ fraktur_g .

If in addition, both ϕ italic-ϕ \phi italic_ϕ and φ 𝜑 \varphi italic_φ are linear isomorphisms, then ( ϕ , φ ) italic-ϕ 𝜑 (\phi,\varphi) ( italic_ϕ , italic_φ ) is called a weak isomorphism from ( 𝔤 , [ , ] , δ 2 ) 𝔤 subscript 𝛿 2 (\mathfrak{g},[\cdot,\cdot],\delta_{2}) ( fraktur_g , [ ⋅ , ⋅ ] , italic_δ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) to ( 𝔤 , [ , ] , δ 1 ) 𝔤 subscript 𝛿 1 (\mathfrak{g},[\cdot,\cdot],\delta_{1}) ( fraktur_g , [ ⋅ , ⋅ ] , italic_δ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) .


Définition 5.1.2 .

L’ application ancre ρ : 𝐠 T 𝒢 ( 0 ) normal-: 𝜌 normal-→ 𝐠 𝑇 superscript 𝒢 0 \rho:\mathbf{g}\rightarrow T{\mathcal{G}}^{(0)} italic_ρ : bold_g → italic_T caligraphic_G start_POSTSUPERSCRIPT ( 0 ) end_POSTSUPERSCRIPT est le morphisme de fibrés vectoriels au dessus de 𝒢 ( 0 ) superscript 𝒢 0 {\mathcal{G}}^{(0)} caligraphic_G start_POSTSUPERSCRIPT ( 0 ) end_POSTSUPERSCRIPT défini par la restriction de la différentielle du but:

ρ ( ξ ) = d r ( ξ ) . 𝜌 𝜉 𝑑 𝑟 𝜉 \rho(\xi)=dr(\xi). italic_ρ ( italic_ξ ) = italic_d italic_r ( italic_ξ ) .

Definition 11 (Correctness formula)

We call correctness formula of an annotated specification S P = { P r e } ( , s ) { P o s t } 𝑆 𝑃 𝑃 𝑟 𝑒 𝑠 𝑃 𝑜 𝑠 𝑡 SP=\{Pre\}(\mathcal{R},s)\{Post\} italic_S italic_P = { italic_P italic_r italic_e } ( caligraphic_R , italic_s ) { italic_P italic_o italic_s italic_t } , the formula :

c o r r e c t ( S P ) = ( P r e w p ( s , P o s t ) ) v c ( s , P o s t ) . fragments c o r r e c t fragments ( S P ) fragments ( P r e w p fragments ( s , P o s t ) ) v c fragments ( s , P o s t ) . correct(SP)=(Pre\Rightarrow wp(s,Post))\wedge vc(s,Post). italic_c italic_o italic_r italic_r italic_e italic_c italic_t ( italic_S italic_P ) = ( italic_P italic_r italic_e ⇒ italic_w italic_p ( italic_s , italic_P italic_o italic_s italic_t ) ) ∧ italic_v italic_c ( italic_s , italic_P italic_o italic_s italic_t ) .

Definition 3.2 .

Consider system ( 4 ) subject to uncertainties of the form

x ( t + 1 ) = f ( x ( t ) , u ( t ) ) + w ( t ) , 𝑥 𝑡 1 𝑓 𝑥 𝑡 𝑢 𝑡 𝑤 𝑡 x(t+1)=f(x(t),u(t))+w(t), italic_x ( italic_t + 1 ) = italic_f ( italic_x ( italic_t ) , italic_u ( italic_t ) ) + italic_w ( italic_t ) , (6)

