Definition 1.2 .

We say that a ternary groupoid ( X , [ ] ) 𝑋 (X,[\ ]) ( italic_X , [ ] ) is a ternary semigroup if the operation [ ] [\ ] [ ] is associative, that is:

[ [ a b c ] d e ] = [ a [ b c d ] e ] = [ a b [ c d e ] ] . delimited-[] delimited-[] 𝑎 𝑏 𝑐 𝑑 𝑒 delimited-[] 𝑎 delimited-[] 𝑏 𝑐 𝑑 𝑒 delimited-[] 𝑎 𝑏 delimited-[] 𝑐 𝑑 𝑒 [[abc]de]=[a[bcd]e]=[ab[cde]]. [ [ italic_a italic_b italic_c ] italic_d italic_e ] = [ italic_a [ italic_b italic_c italic_d ] italic_e ] = [ italic_a italic_b [ italic_c italic_d italic_e ] ] .

Definition 1.1 .

Let z 000 , , z 111 subscript 𝑧 000 subscript 𝑧 111 z_{000},\dots,z_{111}\in\operatorname{\mathbb{C}} italic_z start_POSTSUBSCRIPT 000 end_POSTSUBSCRIPT , … , italic_z start_POSTSUBSCRIPT 111 end_POSTSUBSCRIPT ∈ blackboard_C be 8 8 8 8 numbers indexed by the vertices of a cube, as shown in Figure 1 . We say that these 8 8 8 8 numbers satisfy the Kashaev equation if

(1.1) 2 ( a 2 + b 2 + c 2 + d 2 ) - ( a + b + c + d ) 2 + 4 ( s + t ) = 0 , 2 superscript 𝑎 2 superscript 𝑏 2 superscript 𝑐 2 superscript 𝑑 2 superscript 𝑎 𝑏 𝑐 𝑑 2 4 𝑠 𝑡 0 \displaystyle 2(a^{2}+b^{2}+c^{2}+d^{2})-(a+b+c+d)^{2}+4(s+t)=0, 2 ( italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_b start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_c start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_d start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) - ( italic_a + italic_b + italic_c + italic_d ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + 4 ( italic_s + italic_t ) = 0 ,

where a , b , c , d , s , t 𝑎 𝑏 𝑐 𝑑 𝑠 𝑡 a,b,c,d,s,t italic_a , italic_b , italic_c , italic_d , italic_s , italic_t are the monomials defined in Figure 1 . Notice that the equation ( 1.1 ) is invariant under the symmetries of the cube. Thus, reindexing the 8 8 8 8 values using an isomorphic labeling of the cube does not change the Kashaev equation.

z 000 subscript 𝑧 000 z_{000} italic_z start_POSTSUBSCRIPT 000 end_POSTSUBSCRIPT z 010 subscript 𝑧 010 z_{010} italic_z start_POSTSUBSCRIPT 010 end_POSTSUBSCRIPT z 001 subscript 𝑧 001 z_{001} italic_z start_POSTSUBSCRIPT 001 end_POSTSUBSCRIPT z 011 subscript 𝑧 011 z_{011} italic_z start_POSTSUBSCRIPT 011 end_POSTSUBSCRIPT z 100 subscript 𝑧 100 z_{100} italic_z start_POSTSUBSCRIPT 100 end_POSTSUBSCRIPT z 110 subscript 𝑧 110 z_{110} italic_z start_POSTSUBSCRIPT 110 end_POSTSUBSCRIPT z 101 subscript 𝑧 101 z_{101} italic_z start_POSTSUBSCRIPT 101 end_POSTSUBSCRIPT z 111 subscript 𝑧 111 z_{111} italic_z start_POSTSUBSCRIPT 111 end_POSTSUBSCRIPT
a = z 000 z 111 , 𝑎 subscript 𝑧 000 subscript 𝑧 111 a=z_{000}z_{111}, italic_a = italic_z start_POSTSUBSCRIPT 000 end_POSTSUBSCRIPT italic_z start_POSTSUBSCRIPT 111 end_POSTSUBSCRIPT ,
b = z 100 z 011 , 𝑏 subscript 𝑧 100 subscript 𝑧 011 b=z_{100}z_{011}, italic_b = italic_z start_POSTSUBSCRIPT 100 end_POSTSUBSCRIPT italic_z start_POSTSUBSCRIPT 011 end_POSTSUBSCRIPT , s = z 000 z 011 z 101 z 110 , 𝑠 subscript 𝑧 000 subscript 𝑧 011 subscript 𝑧 101 subscript 𝑧 110 s=z_{000}z_{011}z_{101}z_{110}, italic_s = italic_z start_POSTSUBSCRIPT 000 end_POSTSUBSCRIPT italic_z start_POSTSUBSCRIPT 011 end_POSTSUBSCRIPT italic_z start_POSTSUBSCRIPT 101 end_POSTSUBSCRIPT italic_z start_POSTSUBSCRIPT 110 end_POSTSUBSCRIPT ,
c = z 010 z 101 , 𝑐 subscript 𝑧 010 subscript 𝑧 101 c=z_{010}z_{101}, italic_c = italic_z start_POSTSUBSCRIPT 010 end_POSTSUBSCRIPT italic_z start_POSTSUBSCRIPT 101 end_POSTSUBSCRIPT , t = z 111 z 100 z 010 z 001 . 𝑡 subscript 𝑧 111 subscript 𝑧 100 subscript 𝑧 010 subscript 𝑧 001 t=z_{111}z_{100}z_{010}z_{001}. italic_t = italic_z start_POSTSUBSCRIPT 111 end_POSTSUBSCRIPT italic_z start_POSTSUBSCRIPT 100 end_POSTSUBSCRIPT italic_z start_POSTSUBSCRIPT 010 end_POSTSUBSCRIPT italic_z start_POSTSUBSCRIPT 001 end_POSTSUBSCRIPT .
d = z 001 z 110 , 𝑑 subscript 𝑧 001 subscript 𝑧 110 d=z_{001}z_{110}, italic_d = italic_z start_POSTSUBSCRIPT 001 end_POSTSUBSCRIPT italic_z start_POSTSUBSCRIPT 110 end_POSTSUBSCRIPT ,
Figure 1. Notation used in Definition 1.1 . The quantities a 𝑎 a italic_a , b 𝑏 b italic_b , c 𝑐 c italic_c , and d 𝑑 d italic_d are the products of the values at opposite vertices of the cube, and s 𝑠 s italic_s and t 𝑡 t italic_t are the products corresponding to the two inscribed tetrahedra.

Definition 1.1 .

[ 4 ] . If 𝒜 𝒜 \mathcal{A} caligraphic_A is a Banach algebra, an involution is a map a a 𝑎 superscript 𝑎 a\rightarrow a^{\ast} italic_a → italic_a start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT of 𝒜 𝒜 \mathcal{A} caligraphic_A into itself such that for all a 𝑎 a italic_a and b 𝑏 b italic_b in 𝒜 𝒜 \mathcal{A} caligraphic_A and all scalars α 𝛼 \alpha italic_α the following conditions hold:

  1. (1)

    ( a ) = a superscript superscript 𝑎 𝑎 (a^{\ast})^{\ast}=a ( italic_a start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT = italic_a .

  2. (2)

    ( a b ) = b a superscript 𝑎 𝑏 superscript 𝑏 superscript 𝑎 (ab)^{\ast}=b^{\ast}a^{\ast} ( italic_a italic_b ) start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT = italic_b start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT italic_a start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT .

  3. (3)

    ( α a + b ) = α ¯ a + b superscript 𝛼 𝑎 𝑏 ¯ 𝛼 superscript 𝑎 superscript 𝑏 (\alpha a+b)^{\ast}=\bar{\alpha}a^{\ast}+b^{\ast} ( italic_α italic_a + italic_b ) start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT = ¯ start_ARG italic_α end_ARG italic_a start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT + italic_b start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT .


Definition 1.2 .

A Steiner quasigroup is a structure ( A , ) 𝐴 (A,\cdot) ( italic_A , ⋅ ) where \cdot is a binary operation on A 𝐴 A italic_A such that

  1. 1.

    a b = b a 𝑎 𝑏 𝑏 𝑎 a\cdot b=b\cdot a italic_a ⋅ italic_b = italic_b ⋅ italic_a

  2. 2.

    a a = a 𝑎 𝑎 𝑎 a\cdot a=a italic_a ⋅ italic_a = italic_a

  3. 3.

    a ( a b ) = b 𝑎 𝑎 𝑏 𝑏 a\cdot(a\cdot b)=b\, italic_a ⋅ ( italic_a ⋅ italic_b ) = italic_b .


Definition 1.1 .

Let ( V , q ) 𝑉 𝑞 (V,q) ( italic_V , italic_q ) be a quadratic space and A 𝐴 A italic_A be an associative algebra. We will say that ( V , q ) 𝑉 𝑞 (V,q) ( italic_V , italic_q ) is embedded in A 𝐴 A italic_A if V A 𝑉 𝐴 V\subseteq A italic_V ⊆ italic_A and

q ( v ) = v α ( v ) = α ( v ) v 𝑞 𝑣 𝑣 𝛼 𝑣 𝛼 𝑣 𝑣 q(v)=v\alpha(v)=\alpha(v)v italic_q ( italic_v ) = italic_v italic_α ( italic_v ) = italic_α ( italic_v ) italic_v

where α 𝛼 \alpha italic_α is an isometry of ( V , q ) 𝑉 𝑞 (V,q) ( italic_V , italic_q ) .


Definition 3

A J B - limit-from 𝐽 superscript 𝐵 normal-∗ JB^{\ast}- italic_J italic_B start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT - triple is a Banach space Z 𝑍 Z italic_Z with a triple product { , , } : Z 3 Z fragments fragments normal-{ normal-, normal-, normal-} normal-: superscript 𝑍 3 normal-⟶ Z \{\ ,\ ,\ \}:Z^{3}\longrightarrow Z { , , } : italic_Z start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT ⟶ italic_Z that is linear and symmetric in the first and third variables (symmetric in the sense that { x , y , z } = { z , y , x } 𝑥 𝑦 𝑧 𝑧 𝑦 𝑥 \{x,y,z\}=\{z,y,x\} { italic_x , italic_y , italic_z } = { italic_z , italic_y , italic_x } for all x , z 𝑥 𝑧 x,z italic_x , italic_z ) and antilinear in the second variable and which satisfies,
( i ) 𝑖 (i) ( italic_i ) the mapping x x 𝑥 normal-□ 𝑥 x\Box x italic_x □ italic_x , given by x x ( z ) = { x , x , z } 𝑥 normal-□ 𝑥 𝑧 𝑥 𝑥 𝑧 x\Box x(z)=\{x,x,z\} italic_x □ italic_x ( italic_z ) = { italic_x , italic_x , italic_z } is Hermitian, σ ( x x ) 0 𝜎 𝑥 normal-□ 𝑥 0 \sigma(x\Box x)\geq 0 italic_σ ( italic_x □ italic_x ) ≥ 0 and x x = x 2 norm 𝑥 normal-□ 𝑥 superscript norm 𝑥 2 \|x\Box x\|=\|x\|^{2} ∥ italic_x □ italic_x ∥ = ∥ italic_x ∥ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ,
( i i ) 𝑖 𝑖 (ii) ( italic_i italic_i ) for every a , b , x , y , z X 𝑎 𝑏 𝑥 𝑦 𝑧 𝑋 a,b,x,y,z\in X italic_a , italic_b , italic_x , italic_y , italic_z ∈ italic_X , the Jordan triple identity

{ a , b , { x , y , z } } = { { a , b , x } , y , z } - { x , { b , a , y } , z } + { x , y , { a , b , z } } 𝑎 𝑏 𝑥 𝑦 𝑧 𝑎 𝑏 𝑥 𝑦 𝑧 𝑥 𝑏 𝑎 𝑦 𝑧 𝑥 𝑦 𝑎 𝑏 𝑧 \{a,b,\{x,y,z\}\}=\{\{a,b,x\},y,z\}-\{x,\{b,a,y\},z\}+\{x,y,\{a,b,z\}\} { italic_a , italic_b , { italic_x , italic_y , italic_z } } = { { italic_a , italic_b , italic_x } , italic_y , italic_z } - { italic_x , { italic_b , italic_a , italic_y } , italic_z } + { italic_x , italic_y , { italic_a , italic_b , italic_z } }

holds.


Definition 3.7 .

Let R 𝑅 R italic_R be a left A 𝐴 A italic_A -module algebra via \triangleright , L 𝐿 L italic_L be a subalgebra of R 𝑅 R italic_R and π : R R : 𝜋 𝑅 𝑅 \pi:R\longrightarrow R italic_π : italic_R ⟶ italic_R be an algebra projection over L 𝐿 L italic_L . We say that the map π 𝜋 \pi italic_π is an A 𝐴 A italic_A -projection if

π ( a ( x ( b y ) ) ) = π ( a ( x π ( b y ) ) ) , 𝜋 𝑎 𝑥 𝑏 𝑦 𝜋 𝑎 𝑥 𝜋 𝑏 𝑦 \displaystyle\pi(a\triangleright(x(b\triangleright y)))=\pi(a\triangleright(x% \pi(b\triangleright y))), italic_π ( italic_a ▷ ( italic_x ( italic_b ▷ italic_y ) ) ) = italic_π ( italic_a ▷ ( italic_x italic_π ( italic_b ▷ italic_y ) ) ) ,

for all x , y L 𝑥 𝑦 𝐿 x,y\in L italic_x , italic_y ∈ italic_L and a , b A . 𝑎 𝑏 𝐴 a,b\in A. italic_a , italic_b ∈ italic_A . Besides that, we say that π 𝜋 \pi italic_π is a symmetric A 𝐴 A italic_A -projection if also satisfies

π ( a ( ( b x ) y ) ) = π ( a ( π ( b x ) y ) ) , 𝜋 𝑎 𝑏 𝑥 𝑦 𝜋 𝑎 𝜋 𝑏 𝑥 𝑦 \displaystyle\pi(a\triangleright((b\triangleright x)y))=\pi(a\triangleright(% \pi(b\triangleright x)y)), italic_π ( italic_a ▷ ( ( italic_b ▷ italic_x ) italic_y ) ) = italic_π ( italic_a ▷ ( italic_π ( italic_b ▷ italic_x ) italic_y ) ) , (3)

for all x , y L 𝑥 𝑦 𝐿 x,y\in L italic_x , italic_y ∈ italic_L and a , b A . 𝑎 𝑏 𝐴 a,b\in A. italic_a , italic_b ∈ italic_A .


Definition \thedefinition (Naïve Mechanism) .

A naïve mechanism consists of an action set 𝒜 𝒜 \mathcal{A} caligraphic_A and an associated mapping from any action to a possible outcome, i.e., 𝐱 , p : 𝒜 𝒳 × + normal-: 𝐱 𝑝 maps-to 𝒜 𝒳 subscript \langle\boldsymbol{x},p\rangle:\mathcal{A}\mapsto\mathcal{X}\times\mathbb{R}_{+} ⟨ bold_italic_x , italic_p ⟩ : caligraphic_A ↦ caligraphic_X × blackboard_R start_POSTSUBSCRIPT + end_POSTSUBSCRIPT .

In particular, there exists a special action bottom \bot meaning “exiting the mechanism” such that

𝒙 ( ) = 𝟎 , p ( ) = 0 . formulae-sequence 𝒙 bottom 0 𝑝 bottom 0 \displaystyle\boldsymbol{x}(\bot)=\mathbf{0},p(\bot)=0. bold_italic_x ( ⊥ ) = bold_0 , italic_p ( ⊥ ) = 0 . ( Exit )

Definition 2.1 .