where w ( t ) δ 𝔹 𝑤 𝑡 𝛿 𝔹 w(t)\in\delta\mathbb{B} italic_w ( italic_t ) ∈ italic_δ blackboard_B for some δ 0 𝛿 0 \delta\geq 0 italic_δ ≥ 0 . Define Δ δ subscript normal-Δ 𝛿 \Delta_{\delta} roman_Δ start_POSTSUBSCRIPT italic_δ end_POSTSUBSCRIPT to consist of transitions ( x , u , x ) R 𝒮 𝑥 𝑢 superscript 𝑥 normal-′ subscript 𝑅 𝒮 (x,u,x^{\prime})\not\in R_{\mathcal{S}} ( italic_x , italic_u , italic_x start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) ∉ italic_R start_POSTSUBSCRIPT caligraphic_S end_POSTSUBSCRIPT such that one of the following holds: (i) x f ( x , u ) + δ 𝔹 superscript 𝑥 normal-′ 𝑓 𝑥 𝑢 𝛿 𝔹 x^{\prime}\in f(x,u)+\delta\mathbb{B} italic_x start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ∈ italic_f ( italic_x , italic_u ) + italic_δ blackboard_B and x , x X 𝑥 superscript 𝑥 normal-′ 𝑋 x,x^{\prime}\in X italic_x , italic_x start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ∈ italic_X ; (ii) x = X c superscript 𝑥 normal-′ superscript 𝑋 𝑐 x^{\prime}=X^{c} italic_x start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT = italic_X start_POSTSUPERSCRIPT italic_c end_POSTSUPERSCRIPT and f ( x , u ) + w X 𝑓 𝑥 𝑢 𝑤 𝑋 f(x,u)+w\not\in X italic_f ( italic_x , italic_u ) + italic_w ∉ italic_X for some w δ 𝔹 𝑤 𝛿 𝔹 w\in\delta\mathbb{B} italic_w ∈ italic_δ blackboard_B .


Definition 2.2 .

A length function on the space of geodesic currents is a map : Curr ( S ) : Curr 𝑆 \ell:\operatorname{Curr}(S)\to\mathbb{R} roman_ℓ : roman_Curr ( italic_S ) → blackboard_R which is homogeneous and positive, i.e.

( a μ ) = a ( μ ) 𝑎 𝜇 𝑎 𝜇 \ell(a\mu)=a\ell(\mu) roman_ℓ ( italic_a italic_μ ) = italic_a roman_ℓ ( italic_μ )

for any a > 0 𝑎 0 a>0 italic_a > 0 and μ Curr ( S ) 𝜇 Curr 𝑆 \mu\in\operatorname{Curr}(S) italic_μ ∈ roman_Curr ( italic_S ) , ( μ ) 0 𝜇 0 \ell(\mu)\geq 0 roman_ℓ ( italic_μ ) ≥ 0 for all μ Curr ( S ) 𝜇 Curr 𝑆 \mu\in\operatorname{Curr}(S) italic_μ ∈ roman_Curr ( italic_S ) and ( μ ) = 0 𝜇 0 \ell(\mu)=0 roman_ℓ ( italic_μ ) = 0 iff μ = 0 𝜇 0 \mu=0 italic_μ = 0 .


Definition 1

A network matrix G 0 ( z ) superscript 𝐺 0 𝑧 G^{0}(z) italic_G start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT ( italic_z ) is generically identifiable from a set of measured nodes defined by C 𝐶 C italic_C in ( 5 ) if, for any rational transfer matrix parametrization G ( P , z ) 𝐺 𝑃 𝑧 G(P,z) italic_G ( italic_P , italic_z ) consistent with the directed graph associated to G 0 ( z ) superscript 𝐺 0 𝑧 G^{0}(z) italic_G start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT ( italic_z ) , there holds

C ( I - G ( P , z ) ) - 1 = C ( I - G ~ ( z ) ) - 1 G ( P , z ) = G ~ ( z ) 𝐶 superscript 𝐼 𝐺 𝑃 𝑧 1 𝐶 superscript 𝐼 ~ 𝐺 𝑧 1 𝐺 𝑃 𝑧 ~ 𝐺 𝑧 \displaystyle C(I-G(P,z))^{-1}=C(I-\tilde{G}(z))^{-1}\Rightarrow G(P,z)=\tilde% {G}(z) italic_C ( italic_I - italic_G ( italic_P , italic_z ) ) start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT = italic_C ( italic_I - ~ start_ARG italic_G end_ARG ( italic_z ) ) start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ⇒ italic_G ( italic_P , italic_z ) = ~ start_ARG italic_G end_ARG ( italic_z ) (19)

for all parameters P 𝑃 P italic_P except possibly those lying on a zero measure set in N superscript 𝑁 \Re^{N} roman_ℜ start_POSTSUPERSCRIPT italic_N end_POSTSUPERSCRIPT , where G ~ ( z ) normal-~ 𝐺 𝑧 \tilde{G}(z) ~ start_ARG italic_G end_ARG ( italic_z ) is any network matrix consistent with the graph.


Definition 2.19 .

We define an operator algebra to be an algebra 𝒜 𝒜 \mathcal{A} caligraphic_A with a fixed subalgebra ( 𝒜 ) 𝒜 \mathcal{M}(\mathcal{A}) caligraphic_M ( caligraphic_A ) , referred to as the subalgebra of multiplicative operators of 𝒜 𝒜 \mathcal{A} caligraphic_A . A bispectral context is a triple ( 𝒜 , , ) 𝒜 (\mathcal{A},\mathcal{B},\mathcal{H}) ( caligraphic_A , caligraphic_B , caligraphic_H ) where 𝒜 𝒜 \mathcal{A} caligraphic_A and \mathcal{B} caligraphic_B are operator algebras and \mathcal{H} caligraphic_H is an 𝒜 , 𝒜 \mathcal{A},\mathcal{B} caligraphic_A , caligraphic_B -bimodule. A bispectral triple is a triple ( a , b , ψ ) 𝑎 𝑏 𝜓 (a,b,\psi) ( italic_a , italic_b , italic_ψ ) with a 𝒜 , b formulae-sequence 𝑎 𝒜 𝑏 a\in\mathcal{A},b\in\mathcal{B} italic_a ∈ caligraphic_A , italic_b ∈ caligraphic_B nonconstant and ψ 𝜓 \psi\in\mathcal{H} italic_ψ ∈ caligraphic_H satisfying the property that ψ 𝜓 \psi italic_ψ has trivial left and right annihilator and

a ψ = ψ g , and ψ b = f ψ formulae-sequence 𝑎 𝜓 𝜓 𝑔 and 𝜓 𝑏 𝑓 𝜓 a\cdot\psi=\psi\cdot g,\ \text{and}\ \psi\cdot b=f\cdot\psi italic_a ⋅ italic_ψ = italic_ψ ⋅ italic_g , and italic_ψ ⋅ italic_b = italic_f ⋅ italic_ψ

for some f ( 𝒜 ) 𝑓 𝒜 f\in\mathcal{M}(\mathcal{A}) italic_f ∈ caligraphic_M ( caligraphic_A ) and g ( ) 𝑔 g\in\mathcal{M}(\mathcal{B}) italic_g ∈ caligraphic_M ( caligraphic_B ) . In the case that ψ 𝜓 \psi italic_ψ forms part of a bispectral triple we call ψ 𝜓 \psi italic_ψ bispectral .

Definition 2.23 .