A sesquilinear form on V 𝑉 V italic_V is a map V × V 𝔽 𝑉 𝑉 𝔽 V\times V\to\mathbb{F} italic_V × italic_V → blackboard_F , ( u , v ) u , v maps-to 𝑢 𝑣 𝑢 𝑣 (u,v)\mapsto\langle u,v\rangle ( italic_u , italic_v ) ↦ ⟨ italic_u , italic_v ⟩ such that for all α , β 𝔽 𝛼 𝛽 𝔽 \alpha,\beta\in\mathbb{F} italic_α , italic_β ∈ blackboard_F , u , v , w V 𝑢 𝑣 𝑤 𝑉 u,v,w\in V italic_u , italic_v , italic_w ∈ italic_V :

  1. (i)

    u , α v + β w = α u , v + β u , w 𝑢 𝛼 𝑣 𝛽 𝑤 𝛼 𝑢 𝑣 𝛽 𝑢 𝑤 \left\langle u,\alpha v+\beta w\right\rangle=\alpha\left\langle u,v\right% \rangle+\beta\left\langle u,w\right\rangle ⟨ italic_u , italic_α italic_v + italic_β italic_w ⟩ = italic_α ⟨ italic_u , italic_v ⟩ + italic_β ⟨ italic_u , italic_w ⟩ (linear in the second (1) (1) (1) Note that this convention varies in the literature; the one here is used in almost every physics text. argument),

  2. (ii)

    α u + β v , w = α ¯ u , w + β ¯ v , w 𝛼 𝑢 𝛽 𝑣 𝑤 ¯ 𝛼 𝑢 𝑤 ¯ 𝛽 𝑣 𝑤 \left\langle\alpha u+\beta v,w\right\rangle=\bar{\alpha}\left\langle u,w\right% \rangle+\bar{\beta}\left\langle v,w\right\rangle ⟨ italic_α italic_u + italic_β italic_v , italic_w ⟩ = ¯ start_ARG italic_α end_ARG ⟨ italic_u , italic_w ⟩ + ¯ start_ARG italic_β end_ARG ⟨ italic_v , italic_w ⟩ (conjugate linear in the first argument).

A hermitian form on V 𝑉 V italic_V is a sesquilinear form , \left\langle\cdot,\cdot\right\rangle ⟨ ⋅ , ⋅ ⟩ satisfying, in addition:

  1. (iii)

    u , v = v , u ¯ 𝑢 𝑣 ¯ 𝑣 𝑢 \left\langle u,v\right\rangle=\overline{\left\langle v,u\right\rangle} ⟨ italic_u , italic_v ⟩ = ¯ start_ARG ⟨ italic_v , italic_u ⟩ end_ARG (symmetry).

An inner product or scalar product on V 𝑉 V italic_V is a hermitian form , \left\langle\cdot,\cdot\right\rangle ⟨ ⋅ , ⋅ ⟩ satisfying, in addition:

  1. (iv)

    v , v > 0 𝑣 𝑣 0 \left\langle v,v\right\rangle>0 ⟨ italic_v , italic_v ⟩ > 0 for v 0 𝑣 0 v\neq 0 italic_v ≠ 0 (positive definite).

A (sesqui-) quadratic form on V 𝑉 V italic_V is a map q : V 𝔽 : 𝑞 𝑉 𝔽 q\colon V\to\mathbb{F} italic_q : italic_V → blackboard_F such that for α 𝔽 𝛼 𝔽 \alpha\in\mathbb{F} italic_α ∈ blackboard_F , u , v V 𝑢 𝑣 𝑉 u,v\in V italic_u , italic_v ∈ italic_V :

  1. (i)

    q ( α v ) = α ¯ α q ( v ) 𝑞 𝛼 𝑣 ¯ 𝛼 𝛼 𝑞 𝑣 q(\alpha v)=\bar{\alpha}\alpha q(v) italic_q ( italic_α italic_v ) = ¯ start_ARG italic_α end_ARG italic_α italic_q ( italic_v ) (scaling quadratically),

  2. (ii)

    u , v q := 1 4 ( q ( u + v ) - q ( u - v ) + i q ( u - i v ) - i q ( u + i v ) ) assign subscript 𝑢 𝑣 𝑞 1 4 𝑞 𝑢 𝑣 𝑞 𝑢 𝑣 𝑖 𝑞 𝑢 𝑖 𝑣 𝑖 𝑞 𝑢 𝑖 𝑣 \left\langle u,v\right\rangle_{q}:=\frac{1}{4}\bigl{(}q(u+v)-q(u-v)+iq(u-iv)-% iq(u+iv)\bigr{)} ⟨ italic_u , italic_v ⟩ start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT := divide start_ARG 1 end_ARG start_ARG 4 end_ARG ( italic_q ( italic_u + italic_v ) - italic_q ( italic_u - italic_v ) + italic_i italic_q ( italic_u - italic_i italic_v ) - italic_i italic_q ( italic_u + italic_i italic_v ) ) is sesquilinear in u , v 𝑢 𝑣 u,v italic_u , italic_v .

A norm on V 𝑉 V italic_V is a map V + := [ 0 , ) 𝑉 subscript assign 0 V\to\mathbb{R}_{\mathchoice{\vbox{\hbox{$\scriptstyle+$}}}{\vbox{\hbox{$% \scriptstyle+$}}}{\vbox{\hbox{$\scriptscriptstyle+$}}}{\vbox{\hbox{$% \scriptscriptstyle+$}}}}:=[0,\infty) italic_V → blackboard_R start_POSTSUBSCRIPT + end_POSTSUBSCRIPT := [ 0 , ∞ ) , v v maps-to 𝑣 norm 𝑣 v\mapsto\|v\| italic_v ↦ ∥ italic_v ∥ , such that for all α 𝔽 𝛼 𝔽 \alpha\in\mathbb{F} italic_α ∈ blackboard_F , u , v V 𝑢 𝑣 𝑉 u,v\in V italic_u , italic_v ∈ italic_V :

  1. (i)

    α v = | α | v norm 𝛼 𝑣 𝛼 norm 𝑣 \left\|\alpha v\right\|=|\alpha|\left\|v\right\| ∥ italic_α italic_v ∥ = | italic_α | ∥ italic_v ∥ (scaling linearly),

  2. (ii)

    u + v u + v norm 𝑢 𝑣 norm 𝑢 norm 𝑣 \left\|u+v\right\|\leq\left\|u\right\|+\left\|v\right\| ∥ italic_u + italic_v ∥ ≤ ∥ italic_u ∥ + ∥ italic_v ∥ (triangle inequality),

  3. (iii)

    v = 0 norm 𝑣 0 \left\|v\right\|=0 ∥ italic_v ∥ = 0 if and only if v = 0 𝑣 0 v=0 italic_v = 0 (positive definite).

The pair ( V , ) fragments ( V , ) (V,\left\|\cdot\right\|) ( italic_V , ∥ ⋅ ∥ ) is called a normed linear space , the pair ( V , q ) 𝑉 𝑞 (V,q) ( italic_V , italic_q ) a (sesqui-) quadratic space , and the pair ( V , , ) 𝑉 (V,\left\langle\cdot,\cdot\right\rangle) ( italic_V , ⟨ ⋅ , ⋅ ⟩ ) an inner product space or a pre-Hilbert space .

Definition 3.1 (Poisson algebra) .