Let ( 𝒜 , , ) 𝒜 (\mathcal{A},\mathcal{B},\mathcal{H}) ( caligraphic_A , caligraphic_B , caligraphic_H ) be a bispectral context, and let ψ , ψ ~ 𝜓 ~ 𝜓 \psi,\widetilde{\psi}\in\mathcal{H} italic_ψ , ~ start_ARG italic_ψ end_ARG ∈ caligraphic_H be bispectral. We say that ψ ~ ~ 𝜓 \widetilde{\psi} ~ start_ARG italic_ψ end_ARG is a bispectral Darboux transformation of ψ 𝜓 \psi italic_ψ if there exist u , u ~ R ( ψ ) 𝑢 ~ 𝑢 subscript 𝑅 𝜓 u,\widetilde{u}\in\mathcal{F}_{R}(\psi) italic_u , ~ start_ARG italic_u end_ARG ∈ caligraphic_F start_POSTSUBSCRIPT italic_R end_POSTSUBSCRIPT ( italic_ψ ) and units p , p ~ ( 𝒜 ) 𝑝 ~ 𝑝 𝒜 p,\widetilde{p}\in\mathcal{M}(\mathcal{A}) italic_p , ~ start_ARG italic_p end_ARG ∈ caligraphic_M ( caligraphic_A ) and units q , q ~ ( ) 𝑞 ~ 𝑞 q,\widetilde{q}\in\mathcal{M}(\mathcal{B}) italic_q , ~ start_ARG italic_q end_ARG ∈ caligraphic_M ( caligraphic_B ) with

ψ ~ = p - 1 ψ u q - 1 and ψ = p ~ - 1 ψ ~ q ~ - 1 u ~ . formulae-sequence ~ 𝜓 superscript 𝑝 1 𝜓 𝑢 superscript 𝑞 1 and 𝜓 superscript ~ 𝑝 1 ~ 𝜓 superscript ~ 𝑞 1 ~ 𝑢 \widetilde{\psi}=p^{-1}\cdot\psi\cdot uq^{-1}\ \ \text{and}\ \ \psi=\widetilde% {p}^{-1}\cdot\widetilde{\psi}\cdot\widetilde{q}^{-1}\widetilde{u}. ~ start_ARG italic_ψ end_ARG = italic_p start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ⋅ italic_ψ ⋅ italic_u italic_q start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT and italic_ψ = ~ start_ARG italic_p end_ARG start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ⋅ ~ start_ARG italic_ψ end_ARG ⋅ ~ start_ARG italic_q end_ARG start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ~ start_ARG italic_u end_ARG . (2.24)

In the case that ( 𝒜 ) 𝒜 \mathcal{M}(\mathcal{A}) caligraphic_M ( caligraphic_A ) or ( ) \mathcal{M}(\mathcal{B}) caligraphic_M ( caligraphic_B ) is noncommutative, this is also called a noncommutative bispectral Darboux transformation in geiger2017 .


Definition 5.1 .

Let σ 𝜎 \sigma italic_σ be a store and 𝑎𝑣 𝑎𝑣 \mathit{av} italic_av be an avail. Let N 𝑁 N italic_N be a set of nodes. For n N 𝑛 𝑁 n\in N italic_n ∈ italic_N , we write 𝑢𝑠𝑒 ( n ) 𝑢𝑠𝑒 𝑛 \mathit{use}(n) italic_use ( italic_n ) for the set of variables used in n 𝑛 n italic_n . We define a binary relation σ n 𝑎𝑣 subscript 𝑛 𝜎 𝑎𝑣 \sigma\approx_{n}\mathit{av} italic_σ ≈ start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT italic_av as follows:

x 𝑢𝑠𝑒 ( n ) . σ ( x ) = 𝑎𝑣 ( n , x ) . formulae-sequence for-all 𝑥 𝑢𝑠𝑒 𝑛 𝜎 𝑥 𝑎𝑣 𝑛 𝑥 \displaystyle\forall x\in\mathit{use}(n).\sigma(x)=\mathit{av}(n,x). ∀ italic_x ∈ italic_use ( italic_n ) . italic_σ ( italic_x ) = italic_av ( italic_n , italic_x ) .

We simply write σ 𝑎𝑣 𝜎 𝑎𝑣 \sigma\approx\mathit{av} italic_σ ≈ italic_av for n N . σ n 𝑎𝑣 formulae-sequence for-all 𝑛 𝑁 subscript 𝑛 𝜎 𝑎𝑣 \forall n\in N.\sigma\approx_{n}\mathit{av} ∀ italic_n ∈ italic_N . italic_σ ≈ start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT italic_av .


Definition 3.11 .

A random walk ( X n ) n 0 subscript subscript 𝑋 𝑛 𝑛 0 (X_{n})_{n\geq 0} ( italic_X start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) start_POSTSUBSCRIPT italic_n ≥ 0 end_POSTSUBSCRIPT on V 𝑉 V italic_V is isotropic if its transition probabilities satisfy

p ( x , y ) = p ( x , y ) whenever 𝒅 ( x , y ) = 𝒅 ( x , y ) . 𝑝 𝑥 𝑦 𝑝 superscript 𝑥 superscript 𝑦 whenever 𝒅 ( x , y ) = 𝒅 ( x , y ) p(x,y)=p(x^{\prime},y^{\prime})\quad\text{whenever $\boldsymbol{d}(x,y)=% \boldsymbol{d}(x^{\prime},y^{\prime})$}. italic_p ( italic_x , italic_y ) = italic_p ( italic_x start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT , italic_y start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) whenever bold_italic_d ( italic_x , italic_y ) = bold_italic_d ( italic_x start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT , italic_y start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) .

Definition 2.4 .

Let S U q 0 ( 2 ) S U q ( 2 ) 𝑆 subscript superscript 𝑈 0 𝑞 2 𝑆 subscript 𝑈 𝑞 2 SU^{0}_{q}(2)\subseteq SU_{q}(2) italic_S italic_U start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ( 2 ) ⊆ italic_S italic_U start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ( 2 ) be the * * * -subalgebra of S U q ( 2 ) 𝑆 subscript 𝑈 𝑞 2 SU_{q}(2) italic_S italic_U start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ( 2 ) generated by α 𝛼 \alpha italic_α and γ 𝛾 \gamma italic_γ (i.e no closure or similar topological properties). As Δ ( S U q 0 ) S U q 0 S U q 0 Δ 𝑆 superscript subscript 𝑈 𝑞 0 tensor-product 𝑆 superscript subscript 𝑈 𝑞 0 𝑆 superscript subscript 𝑈 𝑞 0 \Delta(SU_{q}^{0})\subseteq SU_{q}^{0}\otimes SU_{q}^{0} roman_Δ ( italic_S italic_U start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT ) ⊆ italic_S italic_U start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT ⊗ italic_S italic_U start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT (notice that S U q 0 S U q 0 S U q S U q tensor-product 𝑆 superscript subscript 𝑈 𝑞 0 𝑆 superscript subscript 𝑈 𝑞 0 tensor-product 𝑆 subscript 𝑈 𝑞 𝑆 subscript 𝑈 𝑞 SU_{q}^{0}\otimes SU_{q}^{0}\subseteq SU_{q}\otimes SU_{q} italic_S italic_U start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT ⊗ italic_S italic_U start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT ⊆ italic_S italic_U start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ⊗ italic_S italic_U start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT is isomorphic to the algebraic tensor product of S U q 0 𝑆 superscript subscript 𝑈 𝑞 0 SU_{q}^{0} italic_S italic_U start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT with itself) we have an * * * -algebra with comultiplication. We now define a counit ϵ italic-ϵ \epsilon italic_ϵ and antipode S 𝑆 S italic_S by the formulas