A Poisson algebra 𝒜 𝒜 \mathcal{A} caligraphic_A is a vector space over 𝔽 𝔽 \mathbb{F} blackboard_F ( \mathbb{R} blackboard_R or \mathbb{C} blackboard_C ) equipped with an 𝔽 𝔽 \mathbb{F} blackboard_F -bilinear and associative product

𝒜 × 𝒜 𝒜 , ( f , g ) f g , formulae-sequence 𝒜 𝒜 𝒜 maps-to 𝑓 𝑔 𝑓 𝑔 \mathcal{A}\times\mathcal{A}\to\mathcal{A},\quad(f,g)\mapsto fg, caligraphic_A × caligraphic_A → caligraphic_A , ( italic_f , italic_g ) ↦ italic_f italic_g ,

and an additional product (typically non-associative, called a Poisson bracket )

𝒜 × 𝒜 𝒜 , ( f , g ) { f , g } , formulae-sequence 𝒜 𝒜 𝒜 maps-to 𝑓 𝑔 𝑓 𝑔 \mathcal{A}\times\mathcal{A}\to\mathcal{A},\quad(f,g)\mapsto\{f,g\}, caligraphic_A × caligraphic_A → caligraphic_A , ( italic_f , italic_g ) ↦ { italic_f , italic_g } ,

satisfying, for all α , β 𝔽 𝛼 𝛽 𝔽 \alpha,\beta\in\mathbb{F} italic_α , italic_β ∈ blackboard_F , and f , g , h 𝒜 𝑓 𝑔 𝒜 f,g,h\in\mathcal{A} italic_f , italic_g , italic_h ∈ caligraphic_A :

  1. (i)

    linearity: { f , α g + β h } = α { f , g } + β { f , h } 𝑓 𝛼 𝑔 𝛽 𝛼 𝑓 𝑔 𝛽 𝑓 \{f,\alpha g+\beta h\}=\alpha\{f,g\}+\beta\{f,h\} { italic_f , italic_α italic_g + italic_β italic_h } = italic_α { italic_f , italic_g } + italic_β { italic_f , italic_h } ,

  2. (ii)

    antisymmetry: { f , g } = - { g , f } 𝑓 𝑔 𝑔 𝑓 \{f,g\}=-\{g,f\} { italic_f , italic_g } = - { italic_g , italic_f } ,

  3. (iii)

    Jacobi identity: { f , { g , h } } + { g , { h , f } } + { h , { f , g } } = 0 𝑓 𝑔 𝑔 𝑓 𝑓 𝑔 0 \{f,\{g,h\}\}+\{g,\{h,f\}\}+\{h,\{f,g\}\}=0 { italic_f , { italic_g , italic_h } } + { italic_g , { italic_h , italic_f } } + { italic_h , { italic_f , italic_g } } = 0 ,

  4. (iv)

    Leibniz rule: { f , g h } = { f , g } h + g { f , h } 𝑓 𝑔 𝑓 𝑔 𝑔 𝑓 \{f,gh\}=\{f,g\}h+g\{f,h\} { italic_f , italic_g italic_h } = { italic_f , italic_g } italic_h + italic_g { italic_f , italic_h } .


Definition 3.7 .

A simple upper test function is a function of the form

ψ = σ φ a , 𝜓 𝜎 𝜑 𝑎 \psi=\sigma\circ\varphi\circ a, italic_ψ = italic_σ ∘ italic_φ ∘ italic_a ,

where σ C ( ) 𝜎 superscript 𝐶 \sigma\in C^{\infty}(\mathbb{R}) italic_σ ∈ italic_C start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT ( blackboard_R ) , σ 0 superscript 𝜎 0 \sigma^{\prime}\geq 0 italic_σ start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ≥ 0 , σ ′′ 0 superscript 𝜎 ′′ 0 \sigma^{\prime\prime}\geq 0 italic_σ start_POSTSUPERSCRIPT ′ ′ end_POSTSUPERSCRIPT ≥ 0 , a C ( d , d ) 𝑎 superscript 𝐶 superscript 𝑑 superscript 𝑑 a\in C^{\infty}(\mathbb{R}^{d},\mathbb{R}^{d}) italic_a ∈ italic_C start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT ( blackboard_R start_POSTSUPERSCRIPT italic_d end_POSTSUPERSCRIPT , blackboard_R start_POSTSUPERSCRIPT italic_d end_POSTSUPERSCRIPT ) , D a 𝐷 𝑎 Da italic_D italic_a constant, and det D a = 1 𝐷 𝑎 1 \det Da=1 roman_det italic_D italic_a = 1 .

Definition 3.8 .

A simple lower test function is a function of the form

ψ = σ φ a , 𝜓 𝜎 𝜑 𝑎 \psi=\sigma\circ\varphi\circ a, italic_ψ = italic_σ ∘ italic_φ ∘ italic_a ,

where σ C ( ) 𝜎 superscript 𝐶 \sigma\in C^{\infty}(\mathbb{R}) italic_σ ∈ italic_C start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT ( blackboard_R ) , σ 0 superscript 𝜎 0 \sigma^{\prime}\geq 0 italic_σ start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ≥ 0 , σ ′′ 0 superscript 𝜎 ′′ 0 \sigma^{\prime\prime}\leq 0 italic_σ start_POSTSUPERSCRIPT ′ ′ end_POSTSUPERSCRIPT ≤ 0 , a C ( d , d ) 𝑎 superscript 𝐶 superscript 𝑑 superscript 𝑑 a\in C^{\infty}(\mathbb{R}^{d},\mathbb{R}^{d}) italic_a ∈ italic_C start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT ( blackboard_R start_POSTSUPERSCRIPT italic_d end_POSTSUPERSCRIPT , blackboard_R start_POSTSUPERSCRIPT italic_d end_POSTSUPERSCRIPT ) , D a 𝐷 𝑎 Da italic_D italic_a constant, and det D a = 1 𝐷 𝑎 1 \det Da=1 roman_det italic_D italic_a = 1 .


Definition 2.2 .

Given a complex ramified cover φ : C 𝐂𝐏 1 normal-: 𝜑 normal-→ 𝐶 superscript 𝐂𝐏 1 \varphi:C\to\mathbf{CP}^{1} italic_φ : italic_C → bold_CP start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT , a real structure on φ 𝜑 \varphi italic_φ is a antiholomorphic involution ι : C C normal-: 𝜄 normal-→ 𝐶 𝐶 \iota:C\to C italic_ι : italic_C → italic_C such that

φ ι = 𝑐𝑜𝑛𝑗 φ . 𝜑 𝜄 𝑐𝑜𝑛𝑗 𝜑 \varphi\circ\iota=\text{conj}\circ\varphi. italic_φ ∘ italic_ι = conj ∘ italic_φ .

The tuple ( φ , ι ) 𝜑 𝜄 (\varphi,\iota) ( italic_φ , italic_ι ) is a real ramified cover . An isomorphism of real ramified covers ( φ : C 𝐂𝐏 1 , ι ) normal-: 𝜑 normal-→ 𝐶 superscript 𝐂𝐏 1 𝜄 (\varphi:C\to\mathbf{CP}^{1},\iota) ( italic_φ : italic_C → bold_CP start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT , italic_ι ) and ( ψ : D 𝐂𝐏 1 , κ ) normal-: 𝜓 normal-→ 𝐷 superscript 𝐂𝐏 1 𝜅 (\psi:D\to\mathbf{CP}^{1},\kappa) ( italic_ψ : italic_D → bold_CP start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT , italic_κ ) is an isomorphism of complex ramified covers α : C D normal-: 𝛼 normal-→ 𝐶 𝐷 \alpha:C\to D italic_α : italic_C → italic_D such that

α ι = κ α . 𝛼 𝜄 𝜅 𝛼 \alpha\circ\iota=\kappa\circ\alpha. italic_α ∘ italic_ι = italic_κ ∘ italic_α .

Definition 4.4 .

A complete theory T 𝑇 {T} italic_T is said to be irreducible if

acl ( ) = dcl ( ) acl dcl {{\rm acl}(\emptyset)={\rm dcl}(\emptyset)} roman_acl ( ∅ ) = roman_dcl ( ∅ )

(in T eq superscript 𝑇 eq {T^{{\rm eq}}} italic_T start_POSTSUPERSCRIPT roman_eq end_POSTSUPERSCRIPT ). We refer to the expansion of a theory T 𝑇 {T} italic_T by constants for acl ( ) acl {{\rm acl}(\emptyset)} roman_acl ( ∅ ) as its irreducible component .