ϵ ( α ) = 1 , ϵ ( γ ) = 0 , italic-ϵ 𝛼 1 italic-ϵ 𝛾 0 missing-subexpression \begin{array}[]{ccc}\epsilon(\alpha)=1,&\epsilon(\gamma)=0,\end{array} start_ARRAY start_ROW start_CELL italic_ϵ ( italic_α ) = 1 , end_CELL start_CELL italic_ϵ ( italic_γ ) = 0 , end_CELL start_CELL end_CELL end_ROW end_ARRAY (6)
S ( α ) = α * , S ( α * ) = α , S ( γ ) = - q γ , S ( γ * ) = - q - 1 γ * . 𝑆 𝛼 superscript 𝛼 𝑆 superscript 𝛼 𝛼 𝑆 𝛾 𝑞 𝛾 missing-subexpression 𝑆 superscript 𝛾 superscript 𝑞 1 superscript 𝛾 missing-subexpression \begin{array}[]{ccc}S(\alpha)=\alpha^{*},&S(\alpha^{*})=\alpha,&S(\gamma)=-q% \gamma,\\ &S(\gamma^{*})=-q^{-1}\gamma^{*}.\end{array} start_ARRAY start_ROW start_CELL italic_S ( italic_α ) = italic_α start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT , end_CELL start_CELL italic_S ( italic_α start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT ) = italic_α , end_CELL start_CELL italic_S ( italic_γ ) = - italic_q italic_γ , end_CELL end_ROW start_ROW start_CELL end_CELL start_CELL italic_S ( italic_γ start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT ) = - italic_q start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT italic_γ start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT . end_CELL start_CELL end_CELL end_ROW end_ARRAY (7)

We can now extend these formulas to all of S U q 0 ( 2 ) 𝑆 subscript superscript 𝑈 0 𝑞 2 SU^{0}_{q}(2) italic_S italic_U start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ( 2 ) by require that ϵ italic-ϵ \epsilon italic_ϵ is a homomorphism S U q 0 ( 2 ) 𝑆 subscript superscript 𝑈 0 𝑞 2 SU^{0}_{q}(2)\rightarrow\mathbb{C} italic_S italic_U start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ( 2 ) → blackboard_C and S 𝑆 S italic_S to be an antihomomorphism S U q 0 ( 2 ) S U q 0 ( 2 ) . 𝑆 superscript subscript 𝑈 𝑞 0 2 𝑆 superscript subscript 𝑈 𝑞 0 2 SU_{q}^{0}(2)\rightarrow SU_{q}^{0}(2). italic_S italic_U start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT ( 2 ) → italic_S italic_U start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT ( 2 ) .


Definition 4.1 .

Let f L 1 ( [ a , b ] ; ) 𝑓 superscript 𝐿 1 𝑎 𝑏 f\in L^{1}([a,b];\mathbb{R}) italic_f ∈ italic_L start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT ( [ italic_a , italic_b ] ; blackboard_R ) , ( a , b ) 2 𝑎 𝑏 superscript 2 (a,b)\in\mathbb{R}^{2} ( italic_a , italic_b ) ∈ blackboard_R start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT , a < b 𝑎 𝑏 a<b italic_a < italic_b . We say that f 𝑓 f italic_f has an absolutely continuous representative, if there exists a function ψ A C ( [ a , b ] ; ) 𝜓 𝐴 𝐶 𝑎 𝑏 \psi\in AC([a,b];\mathbb{R}) italic_ψ ∈ italic_A italic_C ( [ italic_a , italic_b ] ; blackboard_R ) such that

f ( x ) = ψ ( x ) , a.e. x [ a , b ] . formulae-sequence 𝑓 𝑥 𝜓 𝑥 a.e. 𝑥 𝑎 𝑏 f(x)=\psi(x),\quad\mbox{ a.e. }x\in[a,b]. italic_f ( italic_x ) = italic_ψ ( italic_x ) , a.e. italic_x ∈ [ italic_a , italic_b ] .

In this case, the function f 𝑓 f italic_f is identified to its absolutely continuous representative ψ 𝜓 \psi italic_ψ .


Definition 4.1 (see [ 3 , Definition 9.1] ) .