Definition 2.12 .

Let x y 𝑥 𝑦 x\cdot y italic_x ⋅ italic_y be a PA-structure on ( 𝔤 , 𝔫 ) 𝔤 𝔫 (\mathfrak{g},\mathfrak{n}) ( fraktur_g , fraktur_n ) . If there exists a φ End ( V ) 𝜑 End 𝑉 \varphi\in{\rm End}(V) italic_φ ∈ roman_End ( italic_V ) such that

x y = { φ ( x ) , y } 𝑥 𝑦 𝜑 𝑥 𝑦 x\cdot y=\{\varphi(x),y\} italic_x ⋅ italic_y = { italic_φ ( italic_x ) , italic_y }

for all x , y V 𝑥 𝑦 𝑉 x,y\in V italic_x , italic_y ∈ italic_V , then x y 𝑥 𝑦 x\cdot y italic_x ⋅ italic_y is called an inner PA-structure on ( 𝔤 , 𝔫 ) 𝔤 𝔫 (\mathfrak{g},\mathfrak{n}) ( fraktur_g , fraktur_n ) .


Definition 3.1 .

For p - 1 𝑝 1 p\geq-1 italic_p ≥ - 1 an integer, we set

[ p ] = { 0 , , p } . delimited-[] 𝑝 0 𝑝 [p]=\{0,\ldots,p\}. [ italic_p ] = { 0 , … , italic_p } .

Definition 5.1 .

Consider a unital subalgebra 𝒜 𝒞 ( M ) 𝒜 superscript 𝒞 𝑀 \mathcal{A}\subset\mathcal{C}^{\infty}(M) caligraphic_A ⊂ caligraphic_C start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT ( italic_M ) of smooth functions on a Banach manifold M 𝑀 M italic_M , i.e. 𝒜 𝒜 \mathcal{A} caligraphic_A is vector subspace of 𝒞 ( M ) superscript 𝒞 𝑀 \mathcal{C}^{\infty}(M) caligraphic_C start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT ( italic_M ) containing the constants and stable under pointwise multiplication. A \mathbb{R} blackboard_R -bilinear operation { , } : 𝒜 × 𝒜 𝒜 : 𝒜 𝒜 𝒜 \{\cdot,\cdot\}~{}:\mathcal{A}\times\mathcal{A}\rightarrow\mathcal{A} { ⋅ , ⋅ } : caligraphic_A × caligraphic_A → caligraphic_A is called a Poisson bracket on M 𝑀 M italic_M if it satisfies :

  1. (i)

    anti-symmetry  : { f , g } = - { g , f } ; 𝑓 𝑔 𝑔 𝑓 \{f,g\}=-\{g,f\}~{}; { italic_f , italic_g } = - { italic_g , italic_f } ;

  2. (ii)

    Jacobi identity : { { f , g } , h } + { { g , h } , f } + { { h , f } , g } = 0 𝑓 𝑔 𝑔 𝑓 𝑓 𝑔 0 \{\{f,g\},h\}+\{\{g,h\},f\}+\{\{h,f\},g\}=0 { { italic_f , italic_g } , italic_h } + { { italic_g , italic_h } , italic_f } + { { italic_h , italic_f } , italic_g } = 0 ;

  3. (iii)

    Leibniz formula : { f , g h } = { f , g } h + g { f , h } 𝑓 𝑔 𝑓 𝑔 𝑔 𝑓 \{f,gh\}=\{f,g\}h+g\{f,h\} { italic_f , italic_g italic_h } = { italic_f , italic_g } italic_h + italic_g { italic_f , italic_h } ;


Definition 2.9 ( L o o p 3 ( X / / G ) fragments L o o subscript 𝑝 3 fragments ( X G ) Loop_{3}(X/\!\!/G) italic_L italic_o italic_o italic_p start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT ( italic_X / / italic_G ) ) .

Let L o o p 3 ( X / / G ) fragments L o o subscript 𝑝 3 fragments ( X G ) Loop_{3}(X/\!\!/G) italic_L italic_o italic_o italic_p start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT ( italic_X / / italic_G ) denote the groupoid whose objects are ( σ , γ ) 𝜎 𝛾 (\sigma,\gamma) ( italic_σ , italic_γ ) with σ G 𝜎 𝐺 \sigma\in G italic_σ ∈ italic_G and γ : X : 𝛾 𝑋 \gamma:\mathbb{R}\longrightarrow X italic_γ : blackboard_R ⟶ italic_X a continuous map such that γ ( s + 1 ) = γ ( s ) σ 𝛾 𝑠 1 𝛾 𝑠 𝜎 \gamma(s+1)=\gamma(s)\cdot\sigma italic_γ ( italic_s + 1 ) = italic_γ ( italic_s ) ⋅ italic_σ , for any s 𝑠 s\in\mathbb{R} italic_s ∈ blackboard_R . A morphism α : ( σ , γ ) ( σ , γ ) : 𝛼 𝜎 𝛾 superscript 𝜎 superscript 𝛾 \alpha:(\sigma,\gamma)\longrightarrow(\sigma^{\prime},\gamma^{\prime}) italic_α : ( italic_σ , italic_γ ) ⟶ ( italic_σ start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT , italic_γ start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) is a continuous map α : G : 𝛼 𝐺 \alpha:\mathbb{R}\longrightarrow G italic_α : blackboard_R ⟶ italic_G satisfying γ ( s ) = γ ( s ) α ( s ) superscript 𝛾 𝑠 𝛾 𝑠 𝛼 𝑠 \gamma^{\prime}(s)=\gamma(s)\alpha(s) italic_γ start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( italic_s ) = italic_γ ( italic_s ) italic_α ( italic_s ) . Note that α ( s ) σ = σ α ( s + 1 ) 𝛼 𝑠 superscript 𝜎 𝜎 𝛼 𝑠 1 \alpha(s)\sigma^{\prime}=\sigma\alpha(s+1) italic_α ( italic_s ) italic_σ start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT = italic_σ italic_α ( italic_s + 1 ) , for any s 𝑠 s\in\mathbb{R} italic_s ∈ blackboard_R .

It is isomorphic to L o o p 2 ( X / / G ) fragments L o o subscript 𝑝 2 fragments ( X G ) Loop_{2}(X/\!\!/G) italic_L italic_o italic_o italic_p start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( italic_X / / italic_G ) . We can construct the isomorphism ϕ : L o o p 2 ( X / / G ) L o o p 3 ( X / / G ) fragments ϕ : L o o subscript 𝑝 2 fragments ( X G ) L o o subscript 𝑝 3 fragments ( X G ) \phi:Loop_{2}(X/\!\!/G)\longrightarrow Loop_{3}(X/\!\!/G) italic_ϕ : italic_L italic_o italic_o italic_p start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( italic_X / / italic_G ) ⟶ italic_L italic_o italic_o italic_p start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT ( italic_X / / italic_G ) in this way: an object ( σ , γ ) 𝜎 𝛾 (\sigma,\gamma) ( italic_σ , italic_γ ) is sent to