A Lie algebroid on a rigid analytic K 𝐾 K italic_K -variety X 𝑋 X italic_X is a pair ( ρ , ) 𝜌 (\rho,\mathscr{L}) ( italic_ρ , script_L ) such that \mathscr{L} script_L is a locally free 𝒪 X subscript 𝒪 𝑋 \mathcal{O}_{X} caligraphic_O start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT -module of finite rank on X rig subscript 𝑋 normal-rig X_{\mathrm{rig}} italic_X start_POSTSUBSCRIPT roman_rig end_POSTSUBSCRIPT which is also a sheaf of K 𝐾 K italic_K -Lie algebras, and ρ : 𝒯 X normal-: 𝜌 normal-→ subscript 𝒯 𝑋 \rho:\mathscr{L}\to\mathcal{T}_{X} italic_ρ : script_L → caligraphic_T start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT is an 𝒪 𝒪 \mathcal{O} caligraphic_O -linear map of sheaves of Lie algebras, satisfying

[ x , a y ] = a [ x , y ] + ρ ( x ) ( a ) y 𝑥 𝑎 𝑦 𝑎 𝑥 𝑦 𝜌 𝑥 𝑎 𝑦 [x,ay]=a[x,y]+\rho(x)(a)y [ italic_x , italic_a italic_y ] = italic_a [ italic_x , italic_y ] + italic_ρ ( italic_x ) ( italic_a ) italic_y

for any x , y ( U ) 𝑥 𝑦 𝑈 x,y\in\mathscr{L}(U) italic_x , italic_y ∈ script_L ( italic_U ) , a 𝒪 X ( U ) 𝑎 subscript 𝒪 𝑋 𝑈 a\in\mathcal{O}_{X}(U) italic_a ∈ caligraphic_O start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT ( italic_U ) , U 𝑈 U italic_U an admissible open subset of X 𝑋 X italic_X .


Definition 2.7 (Convolution) .

The convolution of two functions f , g 𝑓 𝑔 f,g italic_f , italic_g on n superscript 𝑛 \mathbb{H}^{n} blackboard_H start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT is defined by

f * g ( ξ ) = f ( η ) g ( η - 1 ξ ) 𝑑 η = f ( ξ η - 1 ) g ( η ) 𝑑 η . 𝑓 𝑔 𝜉 𝑓 𝜂 𝑔 superscript 𝜂 1 𝜉 differential-d 𝜂 𝑓 𝜉 superscript 𝜂 1 𝑔 𝜂 differential-d 𝜂 f*g(\xi)=\int f(\eta)g(\eta^{-1}\xi)d\eta=\int f(\xi\eta^{-1})g(\eta)d\eta. italic_f * italic_g ( italic_ξ ) = ∫ italic_f ( italic_η ) italic_g ( italic_η start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT italic_ξ ) italic_d italic_η = ∫ italic_f ( italic_ξ italic_η start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ) italic_g ( italic_η ) italic_d italic_η .

If f C 0 𝑓 superscript subscript 𝐶 0 f\in C_{0}^{\infty} italic_f ∈ italic_C start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT and G 𝒟 𝐺 superscript 𝒟 normal-′ G\in\mathscr{D}^{\prime} italic_G ∈ script_D start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT , we define the C superscript 𝐶 C^{\infty} italic_C start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT function G * f 𝐺 𝑓 G*f italic_G * italic_f and f * G 𝑓 𝐺 f*G italic_f * italic_G by

G * f ( ξ ) = G ( f ( η - 1 ξ ) ) , f * G ( ξ ) = G ( f ( ξ η - 1 ) . fragments G f fragments ( ξ ) G fragments ( f fragments ( superscript 𝜂 1 ξ ) ) , f G fragments ( ξ ) G fragments ( f fragments ( ξ superscript 𝜂 1 ) . G*f(\xi)=G(f(\eta^{-1}\xi)),\quad f*G(\xi)=G(f(\xi\eta^{-1}). italic_G * italic_f ( italic_ξ ) = italic_G ( italic_f ( italic_η start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT italic_ξ ) ) , italic_f * italic_G ( italic_ξ ) = italic_G ( italic_f ( italic_ξ italic_η start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ) .