ϕ ( σ , γ ) = γ γ σ γ σ 2 italic-ϕ 𝜎 𝛾 𝛾 𝛾 𝜎 𝛾 superscript 𝜎 2 \phi(\sigma,\gamma)=\gamma\ast\gamma\sigma\ast\gamma\sigma^{2}\ast\cdots italic_ϕ ( italic_σ , italic_γ ) = italic_γ ∗ italic_γ italic_σ ∗ italic_γ italic_σ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ∗ ⋯

where \ast is the composition of paths. For any real number r 𝑟 r italic_r between positive integers n 𝑛 n italic_n and n + 1 𝑛 1 n+1 italic_n + 1 , ϕ ( σ , γ ) ( r ) = γ ( r - n ) σ n italic-ϕ 𝜎 𝛾 𝑟 𝛾 𝑟 𝑛 superscript 𝜎 𝑛 \phi(\sigma,\gamma)(r)=\gamma(r-n)\sigma^{n} italic_ϕ ( italic_σ , italic_γ ) ( italic_r ) = italic_γ ( italic_r - italic_n ) italic_σ start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT . A morphism α : ( σ , γ ) ( σ , γ ) : 𝛼 𝜎 𝛾 superscript 𝜎 superscript 𝛾 \alpha:(\sigma,\gamma)\longrightarrow(\sigma^{\prime},\gamma^{\prime}) italic_α : ( italic_σ , italic_γ ) ⟶ ( italic_σ start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT , italic_γ start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) is mapped to the morphism

ϕ ( α ) = α σ - 1 α σ σ - 2 α σ 2 . italic-ϕ 𝛼 𝛼 superscript 𝜎 1 𝛼 𝜎 superscript 𝜎 2 𝛼 superscript 𝜎 2 \phi(\alpha)=\alpha\ast\sigma^{-1}\alpha\sigma\ast\sigma^{-2}\alpha\sigma^{2}% \ast\cdots. italic_ϕ ( italic_α ) = italic_α ∗ italic_σ start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT italic_α italic_σ ∗ italic_σ start_POSTSUPERSCRIPT - 2 end_POSTSUPERSCRIPT italic_α italic_σ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ∗ ⋯ .

For any r 𝑟 r italic_r between positive integers n 𝑛 n italic_n and n + 1 𝑛 1 n+1 italic_n + 1 , ϕ ( α ) ( r ) = σ - n α ( r - n ) σ n italic-ϕ 𝛼 𝑟 superscript 𝜎 𝑛 𝛼 𝑟 𝑛 superscript 𝜎 𝑛 \phi(\alpha)(r)=\sigma^{-n}\alpha(r-n)\sigma^{n} italic_ϕ ( italic_α ) ( italic_r ) = italic_σ start_POSTSUPERSCRIPT - italic_n end_POSTSUPERSCRIPT italic_α ( italic_r - italic_n ) italic_σ start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT .

Definition 3.7 .

Let 𝔾 𝔾 \mathbb{G} blackboard_G be a groupoid. The Inertia groupoid I ( 𝔾 ) 𝐼 𝔾 I(\mathbb{G}) italic_I ( blackboard_G ) of 𝔾 𝔾 \mathbb{G} blackboard_G is defined as follows.

An object a 𝑎 a italic_a is an arrow in 𝔾 𝔾 \mathbb{G} blackboard_G such that its source and target are equal. A morphism v 𝑣 v italic_v joining two objects a 𝑎 a italic_a and b 𝑏 b italic_b is an arrow v 𝑣 v italic_v in 𝔾 𝔾 \mathbb{G} blackboard_G such that

v a = b v . 𝑣 𝑎 𝑏 𝑣 v\circ a=b\circ v. italic_v ∘ italic_a = italic_b ∘ italic_v .

In other words, b 𝑏 b italic_b is the conjugate of a 𝑎 a italic_a by v 𝑣 v italic_v , b = v a v - 1 𝑏 𝑣 𝑎 superscript 𝑣 1 b=v\circ a\circ v^{-1} italic_b = italic_v ∘ italic_a ∘ italic_v start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT .

The torsion Inertia groupoid I t o r s ( 𝔾 ) superscript 𝐼 𝑡 𝑜 𝑟 𝑠 𝔾 I^{tors}(\mathbb{G}) italic_I start_POSTSUPERSCRIPT italic_t italic_o italic_r italic_s end_POSTSUPERSCRIPT ( blackboard_G ) of 𝔾 𝔾 \mathbb{G} blackboard_G is a full subgroupoid of of I ( 𝔾 ) 𝐼 𝔾 I(\mathbb{G}) italic_I ( blackboard_G ) with only objects of finite order.


Definition 6.1

[ 3 ] The Fourier transform on the Hilbert space L 2 ( 2 d ) superscript 𝐿 2 superscript 2 𝑑 L^{2}\big{(}\mathbb{R}^{2d}\big{)} italic_L start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( blackboard_R start_POSTSUPERSCRIPT 2 italic_d end_POSTSUPERSCRIPT ) is defined by:

g ^ ( ϵ ) = ( 2 π ) - d e i ϵ , u g ( u ) 𝑑 u . ^ 𝑔 italic-ϵ superscript 2 𝜋 𝑑 superscript 𝑒 𝑖 italic-ϵ 𝑢 𝑔 𝑢 differential-d 𝑢 \hat{g}(\epsilon)=(2\,\pi)^{-d}\int e^{i\,\left\langle\epsilon,u\right\rangle}% g(u)\,du. ^ start_ARG italic_g end_ARG ( italic_ϵ ) = ( 2 italic_π ) start_POSTSUPERSCRIPT - italic_d end_POSTSUPERSCRIPT ∫ italic_e start_POSTSUPERSCRIPT italic_i ⟨ italic_ϵ , italic_u ⟩ end_POSTSUPERSCRIPT italic_g ( italic_u ) italic_d italic_u . (6.1)

Definition 2.3 (Hopf differential) .

A harmonic map w : ( X , σ ) ( Y , ρ ) : 𝑤 𝑋 𝜎 𝑌 𝜌 w:(X,\sigma)\to(Y,\rho) italic_w : ( italic_X , italic_σ ) → ( italic_Y , italic_ρ ) has the following pull-back of the metric tensor:

(5) w ( ρ ) = q d z 2 + σ e d z d z ¯ + q ¯ d z ¯ 2 superscript 𝑤 𝜌 𝑞 𝑑 superscript 𝑧 2 𝜎 𝑒 𝑑 𝑧 𝑑 ¯ 𝑧 ¯ 𝑞 𝑑 superscript ¯ 𝑧 2 w^{\ast}(\rho)=qdz^{2}+\sigma edzd\bar{z}+\bar{q}d\bar{z}^{2} italic_w start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( italic_ρ ) = italic_q italic_d italic_z start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_σ italic_e italic_d italic_z italic_d ¯ start_ARG italic_z end_ARG + ¯ start_ARG italic_q end_ARG italic_d ¯ start_ARG italic_z end_ARG start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT

where q ( z ) = ρ ( w ( z ) ) w z w z ¯ 𝑞 𝑧 𝜌 𝑤 𝑧 subscript 𝑤 𝑧 ¯ subscript 𝑤 𝑧 q(z)=\rho(w(z))w_{z}\bar{w_{{z}}} italic_q ( italic_z ) = italic_ρ ( italic_w ( italic_z ) ) italic_w start_POSTSUBSCRIPT italic_z end_POSTSUBSCRIPT ¯ start_ARG italic_w start_POSTSUBSCRIPT italic_z end_POSTSUBSCRIPT end_ARG . The Hopf differential of the map is Φ = q ( z ) d z 2 Φ 𝑞 𝑧 𝑑 superscript 𝑧 2 \Phi=q(z)dz^{2} roman_Φ = italic_q ( italic_z ) italic_d italic_z start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT .


Definition 3.7 .

The tensor product C D tensor-product 𝐶 𝐷 C\otimes D italic_C ⊗ italic_D of two N 𝑁 N italic_N -complexes C 𝐶 C italic_C , D 𝐷 D italic_D is the N 𝑁 N italic_N -complex given by the graded R 𝑅 R italic_R -module { a + b = n C a D b } n subscript subscript direct-sum 𝑎 𝑏 𝑛 tensor-product subscript 𝐶 𝑎 subscript 𝐷 𝑏 𝑛 \{\oplus_{a+b=n}C_{a}\otimes D_{b}\}_{n\in\mathds{Z}} { ⊕ start_POSTSUBSCRIPT italic_a + italic_b = italic_n end_POSTSUBSCRIPT italic_C start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT ⊗ italic_D start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT } start_POSTSUBSCRIPT italic_n ∈ blackboard_Z end_POSTSUBSCRIPT with differential induced by

d ( x y ) = d x y + q - a x d y 𝑑 tensor-product 𝑥 𝑦 tensor-product 𝑑 𝑥 𝑦 tensor-product superscript 𝑞 𝑎 𝑥 𝑑 𝑦 d(x\otimes y)=dx\otimes y+q^{-a}x\otimes dy italic_d ( italic_x ⊗ italic_y ) = italic_d italic_x ⊗ italic_y + italic_q start_POSTSUPERSCRIPT - italic_a end_POSTSUPERSCRIPT italic_x ⊗ italic_d italic_y

for x C a 𝑥 subscript 𝐶 𝑎 x\in C_{a} italic_x ∈ italic_C start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT and y D b 𝑦 subscript 𝐷 𝑏 y\in D_{b} italic_y ∈ italic_D start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT .


Definition 2 .

Let L 𝐿 L italic_L be a partially ordered set. An L 𝐿 L italic_L -colored graph is an ordered triple ( V , χ , χ ′′ ) 𝑉 superscript 𝜒 normal-′ superscript 𝜒 normal-′′ (V,\chi^{\prime},\chi^{\prime\prime}) ( italic_V , italic_χ start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT , italic_χ start_POSTSUPERSCRIPT ′ ′ end_POSTSUPERSCRIPT ) such that V 𝑉 V italic_V is a nonempty set, χ : V L normal-: superscript 𝜒 normal-′ normal-→ 𝑉 𝐿 \chi^{\prime}:V\to L italic_χ start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT : italic_V → italic_L is an arbitrary function and χ ′′ : V 2 L normal-: superscript 𝜒 normal-′′ normal-→ superscript 𝑉 2 𝐿 \chi^{\prime\prime}:V^{2}\to L italic_χ start_POSTSUPERSCRIPT ′ ′ end_POSTSUPERSCRIPT : italic_V start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT → italic_L is a function satisfying:

  1. 1.

    χ ′′ ( x , x ) = 0 superscript 𝜒 ′′ 𝑥 𝑥 0 \chi^{\prime\prime}(x,x)=0 italic_χ start_POSTSUPERSCRIPT ′ ′ end_POSTSUPERSCRIPT ( italic_x , italic_x ) = 0 , and

  2. 2.

    χ ′′ ( x , y ) = χ ′′ ( y , x ) superscript 𝜒 ′′ 𝑥 𝑦 superscript 𝜒 ′′ 𝑦 𝑥 \chi^{\prime\prime}(x,y)=\chi^{\prime\prime}(y,x) italic_χ start_POSTSUPERSCRIPT ′ ′ end_POSTSUPERSCRIPT ( italic_x , italic_y ) = italic_χ start_POSTSUPERSCRIPT ′ ′ end_POSTSUPERSCRIPT ( italic_y , italic_x ) .

A multicolored graph is an L 𝐿 L italic_L -colored graph, where L 𝐿 L italic_L is the powerset of some set with set inclusion as the ordering relation.


Definition 4.6 (Constant strategies) .

Let x ¯ > 0 normal-¯ 𝑥 0 \bar{x}>0 ¯ start_ARG italic_x end_ARG > 0 be given. We say that a couple ( u ¯ , v ¯ ) [ 0 , 1 [ × [ 0 , + [ fragments fragments normal-( normal-¯ 𝑢 normal-, normal-¯ 𝑣 normal-) fragments normal-[ 0 normal-, 1 fragments normal-[ fragments normal-[ 0 normal-, normal-[ (\bar{u},\bar{v})\in[0,1[\times[0,+\infty[ ( ¯ start_ARG italic_u end_ARG , ¯ start_ARG italic_v end_ARG ) ∈ [ 0 , 1 [ × [ 0 , + ∞ [ is a constant strategy for x ¯ normal-¯ 𝑥 \bar{x} ¯ start_ARG italic_x end_ARG if

{ [ ( λ + r p ¯ - λ - μ - v ¯ ) x ¯ - u ¯ p ¯ ] = 0 , p ¯ = r + λ r + λ + v ¯ , cases delimited-[] 𝜆 𝑟 ¯ 𝑝 𝜆 𝜇 ¯ 𝑣 ¯ 𝑥 ¯ 𝑢 ¯ 𝑝 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 absent 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 ¯ 𝑝 𝑟 𝜆 𝑟 𝜆 ¯ 𝑣 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 \displaystyle\begin{cases}\left[\left(\dfrac{\lambda+r}{\bar{p}}-\lambda-\mu-% \bar{v}\right)\bar{x}-\dfrac{\bar{u}}{\bar{p}}\right]~{}=~{}0,\\ \\ \bar{p}~{}=~{}\dfrac{r+\lambda}{r+\lambda+\bar{v}},\end{cases} { start_ROW start_CELL [ ( divide start_ARG italic_λ + italic_r end_ARG start_ARG ¯ start_ARG italic_p end_ARG end_ARG - italic_λ - italic_μ - ¯ start_ARG italic_v end_ARG ) ¯ start_ARG italic_x end_ARG - divide start_ARG ¯ start_ARG italic_u end_ARG end_ARG start_ARG ¯ start_ARG italic_p end_ARG end_ARG ] = 0 , end_CELL start_CELL end_CELL end_ROW start_ROW start_CELL end_CELL start_CELL end_CELL end_ROW start_ROW start_CELL ¯ start_ARG italic_p end_ARG = divide start_ARG italic_r + italic_λ end_ARG start_ARG italic_r + italic_λ + ¯ start_ARG italic_v end_ARG end_ARG , end_CELL start_CELL end_CELL end_ROW

where the second relation comes from taking T b = + subscript 𝑇 𝑏 T_{b}=+\infty italic_T start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT = + ∞ in ( 4.3 ).


Definition 2.1 .

Let s 𝑠 s italic_s is a ASCII string, the ASCII length of s 𝑠 s italic_s , written 𝐚𝐬𝐜𝐢𝐢𝐥𝐞𝐧 ( s ) 𝐚𝐬𝐜𝐢𝐢𝐥𝐞𝐧 𝑠 \textbf{asciilen}(s) asciilen ( italic_s ) , abbreviated s a s subscript norm 𝑠 𝑎 𝑠 \|s\|_{as} ∥ italic_s ∥ start_POSTSUBSCRIPT italic_a italic_s end_POSTSUBSCRIPT , is the number of characters that it contains, and

𝐛𝐢𝐧𝐥𝐞𝐧 ( s ) = 𝐚𝐬𝐜𝐢𝐢𝐥𝐞𝐧 ( s ) × 7 𝐛𝐢𝐧𝐥𝐞𝐧 𝑠 𝐚𝐬𝐜𝐢𝐢𝐥𝐞𝐧 𝑠 7 \textbf{binlen}(s)=\textbf{asciilen}(s)\times 7 binlen ( italic_s ) = asciilen ( italic_s ) × 7

named binary length of s 𝑠 s italic_s .


Definition 2 (reward)

Let ψ φ 𝜓 𝜑 \psi\equiv\square\varphi italic_ψ ≡ □ italic_φ be a past-dependent formula and 𝐱 = ( 𝐮 ) 𝐱 𝐮 \mathbf{x}=\mathcal{M}(\mathbf{u}) bold_x = caligraphic_M ( bold_u ) be a finite length signal until the time t 𝑡 t italic_t . We define the reward 𝗋𝖾𝗐𝖺𝗋𝖽 ( ψ , 𝐱 ) 𝗋𝖾𝗐𝖺𝗋𝖽 𝜓 𝐱 \operatorname{\mathsf{reward}}(\psi,\mathbf{x}) sansserif_reward ( italic_ψ , bold_x ) as

𝗋𝖾𝗐𝖺𝗋𝖽 ( ψ , 𝐱 ) = exp ( - ρ ( φ , 𝐱 , t ) ) - 1 𝗋𝖾𝗐𝖺𝗋𝖽 𝜓 𝐱 𝜌 𝜑 𝐱 𝑡 1 \operatorname{\mathsf{reward}}(\psi,\mathbf{x})=\exp(-\operatorname{\rho}(% \varphi,\mathbf{x},t))-1 sansserif_reward ( italic_ψ , bold_x ) = roman_exp ( - italic_ρ ( italic_φ , bold_x , italic_t ) ) - 1 (4)

Definition 4.1 .

For two different elements α γ 𝛼 𝛾 subscript \alpha\not=\gamma\in{\mathbb{R}}_{\infty} italic_α ≠ italic_γ ∈ blackboard_R start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT , we write ( α , γ ) 𝛼 𝛾 (\alpha,\gamma) ( italic_α , italic_γ ) for the open interval between α 𝛼 \alpha italic_α and γ 𝛾 \gamma italic_γ with respect to the cyclic order. For γ < α 𝛾 𝛼 \gamma<\alpha italic_γ < italic_α in {\mathbb{R}} blackboard_R this means that

( α , γ ) = ( α , ) { } ( - , γ ) . 𝛼 𝛾 𝛼 𝛾 (\alpha,\gamma)=(\alpha,\infty)\cup\{\infty\}\cup(-\infty,\gamma). ( italic_α , italic_γ ) = ( italic_α , ∞ ) ∪ { ∞ } ∪ ( - ∞ , italic_γ ) .

Definition 2.2 .

Two rationals a b < c d 𝑎 𝑏 𝑐 𝑑 \frac{a}{b}<\frac{c}{d} divide start_ARG italic_a end_ARG start_ARG italic_b end_ARG < divide start_ARG italic_c end_ARG start_ARG italic_d end_ARG in Q subscript 𝑄 \mathcal{F}_{Q} caligraphic_F start_POSTSUBSCRIPT italic_Q end_POSTSUBSCRIPT are called adjacent if

b c - a d = 1 . 𝑏 𝑐 𝑎 𝑑 1 bc-ad=1. italic_b italic_c - italic_a italic_d = 1 . (2.1)

They are consecutive in Q subscript 𝑄 \mathcal{F}_{Q} caligraphic_F start_POSTSUBSCRIPT italic_Q end_POSTSUBSCRIPT if they are adjacent and b + d > Q 𝑏 𝑑 𝑄 b+d>Q italic_b + italic_d > italic_Q .

Definition 3.3 .

f 𝑓 f italic_f is called multiplicative if

f ( q r ) = f ( q ) f ( r ) 𝑓 𝑞 𝑟 𝑓 𝑞 𝑓 𝑟 f(qr)=f(q)f(r) italic_f ( italic_q italic_r ) = italic_f ( italic_q ) italic_f ( italic_r ) (3.2)

is true whenever ( q , r ) = 1 𝑞 𝑟 1 (q,r)=1 ( italic_q , italic_r ) = 1 . f 𝑓 f italic_f is called completely multiplicative if ( 3.2 ) holds for all q , r [ i ] + 𝑞 𝑟 superscript delimited-[] 𝑖 q,r\in\mathbb{Z}[i]^{+} italic_q , italic_r ∈ blackboard_Z [ italic_i ] start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT .


Definition 3.1 .

Let a 0 , a 1 : I A : subscript 𝑎 0 subscript 𝑎 1 𝐼 𝐴 a_{0},a_{1}:I\to A italic_a start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , italic_a start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT : italic_I → italic_A be A 𝐴 A italic_A -paths with the same end points. A genus homotopy between a 0 subscript 𝑎 0 a_{0} italic_a start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT and a 1 subscript 𝑎 1 a_{1} italic_a start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT is a Lie algebroid map h : T Σ A : 𝑇 Σ 𝐴 h:T\Sigma\to A italic_h : italic_T roman_Σ → italic_A , where Σ Σ \Sigma roman_Σ is a compact surface with connected boundary Σ Σ \partial\Sigma ∂ roman_Σ , together with a diffeomorphism ϕ : U V : italic-ϕ 𝑈 𝑉 \phi:U\to V italic_ϕ : italic_U → italic_V between collar neighborhoods of ( I × I ) 𝐼 𝐼 \partial(I\times I) ∂ ( italic_I × italic_I ) and Σ Σ \partial\Sigma ∂ roman_Σ , such that

h d ϕ = a ( t , ε ) d t + b ( t , ε ) d ε d italic-ϕ 𝑎 𝑡 𝜀 d 𝑡 𝑏 𝑡 𝜀 d 𝜀 h\circ\mathrm{d}\phi=a(t,\varepsilon)\mathrm{d}t+b(t,\varepsilon)\mathrm{d}\varepsilon italic_h ∘ roman_d italic_ϕ = italic_a ( italic_t , italic_ε ) roman_d italic_t + italic_b ( italic_t , italic_ε ) roman_d italic_ε

satisfy the boundary conditions ( 3 ).


Definition 1.3.1 .

The complex variable z = x + i y 𝑧 𝑥 𝑖 𝑦 z=x+iy italic_z = italic_x + italic_i italic_y is represented geometrically by the points of 2 superscript 2 \mathbb{R}^{2} blackboard_R start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT , the euclidean plane, so that to z 0 = x 0 + i y 0 subscript 𝑧 0 subscript 𝑥 0 𝑖 subscript 𝑦 0 z_{0}=x_{0}+iy_{0} italic_z start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT = italic_x start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT + italic_i italic_y start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT in \mathbb{C} blackboard_C corresponds the point ( x 0 , y 0 ) subscript 𝑥 0 subscript 𝑦 0 (x_{0},y_{0}) ( italic_x start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , italic_y start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) of 2 superscript 2 \mathbb{R}^{2} blackboard_R start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT . We have

Figure 1.1 : Complex Number
z = r ( cos ( θ ) + i sin ( θ ) ) r e i θ 𝑧 𝑟 𝜃 𝑖 𝜃 𝑟 superscript 𝑒 𝑖 𝜃 z=r(\cos(\theta)+i\sin(\theta))\equiv re^{i\theta} italic_z = italic_r ( roman_cos ( italic_θ ) + italic_i roman_sin ( italic_θ ) ) ≡ italic_r italic_e start_POSTSUPERSCRIPT italic_i italic_θ end_POSTSUPERSCRIPT (1.1)

where

r = ( x 2 + y 2 ) 1 / 2 , θ = tan - 1 y x formulae-sequence 𝑟 superscript superscript 𝑥 2 superscript 𝑦 2 1 2 𝜃 superscript 1 𝑦 𝑥 r=(x^{2}+y^{2})^{1/2},\hskip 28.452756pt\theta=\tan^{-1}{\frac{y}{x}} italic_r = ( italic_x start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_y start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT 1 / 2 end_POSTSUPERSCRIPT , italic_θ = roman_tan start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT divide start_ARG italic_y end_ARG start_ARG italic_x end_ARG (1.2)

We write x = R e ( z ) 𝑥 𝑅 𝑒 𝑧 x=Re(z) italic_x = italic_R italic_e ( italic_z ) (read “ x 𝑥 x italic_x is the real part of z 𝑧 z italic_z ”), y = I m ( z ) 𝑦 𝐼 𝑚 𝑧 y=Im(z) italic_y = italic_I italic_m ( italic_z ) (read “ y 𝑦 y italic_y is the imaginary part of z 𝑧 z italic_z ”). Furthermore, r = | z | 𝑟 𝑧 r=|z| italic_r = | italic_z | is the absolute value of z 𝑧 z italic_z , and θ = a r g ( z ) 𝜃 𝑎 𝑟 𝑔 𝑧 \theta=arg(z) italic_θ = italic_a italic_r italic_g ( italic_z ) is the argument of z 𝑧 z italic_z , which is determined only up to multiples of 2 π 2 𝜋 2\pi 2 italic_π .